
Software Engineering Process Case Study

G a r y J. N u t t

D e p a r t m e n t of C o m p u t e r Sc ience , C B 430

U n i v e r s i t y of C o l o r a d o

B o u l d e r , C O 80309-0430

n u t t @ c s . c o l o r a d o . e d u

A b s t r a c t

Recently a faction of software engineering re-
searchers has focused their attention on studying the
process by which software is produced, stimulating
interest in models to specify, design, and implement
software. A significant part of the practicing soft-
ware industry must produce software that conforms to
a documentat ion standard (military standard 2167A)
for software products; it is intended to ensure that
delivered software meets the documentation require-
ments. This paper is a case study of how a government
software contractor might use models to define a pro-
cess for designing and implementing a software prod-
uct that complies with the documentation require-
ments. The intent of the paper is to apply business
process modeling technology to the software engineer-
ing domain, thus exploring strengths and weaknesses
of our evolving models of group collaboration. The
case study illustrates an alternative way to design, an-
alyze, and track software processes. It also at tempts
to illustrate how the model might "break down" as
the basis of an enactment model if it were to be used
to coordinate the work of a large number of software
developers.

K e y w o r d s : Process models, workflow, software en-
gineering

1 I n t r o d u c t i o n

Models have been used to describe work processes
by decomposing the procedure into a set of discrete
steps, then showing how information flows among
them. The purpose of the process is arbitrary, and has
traditionally varied from manufacturing processes to

Permission to make digital/hard copies of all or part of this material for
personal or classroom use is granted without fee provided that the copies
are not made or distributed for profit or commercial advantage, the copyright
notice, the title of the publication and its date appear, and notice is given
that copyright is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires specific
permission and/or fee.
COOCS 95 Milpitas CA USA © 1995 ACM 0-89791-706-5/95/08..$3.50

information management strategies. Variants of these
process models have been heavily-used for modeling
specific behavioral aspects of organizations: PERT
charts describe how manufacturing and engineering
processes can be organized to build a product. Queue-
ing networks model workflow through a system of
service providers in terms of service and interarrival
times. Flowcharts describe how a sequential program
should execute to transform information.

We are interested in applying workflow modeling
techniques to describe the process of creating soft-
ware products. There is considerable research activity
based on the idea that one can represent the steps in
producing software as an algorithmic process [9, 10].
An important component of this research effort tends
to cast software process models as programs in high
level languages (e.g., see [12]). However, due to the
importance of matur i ty models in software organiza-
tions [8], much of the software process work focuses on
this aspect of process modeling rather than the earlier
algorithmic specifications of the process.

The software crisis has long been known to be a
critical technical problem, and has even been identi-
fied as a grand challenge problem. Very large software
systems tend to be extremely difficult to manage for
a number of reasons: it is difficult to create precise
requirements for desired systems. There are few good
ways to parti t ion designs and to integrate the result-
ing modules. There are few good tools for managing
the work. Organizations tend to dramatically under-
estimate the complexity of the target system (workers
build far more complex units than the project man-
agers can fathom). Despite years of research in the
area, there is no proven methodology for software en-
gineering.

The federal government contracts substantial soft-
ware projects to independent contractors. Histori-
cally, the government has oftened been disappointed
by the quality and nature of software that is deliv-
ered in response to a contractual commitment . Over
the years, this has caused many government agencies
to a t tempt to provide guidance regarding the process

324

,ropos 2 : : : <

. " (

Requirements ~ . ~ : _ _ _ :_~_'.~.~.:_~
Specification

Document

7

Announce RFP

Prepare proposal
Award?

Prepare SOW & budget

Create requirements

Produce design & test plan

D lmplemant

'Acceptance Test

Deliver

Operational Test

Maintain

i

LEGEND

O Activity

O OR flow

• AND flow

Repository

C ~) Refinement

Control flow

--*" Data flow

Figure 1: The Waterfall Model (Idealized 2167A Pro-
cess)

that is used to produce the software (without actually
prescribing an operational software methodology) so
that they can have some assurance that software be-
haves as intended. The military specification 216"7A is
one standard that agencies may use to constrain the
way that software is developed under a government
contract [13].

