Proceedings of théLDB Workshop on Technologies for e-Services (VLDB-TES ,20abp, Egypt, 2000

Designing Components fore-Services

Barbara BRNICI Massimo MECELLA*
Dipartimento di Elettronica e Informazione Dipartimento di Informatica e Sistemistica
Politecnico di Milano Universita degli Studi di Roma “La Sapienza”
Piazza Leonardo da Vinci 32, 20133 Milano, Italy Via Salaria 113, 00198 Roma, Italy
+39 02 23993526 +39 06 49918479
pernici@elet.polimi.it mecella@dis.uniromal.it
Abstract Information System of the Italian Public Administration

Component based approaches are becoming more an@S @ whole, by bringing together the collection of
more popular to support distributed application @stnbuted, autonomous systems of each adm|n|§tra§|on
development. The concept of component itself, however, i§1t0 @ common Cooperative Architecture. In turn, this will
not generally agreed upon and several definitions can beMake it possible to reengineer global administrative
found. Moreover, different approaches to object oriented Processes by making more effective use of the information
component modeling obtain different abstraction levels Made available by each individual system. o
(conceptual vs. operational). In this paper, we discuss the N this paper, we define asService as an application
concept of component in the framework of e-Service andcOMPonent; a-Service can be used in a portal [18][23],
e-Application design, where these services are based off? @e-Commerce application, to offer services in a public
legacy systems. We give a precise definition of statefufontext (e.g. a service allowing citizens to access and to
and stateless components, and we discuss theifanage information about their retirement plans).eAn
characteristics and their applicability in different stages Application is a distributed application, possibly a

of web application development. complete system, which integrates in a cooperative way
thee-Services offered by different organizations.
Keywords:e-Service,e-Application, component, wrapper, In the literature, the term Cooperative Information

legacy system, cooperation, web application development.System (CIS) [4][12][15] is often used to define a large
number of cooperating component systems, distributed

over large, complex computer and communication
networks and working together cooperatively, effectively
requesting and sharing information, constraints, and goals.

The emergence of Internet allows the development ofWe cpnsm!er are-Appllcat!on as a partlculf';\.r instance of
CIS, in which two dimensions are relevant: it must rely on

new interaction business paradigms, commonly referred to0 en architectures and the constraints imposed to
either ase-Commerce or ag-Business. There are many P P

other contexts where the use of communication networksCOOBpuEizlrjmng gfanllif:?cliggss T:Stuﬁisast:]%osiitzs E‘;\c;i?) Sr:blg;
and of distributed applications can be taken into 9 pp q 9

. o . different heterogeneous systems (at least one for each
consideration in order to offer new added value services to 9 y (

customers. Some important initiatives for the definition of gﬁ?pﬁﬁggtﬁéﬁzﬁsgg n)i;cgl]eso?n?yosft?/rizaiiﬁedIffaer:ae?/:apm
what it is referred to as>Government [2][6] are oftgn legacy systems) b%t als% for the informat?/on conte)r/n
undertaken in some countries. gacy sy ’

As an example, in Italy the project of the Unitary they export. The information content is the information

Network of the Italian Public Administration [13][19] i‘;}‘;";ﬁgaﬁgﬁ an organization Oéxtgfteg'i}ithTh;ﬁ;g:f
aims at implementing a "secure Intranet" that can P

interconnect the information systems of different public fbcsr;p;ciggf?evaeTg 'I\'Ar/:;haggtfg;inc:n rlg?/‘ifl(séf ?r:e del)f(fecr)?tnet d
administrations. The emphasis of this project is on : P

promoting cooperation among the various administrationsgg?r:r?ea;onnglés ig‘;';encélgenr;e;nst?cregnggfu?hhetgre ;2; F;'lir:)gr;s
at the application level. Besides providing the essential 9 ’ 9 9 :

interconnection services (e-mail, file transfer, etc.) to As an example, consider the information about a citizen in
administrations by Supplying’ them Witr; bésic a public administration. The information conveyed in the
. o . . : data stored in the information system of the administration
interoperability tools, the project defines the Unitary can be exported in several W(ZyS' through a record in a
- . " ed by the Distributed Obiect Engineeri mainframe transaction, through a relational table, or
IS work was partly supported by the Distributed Ibject EngIneenng hq,gh an object Citizen expressed in a middleware DL
and Research (DOER) Group in Telcordia Applied Research, . . L ’
Telcordia Technoﬁogie&)445 SoSth Street, Morristoxﬁ, NJ. The abstraction levels are different, that is in the latter

1. Introduction

situation the coupling, both technological and semantic, From this general definition, two more specific ones
between the client and the server organization is looser. follow:

It must be pointed out that this is not just an « A conceptual component is a model/schema (or a
interoperability problem; many technologies, referred to subset of) to be reused; following the object oriented
as Enterprise Application Integration (EAI) [16], allow the approach, it may be specified with the Unified
communication and data exchange among heterogeneous Modeling Language (UML) [3][8]; other more
computing platform. The problem is conceptual, dealing specific models may be adopted in other application
with information modeling: how to export information in areas, such as for instance workflow management [7].
order to avoid same of the drawbacks present in current A software component is a coherent software package
practices: the development of ad-hoc interfaces is costly, that can be independently developed and delivered,
difficult to maintain, and limits the applicability o has explicit and well-specified interfaces for the
Applications to very few special cases. services it provides and for the services it expects

The aim of this paper is to present two different ways from the others, can be composed with other
of modeling services as components. The first one is components, perhaps customizing some of their
operationa) the services are exported according to the properties, without modifying the components
offered functionalities; the resulting software components themselves [8][21].
are stateless The second modeling approach is A modeling aspect of software components is the
conceptual it exports the information needed to provide granularity [10] at which components are defined. While
e-Services as entities, to be linked together in a flexiblethe classical software development was based on
way; the resulting software components atateful In homegrown applications, in the 90s Enterprise Resource
discussing these two approaches, we point out the difficultPlanning (ERP) systems emerged, in which functionally
case in which the cooperating systems are legacy systemsomplete subsystems are considered as basic components
and therefore they must be encapsulated, exporting as fewind an information system is developed by assembling
as possible their underlying legacy structure. This and customizing these components. Recently, the trend is
situation is very common in the curreetApplication towards finer grained components and application
scenarios, and it is a good starting point to consider theframeworks which include several related aspects
main differences between the two approaches. We discusgodeled together. Other approaches consider Business
how different approaches can be appropriate in differentObjects as the basic components [20][24], that is the
stages of e-Application development, showing their classes represented in the conceptual model correspond to
characteristics. the software components.

The remainder of this paper is organized as follows. In The major obstacle to the definition of software
Section 2, some fundamental concepts and background areomponents is the need for a common framework, that is
provided, discussing components and the integration ofthe definition of “the world in which the component will
legacy systems. In Section 3, stateful and statelessive in” [9]. Until now the fields in which the component
wrapper components are introduced, pointing out howbased approach was successful were those ones in which
they are the result of two different modeling approaches.the framework is well defined: e.g., the development of
In Section 4, a discussion on the development ofgraphical user interfaces, in which the framework is the
component based-Applications starting from legacy operating environment or the virtual machine.
systems is presented. In Section 5, a complete example by The new approach referred to as Distributed Object

using the two different approaches is outlined. Computing (DOC) [17][28] is based on the merge of two
trends: distribution and middleware technologies and
2. Background Object Orientation. The computation is performed through
messages that objects developed in different programming
2.1. Components and Distributed Object languages and deployed on heterogeneous hardware and
Computing software platforms exchange through the network. The

technology of the Component Transaction Monitors

In general, aeusable componertan be defined as a (CTMs) pffers _both the bus allowing various objects to
unit of design (at any level), for which a structure is Communicate in a transparent way and a standard
defined, a name identifying the component is associatedComponent model; it is the middleware layer enforcmg the
and for which design guidelines, in the form of design Important separation of concerns between the design of
documentation, are provided in order to support the reusétdded-value, business-aware services and their actual
of the component and to illustrate the context where it candeployment. A CTM defines the framework of services
be reused, including constraints, for instance, indicatingand interfaces on top of which it is effectively possible to

which other components must be used in combinationdevelop and deploy software components. These
with the one being considered [7]. components are not restricted to the presentation layer, but

they represent business logic to be reused. The componer8pecifically, access wrappers are used to provide external
model used by CTMs is standard, thus a component isaccess to legacy applications, while object wrappers
pluggable on CTMs from different vendors; it is not tied facilitate their integration:

to the platform it was originally developed, but it is « Access wrappers simply provide a view of existing
portable among different platforms. Currently there are access functionality, by providing a new interface that
three main component models: the OMG CORBA corresponds exactly to the available data and
Component Model (CCM), the Enterprise JavaBeans application access paths.

(EJB) architecture and the Microsoft Component Object. Object wrappers provide a higher level of abstraction,

Model (COM+). by implementing new interfaces that do not
necessarily map exactly to existing information

