
Semantic Web Services: description requirements
and current technologies

Rubén Lara Holger Lausen Sinuhé Arroyo
 ruben.lara@uibk.ac.at holger.lausen@uibk.ac.at sinuhe.arroyo@uibk.ac.at

 Jos de Bruijn Dieter Fensel

 jos.de-bruijn@uibk.ac.at dieter.fensel@uibk.ac.at

Universität Innsbruck
http://deri.semanticweb.org/

Technikerstrasse, 13
6020, Innsbruck, Austria

ABSTRACT

Semantic Web Services aim at providing a new level of
functionality on top of the current Web and current services, by
enabling automatic discovery, composition, invocation and
interoperation of Web Services. Different efforts are addressing
some of the requirements to enable such next generation services,
with different degree of success. Nevertheless, to achieve the
main goals addressed by Semantic Web Services, an appropriate
semantic description, supporting automation of discovery,
composition, invocation and interoperation, must be defined. In
this paper, a set of requirements on the information a Semantic
Web Service must expose in order to fulfill these major objectives
is presented. These requirements are related to the different
initiatives in the area, and proposals for useful extensions and
combinations of these efforts are discussed.

Categories and Subject Descriptors
H.3.5 [Information Storage and Retrieval]: Online Information
Services – web-based services, commercial services.

General Terms
Standardization, Languages.

Keywords
Web services, semantics, semantic web, semantic web services,
semantic web services description, service ontology, WSMF,
DAML-S, BPEL4WS, BPML, WSCI.

1. INTRODUCTION
Web services extend the Web from a distributed source of
information to a distributed source of service. Semantic Web has
added machine-interpretable information to Web content in order
to provide intelligent access to heterogeneous and distributed
information. In a similar way, Semantic Web concepts are used to
define intelligent web services, i.e., services supporting automatic
discovery, composition, invocation and interoperation. This joint
application of Semantic Web concepts and web services in order
to realize intelligent web services is usually referred as Semantic
Web Services.

Due to the huge potential impact of semantic web services (SWSs
for short) in areas like enterprise application integration and
electronic commerce, several efforts, both academic and
industrial, have jumped into the arena with the purpose of
bringing semantic web services to its full potential. These
initiatives are addressing different aspects of the requirements
needed to realize semantic web services. They are sometimes
complementary, but conflicts between the different approaches
also appear. These efforts try to improve current web service
technology around SOAP, WSDL and UDDI, which provides
very limited support for real automation of services.

One of these initiatives is the Web Services Modeling Framework
(WSMF), which aims at providing an appropriate conceptual
model for developing and describing services and their
composition, based on the principles of maximal decoupling and
scalable mediation [8].

Another running project is DAML-S, a DARPA effort to describe
an ontology of web services with the objective of making web
services computer-interpretable and hence enabling discovery,
invocation, interoperation, composition, verification and
execution monitoring of services [5].

BPEL4WS [1] and BPML [4]/WSCI [20] have similar
functionalities, both aiming at defining a language to describe
process models, as well as public process interfaces and service

choreography support, to provide conversational and
interoperation means for web services.

Regarding W3C activities in the area, its initiative to define a set
of requirements on service description pays little or no attention
to semantic support, hence offering a weak basis to make
automation of functionality possible [21].

Among the presented approaches, WSMF is the one with the
widest scope, as it describes a full-fledged framework with the
purpose of making the use of semantic web services a reality.
Nevertheless, a concrete realization of the conceptual
requirements it presents is still under development in the context
of the EU-funded project SWWS1. DAML-S focuses on providing
semantics to web services descriptions, although some caveats,
limitations and lacks have been identified within the proposed
ontology. The initiatives focusing on the modeling of business
processes, BPEL4WS and BPML/WSCI, do not incorporate any
semantics to their modeling primitives, neither for private nor for
public processes, thus providing limited support for dynamic
discovery, composition and invocation [18].

Whatever the approach and intended purpose, every initiative
relies on a specific way to describe web services. Discovery,
composition, invocation and interoperation strongly depend on
how services are described and exposed for subsequent use. The
way a service is described determines to what extent other
constructs can provide automation support.