The 2167A specification requires that the contrac-
tor use some software engineering environment, but
avoids specifying which one to use. Any organization
that intends to meet the specification requirements
will need to employ some relatively confined process
to be able to satisfy the requirement. As a practical
matter, the standard implies some family of processes
under which acceptable software can be developed.

This paper explores the use of process/workflow
models to represent the software process for organi-
zations that comply with the 2t67A specification; the
models are first used to consider idealized processes,
then to consider various aspects of more realistic op-
eration.

Under ordinary usage of the 2167A specification,
there is a granting agency that desires to have some
software product built, and one or more bidding agen-
cies that could do the work. The granting agency
announces a request for proposals (RFP) inviting bid-
ding agencies to submit a formal proposal indicating

System

Component ~ ? p o n e ~ OOO Component

Segment Segment o o o Segment

Module Module O O O Module

Function Function O O O Function

Figure 2: Hierarchical System Organization

how it would produce the software (see Figure 1). The
granting agency selects one bidding agency, and nego-
tiates an agreement based on the proposal. The result
of successful negotiation is that the granting and bid-
ding agencies agree on the statement of work (SOW)
that specifies the precise deliverables and a budget.
The agencies then commit the statement of work and
budget to a contract with specific terms and condi-
tions.

The bidding agency can then begin to do the work
under the constraint that its work (demonstrably) con-
form with the documentation required by the 2167A
standard. First, the deliverables listed in the SOW are
converted to a system requirement specification that
identifies explicit, testable requirements for each de-
liverable. The standard does not allow requirements
that cannot be tested, otherwise it is not possible to
determine if a deliverable satisfies the negotiated con-
tract or not. For example, a requirement such as "the
system shall be fast enough to avoid catastrophe" is
not acceptable, while a requirement such as "the re-
sponse to any command must be accomplished in 11
seconds" is acceptable.

The systems requirement document is used to drive
the design; the design phase must produce a system
design document and a system test plan. The system
design document must specify:

External interfaces. The specification of all input op-
erations and data for the system, and the corre-
sponding result at all output ports for the system.
Each individual requirement in the systems re-
quirement specification must be satisfied by some
aspect of the external interface.

Architecture. Describes how the system will accom-
plish the functionality required of the system.
Functions at the external interface must correlate
with specific parts of the architecture.

Subsystems. The architecture can be parti t ioned into
subsystems. Required function implementations

325

Proposal

I SOW ~ Concept of
Operations I

................ ~" J/ ... • SUBSYSTEM LEVELS
...~,,I Requirements I System
! -I SP ecificati°n Component
........ -: / I I " Segment

Design Document Module

i ' ""~ Elxeternal lnter~aces I Test Plan [Function
! ..--~ Architecture I
i...i....: t... ~ lnternal Interfaces

: ! Description 4-1~. Subsystems I

jj

! ! i Subsystem
i i : ,

: : "i

. L

Information flow among documents
---~ Information flow to/from product
...... ~ System to Subsystem

Acceptance Test

. Description I

i Report
I

ii- dl~. -- Product ~ ! Released ' II
- r r - r ".~

, Product
I ! I ! I
,
!

Problem Test Report
Reports

'11 I I

l - - =

. • 1
IL_~__

' Delivered 1
! r ' Product
! I

Operational Test

~ Description [

Report

Figure 3: 2167A Document Dependencies

must be traceable to a subsystem.

Internal interfaces. The specification of the inter-
faces among subsystems. Each internal interface
specifies an external interface for a subsystem.

The system test plan is prepared at the same time
as the system design document, and specifies:

Test Plan. How each unit in the design will be tested
to show that it implements specific requirements.

Test Description. The nature of the tests that can be
applied to a design unit after it has been imple-
mented to illustrate that it performs as required.

Test Report. A document that is produced when the
test has been applied to the unit.

Part of the overall system test plan defines an ac-
ceptance test plan used at the time the product is de-
livered, and an operational test plan used at the time

the product is installed (often the acceptance test plan
and the operational test plan are the same).

