
1

Designing Components for e-Services

Barbara PERNICI Massimo MECELLA*
Dipartimento di Elettronica e Informazione

Politecnico di Milano
Piazza Leonardo da Vinci 32, 20133 Milano, Italy

+39 02 23993526

Dipartimento di Informatica e Sistemistica
Università degli Studi di Roma “La Sapienza”

Via Salaria 113, 00198 Roma, Italy
+39 06 49918479

pernici@elet.polimi.it mecella@dis.uniroma1.it

Abstract

Component based approaches are becoming more and
more popular to support distributed application
development. The concept of component itself, however, is
not generally agreed upon and several definitions can be
found. Moreover, different approaches to object oriented
component modeling obtain different abstraction levels
(conceptual vs. operational). In this paper, we discuss the
concept of component in the framework of e-Service and
e-Application design, where these services are based on
legacy systems. We give a precise definition of stateful
and stateless components, and we discuss their
characteristics and their applicability in different stages
of web application development.

Keywords: e-Service, e-Application, component, wrapper,
legacy system, cooperation, web application development.

1. Introduction

The emergence of Internet allows the development of
new interaction business paradigms, commonly referred to
either as e-Commerce or as e-Business. There are many
other contexts where the use of communication networks
and of distributed applications can be taken into
consideration in order to offer new added value services to
customers. Some important initiatives for the definition of
what it is referred to as e-Government [2][6] are
undertaken in some countries.

As an example, in Italy the project of the Unitary
Network of the Italian Public Administration [13][19]
aims at implementing a "secure Intranet" that can
interconnect the information systems of different public
administrations. The emphasis of this project is on
promoting cooperation among the various administrations
at the application level. Besides providing the essential
interconnection services (e-mail, file transfer, etc.) to
administrations by supplying them with basic
interoperability tools, the project defines the Unitary

 * This work was partly supported by the Distributed Object Engineering

and Research (DOER) Group in Telcordia Applied Research,
Telcordia Technologies, 445 South Street, Morristown, NJ.

Information System of the Italian Public Administration
as a whole, by bringing together the collection of
distributed, autonomous systems of each administration
into a common Cooperative Architecture. In turn, this will
make it possible to reengineer global administrative
processes by making more effective use of the information
made available by each individual system.

In this paper, we define an e-Service as an application
component; an e-Service can be used in a portal [18][23],
in an e-Commerce application, to offer services in a public
context (e.g. a service allowing citizens to access and to
manage information about their retirement plans). An e-
Application is a distributed application, possibly a
complete system, which integrates in a cooperative way
the e-Services offered by different organizations.

In the literature, the term Cooperative Information
System (CIS) [4][12][15] is often used to define a large
number of cooperating component systems, distributed
over large, complex computer and communication
networks and working together cooperatively, effectively
requesting and sharing information, constraints, and goals.
We consider an e-Application as a particular instance of
CIS, in which two dimensions are relevant: it must rely on
open architectures and the constraints imposed to
cooperating organizations must be as loose as possible.

Building e-Applications requires the integration of
different heterogeneous systems (at least one for each
cooperating organization); these systems are different not
only under the technological point of view (they are very
often legacy systems), but also for the information content
they export. The information content is the information
owned by an organization of the CIS. The same
information content can be exported with different
technologies and with different models, at different
abstraction levels. The abstraction level (of the exported
information) is indirectly measured through the coupling,
both technological and semantic, among the organizations.
As an example, consider the information about a citizen in
a public administration. The information conveyed in the
data stored in the information system of the administration
can be exported in several ways: through a record in a
mainframe transaction, through a relational table, or
through an object Citizen expressed in a middleware IDL.
The abstraction levels are different, that is in the latter

Proceedings of the VLDB Workshop on Technologies for e-Services (VLDB-TES 2000), Cairo, Egypt, 2000

2

situation the coupling, both technological and semantic,
between the client and the server organization is looser.

It must be pointed out that this is not just an
interoperability problem; many technologies, referred to
as Enterprise Application Integration (EAI) [16], allow the
communication and data exchange among heterogeneous
computing platform. The problem is conceptual, dealing
with information modeling: how to export information in
order to avoid same of the drawbacks present in current
practices: the development of ad-hoc interfaces is costly,
difficult to maintain, and limits the applicability of e-
Applications to very few special cases.