WSMF proposes a service description framework which fulfills
the requirements for semantic web services. Nevertheless, it needs
some refinements and a specific grounding of the proposed
description concepts. Therefore, the approach presented in this
paper takes this framework as a starting point to determine the
requirements for a meaningful service description.

In this paper, and taking WSMF as a basis, we present a set of
requirements for web services description and present grounding
guidelines considering the features provided by current efforts.
The paper is structured as follows. In section 2, capabilities are
presented as the central description support for discovery and
composition. Section 3 presents description needs for
interoperation of services. Section 4 addresses the concrete
grounding of services for invocation. In Section 5, other issues
such as service compensation are discussed. Finally, section 6
presents conclusions and future work.

2. Capabilities and description requirements
for discovery and composition
Automatic discovery and composition of services are probably the
biggest challenges Semantic Web Services are facing. Finding a
suitable way to put these two features together has become one of
the key points to convert the Web in a distributed source of
computation, as they enable the location and combination of
distributed services to perform a required functionality.

Automatic Web service discovery involves automatically locating
Web Services that provide a particular functionality and that
adhere to requested properties [11]. To provide such an automatic

1 Semantic Web enabled Web Services.

http://swws.semanticweb.org/

location, the discovery process should be based on the semantic
match between a declarative description of the service being
sought, and a description of the service being offered. This
problem requires not only an algorithm to match these
descriptions, but also a language to declaratively express the
capabilities of services [12].

Furthermore, composition of Web Services requires something
more than representing combinations of services where flow and
bindings to the services are known a priori. It also must allow the
combination of services to provide a given functionality when a
request can not be fulfilled by using available services
individually [15].

Discovering and composing services needs an approach based on
semantic descriptions, as the requester required functionally has
to be expressed in a high-level and abstract way to enable
reasoning procedures.

Composition and discovery work together in different ways. The
following examples depict different scenarios where location and
combination of services take place:

 - A user wants to book a flight from Innsbruck to Madrid, for
next Wednesday and with a fixed maximum price. With this
information, discovery will look for a service accepting origin,
destination, date and maximum price and providing a seat for an
appropriate flight. In the case where such a service is not
available, but only a service to look for flight information given
trip data and another service to book a flight given flight
information can be found, combination must be performed. By
combining these two services, the requested functionality can be
provided.

 - A travel agency models its business process to provide a “make
a trip” service. The agency explicitly models control and data
flow between the different services involved (book a flight, book
a hotel, book a car…). In this case, composition is explicitly
modeled at provider side. But in the situation where the agency
does not want to limit the book flight service to a given company,
a high-level description of the required service must be provided
in the process model to enable dynamic discovery (and
composition if not a single service can fulfill the requirements) of
the best available service to book the flight based on requester
criteria.

These two examples illustrate the main roles of composition and
discovery to provide a required functionality. Although these use
cases can be modified and extended in a number of ways and
different examples can be depicted, all of them rely on a high-
level description of the functionality being sought.

2.1 Capability description
The required high-level functionality description can be viewed as
the capability of the service. Different services can provide the
same capability, e.g., book a flight, and the same service can
provide different capabilities, e.g., search a book and search a
movie.

In this sense, capabilities must be naturally described separately
from specific service descriptions [8] for several reasons:

 - Express generic functionalities: Several services offering the
same functionality but with different specific refinements should
be related to the same generic high-level capability. Refinements
can then be specified by different services. This approach is
related to concepts taken from Problem Solving Methods
research, and it inherits some of their advantages, as the ones
highlighted in [7] and [9].

 - Use different terminologies: Refinements done by a given web
service can be expressed using a different terminology from the
one used to describe their capability, thus increasing flexibility,
as requiring the use of the same terminology is sometimes
unrealistic.

 - Allow a given service to present two different capabilities
while exposing only one service description.