Because of the wide use of hierarchical decompo-
sition in systems, the 2167A standard presumes the
system will be organized into a hierarchy, e.g., with
levels corresponding to the system, components, seg-
ments, modules, and functions (see Figure 2). Design
documents and a test plan must be produced for every
unit in the system, i.e., when a system is decomposed
into a set of components, each component must have
a design document and a test plan as described above
for the system. In particular, subsystem requirements
are derived from supersystem requirements, and the
design document and test plan are derived from the
subsystem requirements. Each function in the super-
system requirement must have a counterpart in the
union of its decomposed subsystem requirements, and
into the design document and test plan. Further, most
organizations strongly discourage "vertical iteration"

326

in which subsystem design causes supersystem require-
ments and/or test plans to be changed; otherwise, in-
dividual groups cannot be delegated work without the
danger of wasted effort, and at the top level this would
imply that negotiated agreements with the granting
agency might have to change.

Once the system has been completely designed it
can be implemented. Implementation is accomplished
by delegating work to different groups and allowing
them to construct their assigned units of the end prod-
uct. As each unit is completed, it is tested to ensure
that it meets the test plan and hence the cascaded
requirements. Integration is implicitly part of hierar-
chical development.

Ultimately, the full system is built and can be pre-
pared for delivery to the granting agency. Acceptance
tests are run at the time the system is released by the
bidding agency and initially accepted by the grant-
ing agency; subsequent operational testing may take
place when the product is installed in its target envi-
ronment.

Figure 3 summarizes the documents, information
flow among documents, and the relationship between
the product and the documents. We use a dotted
line to represent the hierarchical relationship of docu-
ments, i.e., the dotted line from requirement specifica-
tion to requirement specification is intended to mean
that the supersystem requirement specification is used
to define the subsystem requirement specification. In
particular, we use a dotted rectangle to surround part
of the document flow, and a "recursive call" on this
part of the process within the flow diagram.

2 A P r o c e s s M o d e l

Figure 1 is a very high-level view of the idealized
(waterfall) process that a bidding agency might choose
to employ. Subsequent figures refine the idealized
model to provide more detail and alternate perspec-
tives of the process an organization might use to pro-
duce software in a manner that satisfies the 2167A
requirements.

The SOW is created through negotiation between
the granting and bidding agencies (Figure 4). The pro-
posal specifies the basic boundaries of the SOW under
a specific budget; it is used as a starting point in nego-
tiations between the two agencies. The response to the
proposal is to add some functions to those originally
proposed and to remove other proposed functions; the
budget is adjusted to reflect the revised SOW. The
model describes how a bidding agency might respond
to the proposal; it must use the proposal, budget, and
the response from the granting agency to create a spe-
cific SOW. In the figure, the activity entitled "Con-
vert requirement to SOW" represents this work. The

Prepare SOW & budget
7 Proposed Budget

Convert proposal to SOW

t R "

SOW e evlse SOW Revi se budg_et . _ _

, y

Change S O W ~

Change budget?

Acceptable?

Z

Y

Present SOW&Budget

Change SOW? ."

J Change budget

N

I
t
I

,,
1

Budget

Figure 4: Preparing the Statement of Work (Idealized
2167A Process)

SOW and budget are then revised (logically in par-
allel); this revision process continues until the pro-
posed SOW and budget are consistent. The revised
SOW and budget are then presented to the granting
agency for approval. The granting agency may accept
the SOW and budget or may ask for either to be re-
vised - - see the figure. If revision is required, then
the process loops back through the part of the process
that ensures that the SOW and budget are consistent
prior to presenting them to the granting agency again.
This iteration continues until the SOW and budget
have converged onto an acceptable plan. The bidding
agency is then ready to create the system level require-
ment by translating the SOW into requirements (we
do not refine this part of the process).

T h e D es ig n A c t i v i t y . Once the system require-
ments specification has been completed, the system-
level design and test plb.ns can be completed. Figure
5 describes more details of this process. This macro
step represents a substantial fraction of the work - -
sometimes all of the work on a contract. The model is
intended to describe the recursive topdown design pro-
cess where any system can be decomposed into a set of
subsystems: the first step is to create the test plan and

327

Produce Desi
X

___<

I I , (

Develc p _ t ~

Test Docs:
Plan
Description

n & Test Plan (Extemal)
7 - ~ Requirements s r

,. Specification
1 I

r
I

i
I J

• D_ e_fi_v_e_internal re%u[re_m~s
• I

f
I

: P afition :he?esign into sup.systems

) ~ (Internal) i
. :_-_-2_-_-_-:[_-]~1 Requirements I
) ~ ~ Specification i
N ~ ~aborate design ." , ~

Add subsystems " $

N dd i
f / / ~ Finish design / "

. i 0

Design review

) Revise design?