The aim of this paper is to present two different ways
of modeling services as components. The first one is
operational, the services are exported according to the
offered functionalities; the resulting software components
are stateless. The second modeling approach is
conceptual, it exports the information needed to provide
e-Services as entities, to be linked together in a flexible
way; the resulting software components are stateful. In
discussing these two approaches, we point out the difficult
case in which the cooperating systems are legacy systems
and therefore they must be encapsulated, exporting as few
as possible their underlying legacy structure. This
situation is very common in the current e-Application
scenarios, and it is a good starting point to consider the
main differences between the two approaches. We discuss
how different approaches can be appropriate in different
stages of e-Application development, showing their
characteristics.

The remainder of this paper is organized as follows. In
Section 2, some fundamental concepts and background are
provided, discussing components and the integration of
legacy systems. In Section 3, stateful and stateless
wrapper components are introduced, pointing out how
they are the result of two different modeling approaches.
In Section 4, a discussion on the development of
component based e-Applications starting from legacy
systems is presented. In Section 5, a complete example by
using the two different approaches is outlined.

2. Background

2.1. Components and Distributed Object
Computing

In general, a reusable component can be defined as a
unit of design (at any level), for which a structure is
defined, a name identifying the component is associated,
and for which design guidelines, in the form of design
documentation, are provided in order to support the reuse
of the component and to illustrate the context where it can
be reused, including constraints, for instance, indicating
which other components must be used in combination
with the one being considered [7].

From this general definition, two more specific ones
follow:
• A conceptual component is a model/schema (or a

subset of) to be reused; following the object oriented
approach, it may be specified with the Unified
Modeling Language (UML) [3][8]; other more
specific models may be adopted in other application
areas, such as for instance workflow management [7].

• A software component is a coherent software package
that can be independently developed and delivered,
has explicit and well-specified interfaces for the
services it provides and for the services it expects
from the others, can be composed with other
components, perhaps customizing some of their
properties, without modifying the components
themselves [8][21].

A modeling aspect of software components is the
granularity [10] at which components are defined. While
the classical software development was based on
homegrown applications, in the 90s Enterprise Resource
Planning (ERP) systems emerged, in which functionally
complete subsystems are considered as basic components
and an information system is developed by assembling
and customizing these components. Recently, the trend is
towards finer grained components and application
frameworks, which include several related aspects
modeled together. Other approaches consider Business
Objects as the basic components [20][24], that is the
classes represented in the conceptual model correspond to
the software components.

The major obstacle to the definition of software
components is the need for a common framework, that is
the definition of “the world in which the component will
live in” [9]. Until now the fields in which the component
based approach was successful were those ones in which
the framework is well defined: e.g., the development of
graphical user interfaces, in which the framework is the
operating environment or the virtual machine.

The new approach referred to as Distributed Object
Computing (DOC) [17][28] is based on the merge of two
trends: distribution and middleware technologies and
Object Orientation. The computation is performed through
messages that objects developed in different programming
languages and deployed on heterogeneous hardware and
software platforms exchange through the network. The
technology of the Component Transaction Monitors
(CTMs) offers both the bus allowing various objects to
communicate in a transparent way and a standard
component model; it is the middleware layer enforcing the
important separation of concerns between the design of
added-value, business-aware services and their actual
deployment. A CTM defines the framework of services
and interfaces on top of which it is effectively possible to
develop and deploy software components. These
components are not restricted to the presentation layer, but

3

they represent business logic to be reused. The component
model used by CTMs is standard, thus a component is
pluggable on CTMs from different vendors; it is not tied
to the platform it was originally developed, but it is
portable among different platforms. Currently there are
three main component models: the OMG CORBA
Component Model (CCM), the Enterprise JavaBeans
(EJB) architecture and the Microsoft Component Object
Model (COM+).

2.2. Integrating Legacy Systems in e-
Applications

Many existing organizations, when they decide to
develop e-Applications, need to address the issue of their
legacy information systems: only very new organizations
(e.g. start-up companies) succeed in developing from
scratch both the backbone information system and Web
applications; on the other hand, banks, public
administrations, manufacturing companies, and so on,
have already their own systems, very often with all the
relevant data about customers, products and services.
What they need is integration, in a seamless way, of
information and procedures already running on their
legacy systems.