 - Support discovery process: Discovery first needs capability
descriptions. Refinement based on actual input, output and
requirements is performed in subsequent steps. Thus, separating
capabilities and referring service refinements to them establishes
a natural link to the discovery process.

Declarative means to define capabilities, as well as specific
service refinements and the link between refinements and
capabilities are needed. This description must allow reasoning
about the information presented by the service. Several works in
the area use subsumption reasoning, i.e., determining whether a
given concept is more general than another, to support discovery
and composition, either looking for just one service providing the
required functionality [12] or composing different services [2],
like in the travel agency example exposed before.

To support dynamic discovery and composition, a capability must
include the following information:

 - Pre-conditions: High-level inputs to the service together with
conditions over these inputs. These inputs are concepts of a given
domain ontology. Each pre-condition will include an identifier to
allow future references. High-level input means that more specific
concepts in the ontology can be found, e.g. indicating payment
information as a pre-condition, instead of credit card information
or bank information or even data types. If a too specific concept is
given as a pre-condition, then the capability will hardly express
generic functionalities. It is important to notice that the pre-
conditions of a given capability are not independent of each other,
as they all define the functionality expressed in the capability.

 - Post-conditions: High-level results of the service execution
together with conditions over these results. The results are also
concepts of a given domain ontology. Identifiers are also defined
for post-conditions, and as with pre-condition, they cannot be
considered independent, as the removal of one of them changes
the functionality expressed by the capability.

 - Textual description: To allow human interpretation.

 - Services: References to the services presenting the described
capability.

 - Identifier: Identifier to allow references to the capability.

Pre and post-conditions define the capability of the service in
terms of the information needed to use the service and the results
of its invocation. Describing capabilities by expressing their
functionalities in terms of required high-level input and high-
level results covers the following requisites:

- Modeling a process at design time. In this case, the workflow
and data flow is defined a priori, at least partially. Thus, the
declaration of the use of a capability must enable the specification
at design time of the input and the result of the service. This
information is needed to model data and control flow.
Nevertheless, this information must be kept general enough to
describe generic service functionalities, allowing dynamic
location and combination of services. For example, in a business
process using a service to buy some goods and another service to
ship them, the result of the buy_goods service must be used by the
ship_goods service, and the required data and control flow must
be designed. Other approaches like relating the capability to a
task ontology describing possible requested functionalities cannot
be used in this context, as they don’t provide enough information
to define flow at design time.

 - Dynamic discovery: Subsumption algorithms, as the ones
presented in [12] and [2] are supported by relating pre and post-
conditions to the appropriate domain ontology and by using the
specific services refinements, presented in the next subsection.

 - Dynamic composition: Combination of services to fulfill a
given functionality can be performed by expressing functionality
in terms of pre and post-conditions, as described in [2].

 - n to m mappings: Describing a capability using pre and post-
conditions and not including low-level input and output
information, enables n to m mappings between capabilities and
services, thus allowing the description of generic functionalities
and the declaration of different generic functionalities by the
same service. Lower level inputs and outputs must not be
included in the capability description as this would prevent these
features and would imply several modeling problems, as
explained in [14].

Textual information is used to let the human user browse
capabilities. Capabilities must be understandable by humans and
machines [13], as a process designer may need to search suitable
capabilities to include in a process model at design time.

References to the services presenting the capability are specified
to enable the location of refinements of the described generic
functionality, i.e., the location of specific services during
discovery and composition process.

2.2 Capability refinements
Once a capability is described, different services presenting this
capability can refine it. In this way, specific requirements,
constraints and results of an individual service can be expressed.
To avoid redundancy, the service will only explicitly describe the
refinements it introduces, not repeating the information already
enclosed in the capability description. Figure 1 depicts the
relationship between capabilities and services:

Figure 1. Relationship between capabilities and services

By defining the service refinements, a complete high-level
description of the input required by the service and the result of
its execution is given. Nevertheless, actual input and output data
is needed to express the low-level details of service functionality.
These inputs and outputs are naturally related to pre and post-
conditions, as they constitute the realization in terms of data of
high-level conditions.
Therefore, the information to be exposed by an individual service
to refine generic functionalities is the following:

 - Identifier: information for service references.
 - Textual description: human-understandable information.
 - Capability references: references to the capability or
capabilities presented by the service.
 - Pre-condition refinements: pre-conditions refining the ones
presented by the capability. If it is a refinement of one or more
pre-conditions defined in the capability, a reference to them will
be included. This is the case of a service referring to a capability
requiring general payment information as pre-condition, while the
service accepts only information about credit card. Also new pre-
conditions are allowed, and identifiers for every new pre-
condition or refinement must be included. In general, pre-
condition refinements reflect the strengthening of pre-conditions.
 - Inputs: actual input data information. Inputs are grouped and
referred to the pre-condition the group realizes, either from the
generic capability or from the service refinements. To allow
polymorphism, different sets of inputs can be defined for the same
pre-condition. For example, in the case of a service accepting
different ways of payment (credit card, bank transfer…), different

input data is required depending on how the requester wants to
pay. However, it is natural to define only one interface for the
service. Therefore, this service will have a pre-condition
“payment information”, with different sets of inputs associated to
it for credit card payment, bank transfer payment, etc. Which
specific set of inputs is used will be decided at run-time.
 - Post-condition refinements: refinements or new post-conditions.
They are defined following the same mechanism as pre-
conditions. Refinements of existing post-conditions reflect the
weakening of the capability post-conditions, whereas adding new
ones reflects the strengthening of the capability post-conditions
 - Outputs: actual output data, described in the same way as
inputs.

In figure 2 the refinement of pre-conditions and how the inputs
realize them is depicted:

Figure 2. Pre-conditions refinements and pre-conditions
realization

In the figure above, service pre-condition 1 refines the first pre-
condition defined in the capability. Inputs group 1 gives actual
data for the refined pre-condition. Service pre-condition 2 is a
new pre-condition, not existing in the capability exposed, and
realized by inputs group 2. Capability pre-conditions 2 and 3 are
not modified, so inputs groups 3 and 4 directly refer to these pre-
conditions. As explained before, the refinement of more than one
pre-conditions together is also possible.
By defining capabilities, refinements and actual input and output
data using appropriate ontologies, service description exposes
enough information to enable automatic discovery and
composition. Refinements and information about input and output
data can also be used to locate a required service, as well as for
composition, thus providing appropriate expressivity power for
the requester. Therefore, the requester is not limited to locate and
combine generic capabilities, but he can also express more
detailed needs.

2.3 Relation to current technologies
Although the requirements presented above for describing service
functionalities reflect the ideas contained in the WSMF approach,
they extend and refine the description means outlined in the
framework.
Once these extensions and refinements are defined, they must be
expressed using an appropriate ontology to provide semantics to
the information exposed by the service. In this sense, neither
BPEL4WS nor BPML/WSCI include any suitable mechanism, as
they do not use similar concepts to capabilities or refinements and
they do not add any semantic information.
Therefore, DAML-S is the only potentially reusable work to
define the desired ontology. The existing ontology of services,
currently at version 0.9, includes profiles and service models,
which purposes are similar to the ones of capabilities and
refinements respectively. However, the DAML-S ontology
presents serious limitations if left as it is. First, input and output is
included in the profile, preventing polymorphism and n to m
mappings between profiles and specific service models. Second,
pre and post-conditions (pre-conditions and effects in DAML-S
terminology) of the concrete service model are not related to the
ones presented at the profile. Third, inputs and outputs are not
related to pre-conditions and effects. Fourth, using different sets
of inputs and outputs for a given pre or post-condition is not
allowed. All these limitations imply service modeling problems,
as analyzed in [14].

In conclusion, the DAML-S ontology can be used as a basis to
define semantics for service functionality descriptions, but it must
be considerably changed and extended to present the properties
and requirements presented in this section.

3. Interoperation and current technologies
One of the main purposes of web services is the automation of
application integration within and across organizational
boundaries. This implies necessarily the need for interoperation
between services. This interoperation can be between services in
an organization or crossing different organizational boundaries.
To ensure automatic interoperation, description means must be
defined declaratively using explicit semantics.