-- - ~ Information flow
~. Control flow

System Design Docs:
External interfaces
Subsystems
Architecture
Internal interfaces

Produce Design & Test Plan
(subsystems)

Figure 5: Produce the Design (Idealized 2167A Process)

design document for the overall system. Part of the
work of determining the system design is to parti t ion
it into subsystems that can be designed independently,
interacting across internal interfaces specified as part
of the design at this level. Notice that the model il-
lustrates that subsystem refinement is a wholly nested
activity, meaning that the system design activity has
a single entry and exit point with refinement result-
ing in path fan-out and fan-in contained within the
internal details, but not visible at the activity inter-
faces. This property corresponds to the information in
the waterfall model, i.e., all design is completed before
any implementation is started; it also represents that
subsystem design cannot effect supersystem require-
ments and tests plans. (However it rarely represents
the way projects are actually accomplished.)

Bidding contractors approach the project using a
process based on the waterfall model with the design
elaboration represented by Figure 5. The maximum
design depth is likely to be about five levels as sug-
gested by the common subsystems level names (sys-
tem, component, segment, module, and function), but
the common usage has no implied limit or suggestion
regarding the breadth. The standard and the model

both support arbitrary breadth and depth.
Figure 5 is a compact representation of the design

step that represents a hierarchy of arbi trary breadth
by eliding first generation subsystems, and of arbitrary
depth by recursively referencing the "Produce design
& test plan" submodel. When the model is used to
represent any specific process instance, it results in a
tree of design processes as suggested by Figure 6.

I d e a l i z e d I m p l e m e n t a t i o n . Figure 7 represents a
refinement of the "Implement" activity in Figure 1.
The model again uses the ellipsis operator to repre-
sent depth refinement of the subsystem hierarchy, but
models the breadth at any level using iteration. This
follows since the design hierarchy results in a set of
leaves, each of which should result in the creation of
some unit of software - - called a "function" in the
figure. Functions are encoded (based on the function
design), tested to see that they meet the interface re-
quirements and the test plan; a (unit) test report is
produced to verify that the function meets the require-
ments. (Ultimately, each unit test should be traceable
back to a high level system requirement.) If the im-
plementation does not pass the test, a system problem

328

(

System design and test plan
r

~ "Component" level ~ N N ~

Figure 6: An Instance of the Design Hierarchy

report entry is created (not shown in the figure) and
the function is refined and retested. Once a function
has successfully passed the unit test, it is integrated
into its encompassing supersystem - - a subsystem in
the design hierarchy. In the figure we have elided the
various subsystem levels, representing subsystem test-
ing and integration similar to that shown for function
integration.

3 P r a c t i c a l C o n s i d e r a t i o n s

The model described in the previous section repre-
sents an idealized view of the software process. It is
likely to be useful as a high-level description to explain
the process to the granting agency or a new employee.
However, it probably is not an accurate reflection of
how the software would be created in the organization.

The first problem with the model is that the ab-
straction of the design and implementat ion hierarchies
is too abstract for practical use. Before it really im-
parts the nature of a specific process instance, it is
necessary to translate the subsystem elaboration into
a model that represents the actual design hierarchy
such as suggested by Figures 6. This suggests that if
a model and system were to be useful to software or-
ganizations, the basic process could be defined using
the system, then elaborated for each specific contract.

This representation also suggests a second problem;
there are many tasks to perform in the process, but
nothing to indicate how the work is delegated and ac-
complished. Our discussions with practicing software
engineers is that the models represent the concept, but
that they do not capture the essence of the enactment
of activities. For example, if a "technical" person is
responsible for the project, then various activities are
deemphasized while others become the subject of in-
tense attention; conversely, if a "manager" is respon-
sible for the project, then different activities become
the focus of activity - - substantially different work is
done in one case then in the other.