2.2. Integrating Legacy Systems in € access paths. While the external view of the
Applications information appears as a self-consistent OO schema,

its implementation relies on the coordinated use of
Many existing organizations, when they decide to multiple access wrappers in order to present an
develope-Applications, need to address the issue of their integrated view of the underlying data, which
legacy information systems: only very new organizations conforms to that schema.
(e.g. start-up companies) succeed in developing from
scratch both the backbone information system and Wel3. Stateful vs. stateless wrapper
applications; on the other hand, banks, public components
administrations, manufacturing companies, and so on,
have already their own systems, very often with all the o gervices can be implemented as components; with
relevant data abqut_ customers,_ products and servicesne termcomponentve mean a set of object oriented (OO)
What they need is integration, in a seamless way, Of¢jasses assembled together to be deployed as a single
information and procedures already running on their gofiware unit, with explicit and well-specified interfaces
legacy systems. _ o for the services they provide and for the services they
Legacy systems are defined as applications of Valueexpect from other components; a component can be
(critical to the business) that have been in production forcomposed with other components without modifying it.
five or more years (according to this definition, most e termcomponent instancis used to distinguish the
applications currently in production can be considered aSgpecification of a component and the executable that

legacy) [27]; in [27] it is presented a classification of jmplements that specification from a particular installation
architectures of legacy systems into four categories.of that executable and a “running” incaration of that

Among the different reengineering strategies that havegyecytaple that is available as a server. In particular the
been proposed for dealing with legacy applications, theomponent instance is the object (set of objects) which is
following two can be considered in the development-of ha ryntime manifestation of a component when composed

Applications [S][27]: o within a particular application [8].

* Integrate: consolidate the legacies into the current and | the following, we discussomponents as wrappers
future applications. . N of legacy information systems for building e-Applications

+ Gradual Migration: rearchitect and transition the The context we consider is that of an organization which
legacy system gradually. needs to export its information in order to cooperate with

The former approach allows accessing legacy data angthers. The organization can model this information
attempts to integrate legacy and new applicationsaccording to two different component based approaches:
requiring only minimal modifications to the legacy (i) stateful (conceptual) and (ii) stateless (operational)
system. The result of Integration is a final composite components.
system where the old applications are not replaced. The |n order to define the two different approaches, we
Migration approach, conversely, produces a new systemMntroduce the following definitions:
that completely replaces the old one, possibly by using o o
intermediate and partial integration steps. In the State Association Property The specification of a
development ofe-Applications, Gradual Migration is a COmponent — comprises properties/attributes. A
viable option if the time constraints are not very strict and Property/attribute must be considered part of the state of
only inside single organizations. Inter-organizations the component instance whether it is necessary to
architectures can only be based on Integration, since ifhaintain its value between two invocations of any
only defines interfaces and respects the autonomy off€rvice/method on that component instance

individual organizations. _ State Management The mechanism used to logically
A viable method for the Access and Integration of store the state of a component instance, for the duration of
legacy systems is based on object wrapping [27][29]. an interaction with it (session)

Therefore, by using these two properties, it is possible
to precisely define both stateful and stateless components
as follows:

Stateful Component component specification provides
the State Association Property and the State Management
of its instances is carried out by the server side of the
distributed client/server applicatiofsee clas#®\ccount

in Figure 1a).

Stateless Component either one or the other of the

following two situations can occur:

— The component specification provides the State
Association Property, but the State Management of its
instances is carried out by the client si@dee class

class Payment {

/I methods

void pay (accountNumberFrom As Integer,
accountNumberTo As Integer,
money As Currency) {

Wifﬁdraw w = new Withdraw;

Deposit d = new Deposit;

w.withdraw(accountNumberFrom, money);

d.deposit(accountNumberTo, money);

Payment in Figure 1b)

The component does not provide the State Association

Property (a pure function).

class Account {

/I attributes
m_accountNumber As Integer;

/I methods
void withdraw (money As Currency);
void deposit (money As Currency);

/I client code
Account C1,;
Account C2;
Currency money;

/I omitted code to obtain the two objects

C1l.withdraw(money);
C2.deposit(money);

(a). Stateful design: definition of the
conceptual class Account and client code

class Withdraw {

/I methods
void withdraw (accountNumber As Integer,
money As Currency);
}

class Deposit {

/I methods
void deposit (accountNumber As Integer,
money As Currency);

/I client code

Integer accountNumber_numC1;
Integer accountNumber_numC2;
Payment payment;

Currency money;

/I omitted code to obtain the two numbers

payment = new Payment;
payment.pay(accountNumber_numC1,
accountNumber_numCz2, money);

(b). Stateless design: definition of the
operational classes Withdraw , Deposit and
Payment and client code

Figure 1. An e-Service for the payment,
which consists in withdrawing
money from an account C1 and
deposit them into an account C2*

We want to remark that the main difference between
the two design choices is that in the former case a
conceptual object (as in the real world) is identified, and it
is directly represented in the software component (the
classAccount in Figure 1a). In the latter case, there is
not an immediate object of the world, but the operations
required are modeled (the clas$®ghdraw , Deposit
andPayment in Figure 1b). Note that when considering
the two approaches, we are not dealing with the data used
by the system or stored in the back-end databases: clearly
data about the payment must be present in both
approaches. The second design reproduces quite naturally
the procedural transactions of the legacy system, while the
first one requires an integration layer which resolve the
mismatch among the OO conceptual view and the actual
access mechanisms.