Business collaborations require long-running interactions driven
by an explicit process model [17]. Thus, a service must explicitly
model its business process which will contain decision
mechanisms for the execution of the service. But following one of
the main principles of WSMF, no internal details of the
organization business logics should be made publicly visible.
Therefore, while a process model and its data and control flow
must be designed explicitly to ground the execution and public
behavior of a given service, it must not be exposed.

Nevertheless, the external behavior of the service in terms of
message interchange must be made public in order to enable
automatic interoperation of the service with any other service. In
this sense, the public description of a service must include a
conversational interface which allows interoperation while not
revealing any private detail.

Figure 3 illustrates the relationship between the private process
model and the public process model in terms of visibility. Private

process model grounds the public model and drive its actual
behavior, but only the public process model is made public.

Figure 3. Public and private process models visibility2

Although the main purpose of this paper is to define public
description requirements for semantic web services, private
process modelling deserves some analysis given its close
relationship with public process models.
Concerning private process models, both BPEL4WS and BPML
offer a rich set of primitives to model the workflow of the service,
supporting composite processes based on web services. In [19]
and [16] a pattern based analysis of both languages can be found.
This work analyzes BPEL4WS and BPML/WSCI using a set of
workflow and communication patterns to clarify if they provide
sufficient modeling primitives for any possible abstract situation.
The result is similar for both, as they support most of the patterns
described, either directly or using workarounds.

Both approaches clearly separate private and public process
models. BPEL4WS introduces the concept of executable process
for private processes and abstract process for public processes.
Similarly, BPML is used to model private processes while WSCI
is concerned with the choreography and public interoperation of
services. However, as stated before, both languages lack
semantics to expose its public interface as well as the possibility
of expressing the use of a service within the private process model
in terms of the capability it presents.

DAML-S must be analyzed for this purpose, as it is the only
initiative including explicit semantics. However, an appropriate
service ontology requires a richer set of process modeling
primitives, as the concepts described in the DAML-S process
model are not powerful enough to support some of the
communication and workflow patterns required. And what is
more, DAML-S does not distinguish between private and public
processes, allowing internal details to be exposed via a composite
process. Thus, although DAML-S provides ontological support
for service modeling, its limitations prevent his direct use to
publish interoperation information.

Our proposal is to add semantics to either BPEL4WS or
BPML/WSCI modelling mechanism for conversational interface

2 From the presentation “Principles of integration: Are Web

Services heading in the right direction?”, Christoph Bussler,
Innsbruck 19.05.2003

and integrate these semantics into the service ontology. That
means replacing the process model in DAML-S by a BPEL4WS
or BPML/WSCI-based model, including the necessary public
information to expose the behaviour of the service in terms of
message interchange.

Summarizing, the public description requirements for
interoperation, which will be grounded in the way previously
discussed, are the following:

 - External behavior of the service in terms of message
interchange and message sequencing must be described.

 - No information about internal business logics should be
exposed.

 - The public process exposed must be grounded by an appropriate
private process, which must allow the use of capabilities and
refinements at design time to specify the service to be used and its
dynamic location and composition.

Deciding whether BPEL4WS or BPML/WSCI can be used to
fulfill these requirements is out of the scope of this paper. In any
case, they must be semantically grounded and extended to use
generic capabilities and refinements at design time in the way
described in the previous section, and included in the service
ontology with the necessary extensions.

Also the use of Abstract State Machines (ASMs) [3] to model
business processes is being analyzed, as they present several
interesting properties, namely: express functionally complete but
abstract description that can be understood by a human reader,
define every system features as far as it is semantically relevant
for the required functionality and contain only what the logic of
the problem requires for the system behavior. Furthermore, the
grounding model is implemented following a refinement process,
trough a hierarchy of intermediate models, and ASMs also allow
structuring the system horizontally by building it from
components with abstract definitions of behavior and interactions
trough interfaces.