The third problem is the most serious problem (and
it is easily recognizable from case studies of office sys-
tems): the idealized model represents the general idea,
but it does not represent the way work really gets
done. This is not due so much to change and ex-
ceptions as it i s to the fact that the model simply
represents the intent of the process rather than its
mechanics.

R o l e s a n d A c t o r s . The idealized model can be re-
fined to specify more detail about the process, al-
though the level of description provided in Section 2
may be adequate to address the various documents
that are required by the 2167A specification. Each
workflow activity represents some unit of work than
must be addressed before the overall task is completed.
In a model that describes the work of a group or orga-

329

M o r e

subsystems?

Implement

Y
~ e c t subsystem

° 0 o

P

Select function

Revise

• Design Document
,,- - ~ External Interfaces

," t ~ J ~ i] Architecture
," ~ Internal Interfaces

• Subsystems
' Code function
............ ~_~ Function

Test function

/
More functions? fl,- f~"~-'_ Integrate into___ r----i i,

" ? ~ - ' - - - " - - - ~ " ' 1 " " supersyste m ~_r_J Supers~ stem

t I

0 I ~I ~ .

Integrate subsystem into system

X

• Test Plan
Test Description

Test Report

System

Figure 7: Implementation (Idealized 2167A Process)

nization, such as a software development organization,
the model can be used to represent the assignment of
work to various entities. A role designates a unit of
work - - one or more activities - - that is to be fulfilled
by an actor. Thus there is a mapping between activ-
ities and roles, e.g., system design activities are to be
done by a "senior designer," coding a function is to be
done by a "junior programmer," and subsystem test-
ing is to be done by a "quality assurance engineer."
Conventionally this correspondence maps many activ-
ities to a single role, although there are arguments for
allowing the mapping to be many- t~many. There is
another mapping between roles and actors that speci-
fies which specific person (or computer) is responsible
for executing any particular role; of course there may
be many actors assigned to any role, and an actor may
have many different roles.

The nature of the organization begins to be evi-
dent in a role mapping, e.g., in some organizations it
would be unusual for a programmer (or programming
group) to be mapped into functions from two different
modules managed by two different actors.

The actor mapping will also be determined by the
group organization; while roles may be homogeneous
across parts of the design hierarchy, work assignment
(actor assignment to roles, and hence to activities)
would correspond to management responsibility in a
traditional hierarchical organization. If the organiza-

tion used a pool of programmers that could be as-
signed to any project, then the actor mapping would
use an entirely different philosophy.

The model indicates that certain documents are to
be prepared (depending on the design decomposition),
in a particular order, e.g., the test plan is supposed to
be derived from the requirements rather than from
the design. There is a "super role" associated with
managing the whole process; if the actor that fills this
role is concerned with the quality of the documenta-
tion, then he or she will tend to closely manage the
document preparation activities, but perhaps pay less
attention to the nature of the activities that effect the
actual design, e.g., the subsystem refinement at any
given level. Further, some actors may follow the ac-
tivity precedence religiously, while others may allow
activities to be enacted in orders other than that spec-
ified by the model. (Of course out-of-order enactment
can easily lead to violations of intended precedence in
the model, e.g., the test plan development and design
document should be concurrent and independent - -
if the test plan is designed after the design document,
then it will tend to be derived from the design and the
requirements rather than just from the requirements.)

The way that a role is fulfilled also relates to where
it exists in the model. For example Figure 6 makes no
distinction between the level of documentat ion related
to system level design and function level design, while

330

in fact, functions may be implemented with very brief
(or no) design document and test plan, relying on the
supersystem to cover these aspects of documentation.
(For example, an external policy could not necessar-
ily distinguish between a part of the design hierarchy
in wl~ich a module is a leaf and one which is further
decomposed into functions.)

While there is a tendency to characterize these dif-
ferences in actor behavior by the occupation of the ac-
tor (manager or technical person), it is also influenced
by the nature of the group (e.g., is it market-driven
or technology-driyen), the size of the group (e.g., large
groups need to h ive more rigorous rules and adherence
to rules than do small groups).