Stateless components differ from the stateful ones for
different point of views: they represent collections of ser-

1 . . L .
The example uses a pseudocode Java-like. In particular it is available

a base type Currency for money variables.

Wrappers
Application servers
and CTMs
Integration brokers

A) . XML
Integration & complexity Java servlets

CGlI
Homegrown sw

Virtual Enterprise

Web pages
Java applets

Integrated Web site
(enterprise portal)

Web site + simple
applications

Web site

Cooperation of
w heterogeneous
systems of
U different
organizations

N2

v

Organization evolution (time)

Figure 2. The 4 stages of evolution towards virtual enterprise and e-Applications

vices (1:1 relationship between a service and a method)priented database. The component instances offer objects
instead stateful components represents “concepts”, that iand links which are instances of the classes and
things of the real world. A stateless component is a way toassociations from the conceptual model. A client
provide an object oriented interface to existing legacy organization, willing to access the information asset,
functionalities, without a real underlying object oriented needs to access some objects and to follow the links
model. The method invocations on the same statelesamong different objects. These objects and links are the
component instances are not related, since the componemtstances of the classes and associations represented in the
does not preserve a state, possibly it obtain it embedded i®O schema, and through their properties and operations
the method invocation itself (e.@ccountNumber in they export the information. The act of determining which
Figure 1b): two different invocations of the same methodsclasses to use and which associations to follow is referred
executed by the same client could be served from differento as the “navigation” of the conceptual model. After
instances. Instead a stateful component instance typicallyletermining the particular paths, a software application to
is associated with a particular client, because it representeffectively access the objects will be developed (
a view on concepts relevant only for that client. Application). The “navigation” of the OO schema by the
Stateless components are “operational”’, that is theclient organization is a conceptual step: during the
operation they offer are functions, taking input development of a new cooperative application, the client
information, elaborating it and returning a result, without organization considers the OO schema in order to identify
visible side-effects on the state of the component. Notehow to access the exported information.
that this does not mean that the back-end systems are not Both component types can be designed and deployed
modified; on the contrary, the state of the legacy by using OO principles and languages. Stateful
information base has been modified, typically through a components are more suited to be implemented by OO
legacy transaction. The absence of visible state changes iginguages, while stateless components could be
with respect at the component interface: the componenimplemented either through OO languages or procedural
does not offer attributes and therefore its state isones, because the interfaces they expose are “procedural”.
unmodified by the method invocations. This can be The principles of late binding and polymorphism are valid
explained considering that the component is a wrapper. for both, while the design principle that software objects
In stateful components, the interface export objects,corresponds to conceptual real ones is valid only for
which correspond to the conceptual entities considered irstateful component.
the information base of the legacy systems. That is the
component exports an OO schema which is the4. Development of e-Applications
“conceptual” model of the information asset of the
organization: the information is modeled as classes and4 1. Stages of e-Applications
associations, using the typical notation of the UML class
diagrams. The schema offers integrated views over data The development aé-Applications leads to the notion
and services, as if the system were a “virtual” object of virtual enterprise [1][25], that is an enterprise whose

business processes are constructed by combining thé& Components Stateful Stateless
services provided by different organizations. In this way, characteristics
the information and communication technologies allow = """ object roceas
the business processes to go beyond the organ|zat|onaﬁervicedesign igh Low
boundaries: tools and services of different organizations compiexiy

are the building blockse{Services) of a higher level component development Long short

system supporting cooperative processes and data flow™

W|th|n the COOperating Organizations. Integration logic Distributed Centralized
An organization which aims at cooperating with others e#pplication composition Basy Difficult

through e-Applications typically gets to the virtual eAppicaion deveiopment Short Long

enterprise concept evolving through 4 stages [14][22][26],

shown in Figure 2. Figure 3. Characteristics of component
The first stage represents the simple Web site, in which based development starting

the only e-Service offered is advertising through Web from legacy systems

pages, possibly embedding Java applets. The second stage
adds to the simple Web site the opportunity of exploiting
simple applications eServices), as the retrieval of

information from back-end databases of the organization
and remote data entry of some information about
customers and orders. Typically the technologies used at

. e
this stage are based on Web pages, XML, Java applets anéjlfference between the two designs is the “fatness” of the

servlets, CGI and homegrown software for the e-Application: in the stateless case, it carries out the
communication with the back-end databases. In these tW?ntepF:ation Id ic it is a “fat” a Iica{tion while in the
stages the organization is completely independent, the 9 gic, L L “pp A .