Though ASMs properties make them suitable for its use to
describe service conversational interfaces and their corresponding
groundings, none of current efforts use ASMs. As this paper tries
to ground description requisites using existing technologies or
extensions and combinations of them, introducing ASMs is out of
the scope of this paper, although it will be part of future work.

4. Service invocation
The requirements presented so far deal with the expression of
declarative functionality and the publication of conversational
interface. This information will support discovery, composition
and interoperation, but declarative means to enable invocation of
a given service are still missing in the picture.

Invocation information presented by a given service must be
agnostic in principle with respect to the specific technologies
which will ground it. Nevertheless, details must be available at
run-time for the service requester in order to perform a real
invocation. These details must relate every aspect of the declared
functionality to a ground mechanism, e.g., SOAP on HTTP.

Grounding mechanisms are provided within BPEL4WS,
BPML/WSCI and DAML-S, although most of the examples
available are focused on WSDL and SOAP grounding.

Considering the need for an effective and platform independent
invocation, input and output data, messages and message
sequencing must be declaratively related to a specific technology
and exposed in the public service description. In this sense,
service ontology must include concepts to express this
relationship, as the “grounding” concept defined in DAML-S
ontology.

Due to the semantic link to the required grounding, DAML-S
should naturally be used as a starting point as it already contains a
declarative grounding mechanism [6]. Nevertheless, the DAML-S
ontology relates grounding directly to a given service, hence not
supporting polymorphism and encountering problems while
grounding a real service, as the ones highlighted in [14]. As a
consequence, extensions to DAML-S grounding mechanism are to
be introduced in order to support the grounding of the description
means introduced in sections 2 and 3. Different groundings for
every set of inputs must be defined, and the use of a concrete
grounding should be decided at run-time. Furthermore,
conversational interface, not defined in DAML-S ontology, must
be related in a similar way to a concrete technology.

However, the basic DAML-S grounding mechanism can be reused
and refined make it usable for automatic invocation. After the
outlined refinements are performed, services presenting all the
properties required in this paper can be grounded using such
ontology.

5. Compensation and other requirements
Until now, the optimistic assumption “everything works well” has
been implicitly made. No errors were considered, although they
appear in computer systems more frequently than desired. Due to
this fact, an intelligent service description must take into account
possible errors and how to deal with them.
For this purpose, error data must be described in addition to input
and output data. A SWS description should include one or more
error ports, to provide error information to the requester
potentially at different points of execution. These error ports must
refer to an appropriate ontology in the same way inputs and
outputs do. Error ports can be thought as special types of outputs,
so the same requirements apply to them, although they are not
referred to any pre or post-condition. Error ports, as well as inputs
and outputs, will be used in the same way in the definition of the
conversational interface, establishing at which point of execution
a concrete input is required, when outputs are delivered to the
requester, and where specific error ports may report error
information. These ports will also be included in the service
grounding information.
In the context of semantic web services, dynamic location and
combination of services implies that no a priori assumptions can
be made about the duration of a service invocation. For this
reason, the use of traditional ACID transactions [10] to deal with
errors is not useful in this context, as they require blocking
resources for an undefined amount of time. Therefore, the concept
of compensation has appeared to substitute classic transactions.
Compensating a service means to invoke one or more services to
undo the actions of the former one. For instance, a service to book