E n a c t m e n t v e r s u s I n t e n t In this process no part
of the implementation can proceed until all parts of
the design are complete. In a realistic project, many
aspects may not be known until far into the project;
this will tend to cause gross inefficiencies in the orga-
nization - - workers will remain idle waiting for their
part of the design (which is complete) to be released
until all other (related and unrelated) parts are all
completed.. Organizations rarely behave in this man-
ner;, in'stead, parts of the design are reviewed and re-
'leased for implementation while other parts are still
under design. Of course this strategy represents a dif-
ferent sort of gamble; if the design of an apparently un-
related part of the system suddenly becomes related
(or even causes the previously-reviewed and released
design to change, then the implementation work is
wasted effort - - we discuss this problem below). Thus
Figure 8 might represent a more aggressive strategy
for staging design and implementation (even though
it is inconsistent with the higher level model). Vari-
ous parts of the implementation are enabled to begin
when their respective designs are complete. (In the
figure we have used rectangles to replace parts of the
design that are decomposed into hierarchical subsys-
tems as is done in the 2167A document.)

This brings out an important point about using
models as an aid for thinking and communicating
about processes: high level models should be inter-
preted as an expression of general intent in the same
sense that an abstract or executive overview summa-
rizes a report; lower level models may be inconsistent
with regard to formal modeling properties while being
completely consistent with respect to the intent of the
process.

We believe that the purpose of the 2167A specifi-
cation is to force the bidding contractor to produce
software products using a topdown methodology that
conforms to the requirements. The contractor is ex-
pected to determine a set of requirements from the
negotiated s tatement of work, to produce a test plan

that shows how to test each aspect of the requirements
independent of the design, to create a design that sat-
isfies the requirements and which can be tested, and
to implement the design. The problem that bidding
contractors have with the process is that it is very dif-
ficult to do using a topdown methodology for at least
the following reasons:

1. Requirements are rarely complete enough to spec-
ify what is really expected from the product.

2. Complex requirements may be inconsistent.

. Hierarchically-refined designs may uncover design
errors at higher layers when lower layers are de-
signed. For example it may not be possible to
define a subsystem that meets the higher layered
requirements.

4. Design problems may be discovered at implemen-
tation time.

. Changes discovered in detailed design or imple-
mentation may impact the work assigned to other
organizations; this will cause the other organiza-
tion to be less efficient (e.g., to go over budget
or over schedule), thus such changes will be met
with rigorous resistance.

. Persons responsible for high level contractor re-
sources may not be able to be fully aware of de-
sign conflicts.

While these problems can become intractable in
large software engineering organizations, it is clear
that they are less related to the methodology than
to management, organization, and to general intra-
contractor politics. The granting organization simply
requires that deliverable products be consistent with
a negotiated contract. The problem arises due to the
lack of understanding of the deliverable by both par-
ties, and from the complexity of the deliverables.

Figure 9 represents a modification of the process
that adds feedback links between the implementa-
tion and design phases of the waterfall model. When
detailed design or implementation uncovers an argu-
ment for changing the design, then the appropriate
"project manager" actor should determine how the
project should handle the problem. The decision may
be to ignore the problem by continuing with the orig-
inal plan; this means that the resulting deliverable
may be inefficient, or may fail some tests. The deci-
sion may be to change the design, implying that the
impact of the change must be considered (e.g, how
many other design units will have to change? What
is the current investment in those designs and imple-
mentations? etc.) The process must then be rolled
back and restarted.

331

~ A group of refinements System design and test plan

"Component" level

"Segment" level

"Module" level

"Module" level

"Segment" level

"Component" level

System level implementation

Figure 8: Staged Design and Implementation

332

) Rollback design

I Resolve design conflict

I"
I '

I
I

Produce Design & Test Plan
for a (sub)system y _ - ~

s ~ ' S

~ ~ Derive internal requirements
. I

!

I

Partition the design into subsystems

Y

Iterate through subsystems

(External)
Requirements
Specification

(Internal)
Requirements

,' ~ Specification
I f

i ' Elaborate design i' ~ '
System Design Docs:

====================== i External interfaces . , ~ Subsystems
D~ermine rqmts Architecture
• - . L . . I

, , I t : : ,, !ntemal interfaces
I I

~ " ° ' l ° ' ° t I

fChange previous work? " 11
I I
I I

~More nested subsystems? ' ' | 1
I I
I I

Finish SS requirements

More subsystems at this level?