. . o .. stateful case the-Application is “thin”, simply managing
only cooperation with other organizations consists

possibly in links among their sites the “navigation” among objects. In the stateless design,

The third stage integrates the legacy applications of thethe e-Service interfaces exactly reproduce the “legacy

organization with the Web front-end, allowing customers featgres, therefor_e, as Iegacy gpphcatlons are very qften
) . . vertical and non-integrated, it is necessary a centralized

to effectively use e-Services. Typical examples are . : . .)
:) . ; integration logic. In the stateful design, the interfaces
enterprise portals; the technologies used at this stage are

based both on the technologies used in the previous Stage%xported by the different organizations are semantically

for the Web fontend, and on a ser of middeware [(1Y Sy o e begraton oge perian o e

technologies (i.e. integration brokers, mediators and‘r‘)navi ate” agmon ther,n becausl?apeach obiect h?/des its

legacy wrappers, application servers and component, 9 " g ’ . J€C -
legacy” features; we can say that the integration logic is

transaction monitors, etc.) for the integration and distributed among the-Services assembled to build the
interoperation of the back-end systems. Application

Finally the last stage is the virtual enterprise, that is a Clearly it stems that the complexity of the-

network of organizations in which heterogeneous o : ! . .

. . ; . Application and its development time result inferior than
information systems cooperate in order to offer services toin stateless desian. Moreover. @dnplication flexibilit
customers. The technologies used are mainly the SAM increased b sgtéteful desi n adl?jlian a new or an)i/zation
used in the previous stage, the main difference is that in y gn- 9 9

the third stage the integration is mainly intra-organization, Is not very complex, because each organization carries out

while in the last one is completely inter-organizations. Its own integration logic and the. objects exportgd are
always the same (for the same kind of organization). In

stateless design, every time it is necessary to add a new
4.2. Stateless and Stateful F:omponent based organization, all the integration logic must be modified,
development of e-Services because it is based on an organization-to-organization

) basis, while in the stateful situation the integration at the
e-Services can be developed as software components,onceptual level encapsulates all the differences.
that is as a set of related distributed objects. In particular, rFrom the previous comparison, we draw the

when the back-end applications are legacy systems, sUcRynciusions shown in Figure 4.
components are wrappers over the existing functionalities. \yhen the scope of theApplication is restricted to a

In Figure 3 a comparison among the two different gingie organization (2 and ¥ stages) stateless design is
approaches for designing wrapper components presentegppropriate, because the centralization and the “fatness”

in Section 3 is shown. of the integration logic are not a dramatic issue, being
involved only one organization. On the other hand, in this

From the complexity of stateful design stems that
required e-Service development time is longer than in
stateless design. This issue must be considered when the
time constraints are very strict.

Conversely, as regards the characteristics of the overall
Application, it must be pointed out that the main

case stateless design results in shorter development time&ustomer, returns the personal data about the customer,
Stateful design can be chosen as an alternative in"the 3formatted in a proprietary way according to the record 1/0O

stage with two goals: (i) a flexible-Application (if layout of the transaction. The second transaction, namely
several modifications can be anticipated) and (ii) Tran_LIST, taking in input the same identifier used in the
preparation of the next stage. previous transaction, returns the list of identifiers

On the contrary, in the™stage, where-Services are (proprietary of the bank system) of all the accounts owned
mainly concerned with different organizations, which by the customers, together with few other information
need to cooperate with as loose constraints as possible, thebout each account. Note that for different causes, to be
encapsulation, abstraction level and distributed integrationfound in the evolution of the legacy information system,
logic offered by stateful components is absolutely needednot all the accounts are stored in the same database;
Therefore we argue that thd” 4tage requires stateful therefore it happens that according to the identifier of the

(conceptual) components. account, different transactions must be invoked to perform
account management (i.e., each transaction performs the
Stages of e-Applications | Suitable Component type(s) same logical operations on different non-integrated
1 (Web site) na databases). These transaction will be referred to as
2 (Web site + simple applications) Stateless Tran_ACQG, all functionally equivalent but with slightly
3" (integrated enterprise portal Stateless / Stateful different record 1/0 layouts.
4 (Virtual enterprise) Stateful The Virtual Shop owns a legacy database, with a

procedure for the order entry, i.e., it takes in input the list
Figure 4. Suitable wrapper component types of codes of the ordered goods and triggers the process of
for e-Application stages deliver preparation. The Virtual Shop was specialized in
telephone shopping, this is the cause why this procedure is
already running: it was used by the operators at the call
center to receive customer orders. The customer
In thIS SeCtion a Complete example will be Carried Out, management is provided through a modern re|ationa|
starting from the same initial situation and designing both gatabase, but it is completely non-integrated with the
stateful wrapper components and stateless wrappepther legacy applications.
components. The context is the one of a simple starting from this situation, we want to outline the
explanatory e-Application for buying goods in remote design of ane-Application allowing customers to buy
which offers its catalog and the opportunity to customerscystomer account to the Virtual Shop account (assuming,
to buy goods. These items will be delivered by a third for simplicity, that the Virtual Shop owns an account in
organization, the Deliver Company, which is actually part the Bank).e-Applications of this kind are nowadays very
of the cooperative system, but it will be no further common, we want to point out how a conceptual design
considered in this example. can obtain better flexibility and a looser coupling among