a flight can be compensated by invoking a service to cancel a
flight.
Compensation is based on the assumption of the existence of a
reverse service for the invoked one. If this assumption does not
hold, the effect of the service can not be compensated.
Due to the need for a service reversing the action of the service
invoked, the location of such service plays an essential role in
compensation. To locate this service, three different situations can
be thought: 1. the invoked service explicitly points to a service
compensating its action (“book a flight” service from an airline
points to its cancellation service), 2. the invoked service describes
the capability of the service needed to compensate its invocation
to make its location (and possible composition) possible (although
several services may be able to perform the compensation) or 3.
the invoked service does not give any information about the
compensation service or the capability it should present. In the
latter case, reasoning mechanisms must be developed to figure out
the required capability and constraints to compensate the service.
The first two cases can include information via the described
capability (second case) or the pointed service(s) capabilities (first
case) about any compensation constraint, e.g., economic
penalization when canceling a flight ticket.
Therefore, a SWS description must allow the inclusion of
compensation information, although it can not be compulsory, as
a given service may not want to define information about
compensation or such compensation may not be viable. This
information will be defined in terms of the service compensating
its action or necessary capabilities. Different degrees of
complexity, as the ones discussed before, can be modeled. In this
way, expressing explicit compensation has enough flexibility to
contemplate every case and can be thought as modeling a
compensation service at different possible levels of detail (just
one service, just one capability, or reasoning mechanisms to
figure out the required capability).
DAML-S does not include any error or compensation
information, so the ontology must be extended again to reflect
error and compensation data. BPEL4WS and BPML/WSCI do
contemplate this information, so they must be taken into account
while changing the ontology to include the discussed data.
Security and reputation are also required, although due to the
complexity of the mechanisms they require, this discussion is
considered out of the scope of this paper and part of future work.
Information such as quality of service, geographical area, time of
response, and other non-functional information must be reflected
in the service description. The list of non-functional properties of
the service must be extendable, but DAML-S non-functional
properties can be used at a first moment, as they can be extended
and changed easily. The elaboration of a complete set of non-
functional properties will be accomplished in the future.
Other requirements on service description are the inclusion of
contact information for the service, i.e., the organization
providing the service, and the classification of the service
according to a given taxonomy (the taxonomy must be
referenced). DAML-S already includes this information, so it can
be used as it is.
All these properties must be related to the concrete service
description, and not to the capability, as they are dependent on
concrete providers.

6. Conclusions and future work
Semantic description is the base to realize automation of web
services. Although WSMF is the conceptually more complete
approach to enrich services with semantics, it needs a refinement
and grounding work as the one presented. In addition, none of the
other approaches is complete enough to make next generation
services a reality. The different description requirements
presented serve as a basis to extend and refine current efforts and
to come out with an appropriate ontology for services.
Considering the state of the art, an advisable approach is to take
WSMF concepts and DAML-S ontology as a basis. This ontology
can be refined based on the reviewed WSMF concepts presented
and the work already done for BPEL4WS and BPML/WSCI.

The need for semantically enriched web services has become
clear, and therefore a suitable ontology must be developed. In the
context of the SWWS and centoYo3 projects such ontology will
be defined, taking into account the requirements stated in this
paper.

Future work contemplates the definition of a complete set of non-
functional properties, the analysis of security and reputation
needs, and the decision about the use of BPEL4WS and
BPML/WSCI to extend DAML-S ontology. The use of DAML-S
or OWL-S will also be analyzed, although the decision will be
based on which ontology language (DAML+OIL or OWL) is
more suitable, as it does not affect to the definition of the service
ontology. The service ontology defined will be considered to be
applied to different use cases in both SWWS and centoYo
projects. The possible application of Abstract State Machines to
describe service conversational interfaces will also be analyzed in
the future. In addition, as all the work presented relies on a strong
ontology support and expecting all service requesters and
providers to use the same ontology is unrealistic, mediation
between different ontologies is needed and will be part of the
future work.

7. ACKNOWLEDGMENTS
The research presented in this paper was partially funded by
European Commission in the context of the SWWS project
(http://swws.semanticweb.org) under contract number IST-2001-
37134.

Our thanks to the centoYo team for providing the necessary
discussion for this work.

8. REFERENCES
[1] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F.

Leymann, K. Liu, D. Roller, D. Smith, S. Thatte, I.
Trickovic, S. Weerawarana. Business Process Execution
Language for Web Services, version 1.1, available at
ftp://www6.software.ibm.com/software/developer/library/ws
-bpel11.pdf, 2003.

[2] B. Benatallah, M. Hacid, C. Rey, F. Toumani: Semantic
reasoning for Web Services Discovery, WWW 2003
workshop on E-services and the Semantic Web (ESSW’03),
Budapest, Hungary, 2003.