More
subsystems?

~ : e c t subsystem

° o o

More func t io~

~ ~ (c t i o n a

C°dte~ncti°~ ¢

Revise

Revise design)

Function

I I Test function , t
- = I

! i.

) Function OK? tl
s s

~ . Integrate into ~ I
~" subsystem ~ Subsystem

I

o ° • :i'].i';- .

Integrate subsystem into system

Test Plan
Test Description

Test Report

System

Figure 9: Exceptions in Design and Implementation

333

f i '

We only show design exceptions arising at two dif-
ferent places - - during detailed design and during im-
plementation. They could, of course, arise in other
places, with corresponding edges leading to the "As-
sess damages" activity.

Process models are the messenger, not the problem.
Our position is that the more information about the
impact of changes that dan be presented to decision
makers involved in such decision the better. The pro-
cess model is a language explicitly designed to convey
that kind of information to a human.

4 C o n c l u s i o n

We have provided a high level process model de-
scribing how different parts of an organization can in-
teract to produce a software product along with docu-
mentation that conforms with the 2167A requirement.
A more complete description of the model appears in
[11]. Increasingly detailed models represent increas-
ingly complex interactions among roles - - groups - -
in the organization. The models we have illustrated
are insufficient to "automate" the process, and would
probably only be of limited use as an automated coor-
dination model to stage work for the engineering or-
ganization. However, even at this level of detail they
can serve several other important purposes when sup-
ported with a system:

Descr ib ing the Process. Large software projects
frequently employ subcontractors and have staff
turnover - - new people arrive as the project pro-
gresses into detailed design and implementation,
and staff depart after the product is released. In
large projects, attrition is also normal, requiring
that various staff members be replaced by new
people. The model provides a high-level descrip-
tion of how the project is organized. When mod-
els of the form used in Figure 6 are generated,
they provide a graphic description of the various
levels and units in the design.

Software contractors continue to make extensive
use of subcontracting organizations to handle
parts of a contract. The 2167A standard requires
that the contractor be able to ensure that the sub-
contractor complies with the specification. The
descriptive model is a first step in satisfying this
requirement.

Task Ass ignment . The model is a graphic basis for
considering various strategies of organizing work
teams and delegating work to them. Analysis
tools enable a manager (at any particular level)
to experiment with different strategies for assign-

ing work, particularly when used with animation
facilities.

Tracking Tool. Auditing tools can also be added
to the support system to track the status of the
development work. If certain parts of the de-
velopment begin to lag behind others, then the
tracking facilities can be used in conjunction with
task assignment facilities to adjust the number
of workers focused on any particular part of the
project. People responsible for specific units must
sometimes make decisions about modifying a unit
(recall Figure 9). The model provides a specific
artifact to assist that person in making decisions
regarding incorporating change, rolling back re-
lated development, etc.

D o c u m e n t M a n a g e m e n t . In a large project, doc-
ument preparation is very difficult. The full doc-
ument set must be internally consistent, and sup-
port function tracing from requirements to im-
plementation (and the inverse). As designers cre-
ate documents, they need to be able to navigate
through the set of existing and pending docu-
ments to produce a document that is consistent
with the rest of the system. While it is possible to
design a database tool to maintain required rela-
tionships among documents, including generating
skeletal documents when a design is initiated, it
is difficult for a human user to logically absorb
all of the relationships at once. The model pro-
vides a means by which the designer/implementer
can navigate through the existing documents to
understand the requirements and/or develop re-
quirements for nested systems that are consistent
and preserve traceability.

This case study has investigated the application of
process models (ICN workflow models) to represent
a software engineering process. We have not built a
system to provide the support described above, al-
though we have built several nontrivial workflow sys-
tems for description, modeling, analysis, and enact-
ment. Our previous applications have addressed of-
fice applications, business processes, and distributed
program organization, while this paper has focused
on software processes. Nevertheless, the static model
has proven to be useful in discussions with software
engineers familiar with development under the 2167A
guidelines. The primary benefit to these engineers has
been in providing a simple, consistent, visual model
that describes the process and the relationships among
different components. The alternative view seems to
present a new language of expression of the software
process that experience software engineers know, but
have difficulty describing to novice software engineers.