The back-end legacy information systems are “programcooperating organizations with respect to an operational
decomposable”[27], that is semistructured systems iNdesign.

which applications can be separated into two units: the

interface processing unit, and a combination of business; 1 gtateful design

logic and database processing unit. For systems in this

class, the data layer can only be accessed through a set of \wity a stateful design, it is needed to design a

predefined functions, and never directly (i.e. through a conceptual OO schema of the information on top of which

direct query interface). In the legacy jargon, these ihe grganizations must cooperate. This model is shown in
functions (a mix of data and business logic) are called Figure 5.

transactions. The word “transaction” should not be The interfaceCustomer is used as gateway among

confused with the database-centric meaning of the SaMeha two systems of the Bank and of the Virtual $h@pe
word in a modern client/server DBMS based environment:

on a mainframe, every programming entity running under
the control of a software manager is called a transaction’ In practice, each organization exports a “bootstrap” object (e.g. the

Refer to [11] for a brief and precise overview of the Bank offer an object of clasBankServer), a Factory through

. . which clients can obtain instances@fistomer that are specialized
mainframe 'nfraStrucmre' . . for a particular organization The Factory provided for each
The Bank legacy information system provides some organization supplies specialized objects through the standard method
transactions: the first one, namely Tran_CUST, taking in FindCustomer() (e.g. it returnsBankCustomer objects). The

input an identifier (proprietary of the bank system) of the ~common shared interface for the Customer entity is central to the
interoperation across different organizations. In a typical flow, a client

5. A complete example

Bank system offers BankCustomer and 5.2. Stateless design

BankAccount classes; when BankCustomer object

is allocated, the transactions of the legacy systems are In stateless design, the classes and objects exported are
invoked, all the data are collected and integrated, thesimple access wrappers over the preexisting transactions.
relatedBankAccount objects are allocated and the links This means that objects are at low abstraction level, not
among them are createdThe same is true when a Vvery integrated among them and it is needed to exchange
ShopCustomer object is allocated. Note that the also the proprietary identifiers. Each class simply
allocation of an object consists of retrieving all the neededreproduces the transaction it is a wrapper for, andethe
data from the back-end systems and fill in the opportuneApplication carries out all the integration logic. When a
attributes of the objects; these objects “live” for the customer wants to buy some goods, through the Web
session duration in the wrapping components exportinginterface he introduces some data identifying himself (e.g.
the information. Thee-Application simply manages the userlD and password); the acquired goods are temporarily
link among these objects; for example, when a customestored and finally the transaction is invoked. Note that all
wants to buy some goods, through the Web interface hethese operations are performed by téé\pplication,
introduces some data identifying himself (e.g. userlD andWhile in the previous design each of them was the result
password). The relatedShopCustomer object is of the cooperation of different objects, p(_)s_sibly located on
allocated, together with a ne®hoppingBag object. different components. As regards the billing, the bank is
During the session, the products acquired are added to th@irectly invoked, that is the clasankServer offers
ShoppingBag object. Finally, when he stops shopping, directly the mgtho_cpay(accountlD,mqney) . In this

the e-Application stores permanently the data (through the c@se thee-Application must know which codes to use, at
transactions wrapped in the component) and asks to théeast the identifier of the customer. . _
Bank for him, passing the object. The Bank, through the The used technologies are the same, but there is a big
common interface, is able to allocate its own @mountof exchange of proprietary information. This data
BankCustomer object with itsBankAccount objects. exchange can be conveniently carried out through the use
The e-Application asks to the Bank also for the of XML as interoperable language, or through the use of

VirtualShop, in order to have tHgankAccount object flatvrvniddleware struc’:(urﬁs. he final result is th h
of the VirtualShop. Finally the methods on the e want to remark that the final result is the same, the

BankAccount objects for the billing are invoked difference is thg abstractlon' Ieyel _O.f the interfaces
(Figure 6) exported by the different organizations: in the former case
9 : they are semantically rich, theeApplication has only to