3 http://informatik.uibk.ac.at/infweb/projects/centoYo/

[3] E. Börger: High Level System Design and Analysis using
Abstract State Machines, Current Trends in Applied Formal
Methods (FM-Trends 98). Springer LNCS 1641, 1999, pp 1-
43, 1999.

[4] Business Process Modeling Language (BPML). Accessed
june 2003 from www.bpmi.org.

[5] The DAML services coalition: DAML-S: Semantic Markup
for Web Services (version 0.9), available at
http://www.daml.org/services/daml-s/0.9/daml-s.pdf, 2003.

[6] The DAML Services Coalition: Describing Web Services
using DAML-S and WSDL. DAML-S Coalition working
document, May 2003. http://www.daml.org/services/daml-
s/0.9/daml-s-wsdl.html

[7] D. Fensel, E. Motta: Structured development of problem
solving methods, IEEE Transactions on Knowledge and Data
Engineering, 13(6):9131-932, 2001.

[8] D. Fensel, C. Bussler: The Web Service Modeling
Framework WSMF, Electronic Commerce Research and
Applications, 1(2), 2002.

[9] D. Fensel, E. Motta, V.R. Benjamins, S. Decker, M. Gaspari,
R. Groenboom, W. Grosso, M. Musen, E. Plaza, G.
Schreiber, R. Studer, B. Wielinga: The Unified Problem-
solving Method Development Language UPML, Knowledge
and Information Systems (KAIS): An international journal,
5(1), 2003.

[10] J. Gray, A. Reuter: Transaction processing: Concepts and
Techniques. Morgan Kaufmann Publishers, San Mateo,
California, 1993.

[11] S. McIlraith, T.C. Son, H. Zeng: Semantic Web Services.
IEEE Intelligent Systems, Special Issue on the Semantic
Web, 16(2): 46-53, March/April 2001.

[12] M. Paloucci, T. Kawamura, T. R. Payne, K. Sycara:
Semantic Matching of Web Services Capabilities. In Int.
Semantic Web Conference, Sardinia, Italy, pages 333-347,
June 2002.

[13] T. Pilioural, A. Tsalgatidoul, A. Batsakis: Using
WSDL/UDDI and DAML-S in Web Service Discovery,
WWW 2003 workshop on E-services and the Semantic Web
(ESSW’03), Budapest, Hungary, 2003.

[14] M. Sabou, D. Richards, S. Splunter: An experience report on
using DAML-S, WWW 2003 workshop on E-services and
the Semantic Web (ESSW’03), Budapest, Hungary, 2003.

[15] E. Sirin, J. Hendler, B. Parsia: Semi-automatic composition
of Web Services using Semantic Descriptions, to appear in
“Web Services: Modeling Architecture and Infrastructre”
workshop in conjunction with ICEIS2003, 2002.

[16] W.M.P. van der Aalst, M. Dumas, A.H.M. ter Hofstede, P.
Wohed. Pattern based analysis of BPML (and WSCI), QUT
Technical report, FIT-TR-2002-05, Queensland University
of Technology, Brisbane, 2002.

[17] W.M.P. van der Aalst. Don’t go with the flow: Web services
composition standards exposed. IEEE Intelligent Systems,
Jan/Feb 2003. Electronically accessible from
http://www.tm.tue.nl/it/research/patterns/ieeewebflow.pdf,
2003.

[18] Web Service Composer Project, Maryland Information and
Network Dynamics Lab, University of Maryland, USA;
http://www.mindswap.org/~evren/composer/

[19] P. Wohed, W.M.P. van der Aalst, M. Dumas, A.H.M. ter
Hofstede. Pattern based analysis of BPEL4WS. QUT
Technical report, FIT-TR-2002-04, Queensland University
of Technology, Brisbane, 2002.

[20] W3C. Web Service Choreography Interface (WSCI) 1.0.
Accessed June 2003 from www.w3.org/TR/wsci

[21] Web Service description requirements, W3C working draft
28 October 2002. http://www.w3.org/TR/ws-desc-reqs/