334

Our research group continues to study process mod-
els in an effort to make them more flexible for use in
offices [2, 4, 5, 6, 7]. This case study has highlighted
the need to be able to add a broad spectrum of dif-
ferent analysis tools to operate on a model, e.g., to
manage requirement traces and to produce hierarchi-
cally consistent design and test documents. Like our
experience with ICN-based enactment systems [3], this
application continues to enforce the need for clear and
complete mappings of activities to roles and to actors.
Again, practical models identify the need for hierarchy
in the model, but also point out problem with refin-
ing the model to include details that interact across
subtrees of the hierarchy (e.g., Figure 8 illustrates a
set of relationships between elements of the model in
Figure 6 that is not evident in more abstract views of
the same part of the process).

The study has emphasized the value of complemen-
tary model views for representing parallel activity (we
also encountered this in our related work on parallel
program models [1]): when one is focusing on under-
standing the process in general, descriptions analogous
to Figure 5 are useful; however, once the model has
been derived and it is to be used to study a particular
instance of the process, views analogous to Figure 6
are more useful.

Finally, partially as a result of this case study we
have refined our recent thinking regarding general
models of processes so that we realize the value of
descriptive models for such applications. Such mod-
els may lack precision in terms of strict analysis and
enactment, but - - when combined with animation - -
provide a rich means for conveying ideas about pro-
cesses among humans.

A c k n o w l e d g e m e n t

The author was supported by Grant Number IRI-
9307619 from the National Science Foundation. Most
of the explanation for how bidding contractors operate
under the 2167A guidelines came from Scott Brandt;
he also reviewed and critiqued various interim models.
The author and Skip Ellis continue to work on refine-
ments to ICNs; that work is reflected in these models
and ideas for systems.

R e f e r e n c e s

[1] Adam L. Beguelin and Gary J. Nutt. Visual
parallel programming and determinacy: A lan-
guage specification, an analysis technique, and a
programming tool. Journal of Parallel and Dis-
tributed Computing, 22(2):235-250, August 1994.

[2] Richard Blumenthal. Representing Unstructured
Work Flow Activities by Dynamically Exposing
Contextual Information (tentative lille). PhD
thesis, University of Colorado, 1994. in prepa-
ration.

[3] Bull S. A. Introduction to FIowPATH, May 1992.
Manual No. 44 A2 60XM.

[4] Clarence A. Ellis and Gary J. Nutt. The model-
ing and analysis of coordination systems. In A CM
1992 Conference on Computer-Supported Cooper-
alive Work, 1992. workshop position paper.

[5] Clarence A. Ellis and Gary J. Nutt. Modeling
and enactment of workflow systems. In Advances
in Petri Nets 93, pages 1-16, June 1993. Invited
paper.

[6] Clarence A. Ellis and Jacques Wainer. A concep-
tual model of groupware. In ACM Conference on
Computer Supported Cooperative Work, 1994. To
appear.

[7] Clarence A. Ellis and Jacques Wainer. Goal based
models of collaboration. Collaborative Comput-
ing, 1:61-86, 1994.

[8] Watts S. Humphrey. Characterizing the software
process: A maturi ty framework. IEEE Software,
5(2):73-79, March 1988.

[9] Proceedings of the IEEE Software Process Work-
shop. IEEE Computer Society Press, 1993.

[10] IEEE Software theme on Mature Processes, July
1993. Robert Lai, Guest Editor.

[11] Gary J. Nutt. Software engineering process model
case study. Technical Report CU-CS-760-94, De-
partment of Computer Science, University of Col-
orado, Boulder, December 1994. Abstracted ver-
sion appears in COOCS 95.

[12] Leon Osterweil. Software processes are soft-
ware too. In Proceedings of the 9th International
Conference on Software Engineering, pages 2-13,
Monterey, CA, 1987.

[13] U. S. Department of Defense. Military Standard,
Defense System Software Development, 1988.
DOD-STD-2167A.

335