From a technological viewpoint, the classes of the “navigate” amona them. because each obiect hides its
components are distributed middleware classes, for, 9 N 9 ' . ! .
legacy” features. Instead in the latter design the

example EJBs or CORBA classes. Thepplication interfaces exactly reproduce the “legacy” features,

consists of a simple Web front-end, e.g. a serviet, Withtherefore as legacy applications are very often vertical
which the human customer interacts; it manages the d i gt g Ptp) y tralized
“navigation” among the objects. Note that each systemf"ln non-integrated, 1t 1S necessary a - centralize
maintain all the business logic needed to allocate its ownmtegraﬂon logic.
objects, and the exchanges among systems are carried o

t .
through objects modeled in a conceptual way. g Concluding remarks

In the present paper, we have introduced the concept of
stateless wrapper component, as the basis for providing
access to existing functionalities, and stateful wrapper
component, providing a more abstract and conceptual
organization A starts by obtaining an instance of class object oriented view to existing legacy applications.
CustomerA , filling in enough information to identify a particular The general requirements of development in the
fCUStomer;C“tStomAerﬁ] ;’%Fgffg(‘)eggst;’:]eig%?ﬁ:ﬁ;:fr}o;‘]grSg;\f/‘iégiczbout domain of web based applications is rapid application
t(ﬁ;{)rgﬁg{éﬁ]g’n frém organization B, the client invokes method deve,k)pment ,and a flexible compqs_ltlon of dlffermt,
FindCustomer() on the well-known bootstrap object of B, S€rvices, subject to frequent modifications. To achieve
providinga as an input parameter. B useén particular the interface this goal, both stateful and stateless components can be
Customer) to derive key data that can be used to obtain the used to build am-Application, and in the paper we have

information about the customer from its back-end SyStemS, resulting |ndlscussed the prInCIDaI Characterlstlcs Of each approach to
a new instanc@ of classCustomerB that can be returned to the createe-Services ané-Applications.

client. Usingp, the client can then further “navigate” organization B
to obtain additional information about that customer [13].

In particular, it is firts invoked Tran_CUST, then Tran_LIST and for
each account the relative Tran_ACC

ShoppingBag contain

DateOfPurchase : Date

These classes
are offered by

Product

0. AN

Addltem(newProd : Product)

the
VirtualShop
component

1..%

OrderLine

| Quantity

— Bill

Amount : Currency

/‘ 1

ShopCustomer

BankCustomer

Buy()
GetShoppingBag() : ShoppingBag

GetAccount() : BankAccount

Custom er
Name : String

Surname : String
SSN : String

Common
cooperative
interface

BankAccount

Wi ithdraw(money : Currency)
_—|Deposit(money : Currency)

These classes
are offered by
the Bank

component

Figure 5. The 00 schema of the stateful design

In this paper, we have showed that the general
requirements mentioned above can be better focused
examining the stage of web development in which the
organizations, willing to develog-Applications, can be
positioned. For each stage, different design and
development solutions can be more appropriate to
realize effectivee-Applications based on components
exploiting legacy systems.

Future research work is needed in this direction. One
important issue concerns the adaptation of stateful
components to specific needs of differers-
Applications. For instance, theustomer object can
present different attributes if used in a medical
application domain or in a virtual bookstore. An
application specific view of each object might be needed
to provide applications with services which are tailored
to their needs, from different point of views: both the
semantics and quality of information and performance.
Even in a stateless approach some sort of filtering of
provided functionalities could help in providing better
Services.

Further investigation is also needed to provide more
detailed criteria to evaluate at design time the more
appropriate choices concerning whether to develop
stateless or stateful components.

Acknowledgements

Some of the ideas exposed in this paper stems from
the summer internship that Massimo Mecella held in
Telcordia Technologies. Thanks go to Amjad Umar,
Paolo Missier and Francesco Caruso.

Thanks to Carlo Batini (AIPA) for important
discussions about many issues dealt in this paper.

Special thanks to Monica Scannapieco who studied
some issues about distributed components during her
master thesis and suggested some definitions and
examples.

References

Alonso G., Fielder U., Hagen C., Lazcano A., Schuldt
H., Weiler N.: “WISE: Business to Business E-
Commerce”. Proceedings of th8th International
Workshop on Research Issues on Data Engineering

(1]

(RIDE'99): Information Technology for Virtual
Enterprises Sydney, Australia, 1999.
[2] Autorita per lInformatica nella Pubblica

Amministrazione (AIPA):
http://www.aipa.it/english[4/ .

Booch G., Rumbaugh J., Jacobson The Unified
Modeling Language User GuideAddison Wesley,
1998.

(3]

: Web front A: Shop SB: : BankServer A': Bank ACC : Bank VS : Bank B : Bank
end Customer ShoppingBag Customer Account Customer Account
il new new
return
return
GetShoppingBag()
return SB j
T This operation is
L performed for each
good to buy
Addltem() 1
]
Buy() _2 When Buy() is
A —mr— performed, the
total bill is
calculated
FindCustomer()
1 new
return
return
return A’
GetAccount() W
return ACC
FindCustomer(') 1

L

new
1 new
T return

return

return VS

GetAcgount()

retu

nB

Withdraw()

Deposit(

)

Figure 6. Sequence diagram of an e-Application scenario

10

(4]

(5]

(el

(7]

(8]

(9]
(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]
(18]

[19]

[20]

Brodie M.L.: The Cooperative Computing Initiative. A
Contribution to the Middleware and Software
Technologies The Cooperative Computing Initiative,

(21]

January 1998.
Brodie M.L., Stonebraker M.:Migrating Legacy
Systems: Gateways, Interfaces & The Incremental [22]

Approach Morgan Kaufmann, 1995.

Cabinet Office CITU Central IT UnituK Government
Interoperability FrameworkLondon, 28th March 2000.

Casati F., Castano S., Fugini M.G., Mirbel-Sanchez 1., [23]
Pernici B.: “Using Patterns to design rules in
workflows”. To be published ofEEE Transactions on

Software Engineering [24]
D’Souza D.F., Wills A.C.:Objects, Components and
Frameworks with UML: The Catalysis Approach
Addison Wesley, 1999. [25]
Fowler M.: Analysis Patterns. Reusable Object Models
Addison Wesley, 1997.

Johnson R.: “Framework = (Components + Patterns)”.
Communications of the ACMWol. 40, no. 10, October

1997. [26]

Koch T., Murer S.: “Service Architecture Integrates
Mainframes in a CORBA Environment”. Proceedings of [27]
the 3rd International Enterprise Distributed Object
Computing Conference (EDOC’99) Mannheim,
Germany, 1999.

Laufmann S., Spaccapietra S., Yokoi T.: “Foreword”.
Proceedings of theérd International Conference on
Cooperative Information Systems (CooplS,;98)enna,
Austria, 1995.

Mecella M., Batini C.: “Cooperation of Heterogeneous [29]
Legacy Information Systems: a Methodological
Framework”. Proceedings of thdth International
Enterprise Distributed Object Computing Conference
(EDOC 2000) Makuhari, Japan, 2000.

Mecella M., Umar A., Missier P.: “Electronic Commerce
Workbench (A Decision Support System for Building
Web Architectures). A Java Prototype”. Presentation of

the Summer Internship Project, Telcordia Applied
Research, Morristown, NJ, August 1999.
Mylopoulos J., Papazoglou M.:
Information SystemsEEE Expert 1997.
Morgenthal J.P.: “Enterprise Application Integration
Tutorial”. Presentation at tteMG EAI WorkshoplLake
Buena Vista, FL, 2000.

Orfali R., Harkey D., Edwards J.The Essential
Distributed Object Survival Guid#&Viley & Sons, 1996.

PA Consulting GroupCITU Portal Feasibility Study
London, 29th June 1999.

Pernici B., Mecella M., Batini C.: “Conceptual Modeling
and Software Components Reuse: Towards the
Unification”. In Sglvberg A., Brinkkemper S.,
Lindencrona E. (eds.)nformation Systems Engineering:
State of the Art and Research Then&winger Verlag,
2000.

Persson E.: “Shibboleth of Many Meanings. An Essay on
the Ontology of Business Objects”. Proceedings of the
3rd International Enterprise Distributed Object
Computing Conference (EDOC’99) Mannheim,
Germany, 1999.

(28]

“Cooperative

11

Persson E.: “The Quest for the Software Chip. The Roots
of Software Components. A Study and Some
Speculations”. Proceedings of thet Nordic Workshop
on Software Architecture (NOSA'98onneby, Sweden,
1998.

Pezzini M.: “From Business to E-Commerce: Integration
Infrastructure as the Enabling Factor”. Presentation at
the BEA Systems Seminar with Gartner Group, Roma,
Italy, 2th March 2000.

Phifer ~ G.: “Enterprise Portals”. ~ Symposium
Documentation of th&artner Group 1Txpo’99Cannes,
France, 1999.

Sims O.:The OMG Business Object Facility and the
OMG Business ObjectOMG Document cf/96-02-03,
OMG, Framingham, MA, 1996.

Umar A., Missier P.: “A Framework for Analyzing
Virtual Enterprise Infrastructure”. Proceedings of @tle
International Workshop on Research Issues on Data
Engineering (RIDE’'99): Information Technology for
Virtual Enterprises Sydney, Australia, 1999.

Umar A., Telcordia Applied Research, Morristown, NJ,
personal communication, 1999.

Umar A.: Application Reengineering. Building Web-
Based Applications and Dealing With Lega&rentice
Hall, 1997.

Wallnau K., Weiderman N., Northrop L.: “Distributed
Object Technology with CORBA and Java: Key
Concepts and Implications”. Technical Report
CMU/SEI-97-TR-004, Carnegie Mellon University,
Software Engineering Institute, Pittsburgh, PA, 1997.
Weiderman N., Northrop L., Smith D., Tilley S.,
Wallnau K.: “Implications of Distributed Object
Technology for Reengineering”. Carnegie Mellon
University, Software Engineering Institute Technical
Report CMU/SEI-97-TR-005, 1997.