Legacy systems are defined as applications of value
(critical to the business) that have been in production for
five or more years (according to this definition, most
applications currently in production can be considered as
legacy) [27]; in [27] it is presented a classification of
architectures of legacy systems into four categories.
Among the different reengineering strategies that have
been proposed for dealing with legacy applications, the
following two can be considered in the development of e-
Applications [5][27]:
• Integrate: consolidate the legacies into the current and

future applications.
• Gradual Migration: rearchitect and transition the

legacy system gradually.
The former approach allows accessing legacy data and

attempts to integrate legacy and new applications
requiring only minimal modifications to the legacy
system. The result of Integration is a final composite
system where the old applications are not replaced. The
Migration approach, conversely, produces a new system
that completely replaces the old one, possibly by using
intermediate and partial integration steps. In the
development of e-Applications, Gradual Migration is a
viable option if the time constraints are not very strict and
only inside single organizations. Inter-organizations
architectures can only be based on Integration, since it
only defines interfaces and respects the autonomy of
individual organizations.

A viable method for the Access and Integration of
legacy systems is based on object wrapping [27][29].

Specifically, access wrappers are used to provide external
access to legacy applications, while object wrappers
facilitate their integration:
• Access wrappers simply provide a view of existing

access functionality, by providing a new interface that
corresponds exactly to the available data and
application access paths.

• Object wrappers provide a higher level of abstraction,
by implementing new interfaces that do not
necessarily map exactly to existing information
access paths. While the external view of the
information appears as a self-consistent OO schema,
its implementation relies on the coordinated use of
multiple access wrappers in order to present an
integrated view of the underlying data, which
conforms to that schema.

3. Stateful vs. stateless wrapper
components

e-Services can be implemented as components; with
the term component we mean a set of object oriented (OO)
classes assembled together to be deployed as a single
software unit, with explicit and well-specified interfaces
for the services they provide and for the services they
expect from other components; a component can be
composed with other components without modifying it.
The term component instance is used to distinguish the
specification of a component and the executable that
implements that specification from a particular installation
of that executable and a “running” incarnation of that
executable that is available as a server. In particular the
component instance is the object (set of objects) which is
the runtime manifestation of a component when composed
within a particular application [8].

In the following, we discuss components as wrappers
of legacy information systems for building e-Applications.
The context we consider is that of an organization which
needs to export its information in order to cooperate with
others. The organization can model this information
according to two different component based approaches:
(i) stateful (conceptual) and (ii) stateless (operational)
components.

In order to define the two different approaches, we
introduce the following definitions:

State Association Property: The specification of a
component comprises properties/attributes. A
property/attribute must be considered part of the state of
the component instance whether it is necessary to
maintain its value between two invocations of any
service/method on that component instance.

State Management: The mechanism used to logically
store the state of a component instance, for the duration of
an interaction with it (session).

4

Therefore, by using these two properties, it is possible
to precisely define both stateful and stateless components
as follows:

Stateful Component: component specification provides
the State Association Property and the State Management
of its instances is carried out by the server side of the
distributed client/server application (see class Account
in Figure 1a).

Stateless Component: either one or the other of the
following two situations can occur:
− The component specification provides the State

Association Property, but the State Management of its
instances is carried out by the client side (see class
Payment in Figure 1b).

− The component does not provide the State Association
Property (a pure function).

class Account {

 // attributes
 m_accountNumber As Integer;

 // methods
 void withdraw (money As Currency);
 void deposit (money As Currency);
}

// client code
Account C1;
Account C2;
Currency money;

// omitted code to obtain the two objects
… …

C1.withdraw(money);
C2.deposit(money);

�D�� 6WDWHIXO GHVLJQ� GHILQLWLRQ RI WKH

FRQFHSWXDO FODVV Account DQG FOLHQW FRGH

class Withdraw {

 // methods
 void withdraw (accountNumber As Integer,
 money As Currency);
}

class Deposit {

 // methods
 void deposit (accountNumber As Integer,
 money As Currency);
}

class Payment {

 // methods
 void pay (accountNumberFrom As Integer,
 accountNumberTo As Integer,
 money As Currency) {
 … …
 Withdraw w = new Withdraw;
 Deposit d = new Deposit;
 … …
 w.withdraw(accountNumberFrom, money);
 d.deposit(accountNumberTo, money);
 … …
 }
}

// client code
Integer accountNumber_numC1;
Integer accountNumber_numC2;
Payment payment;
Currency money;

// omitted code to obtain the two numbers
… …

payment = new Payment;
payment.pay(accountNumber_numC1,
 accountNumber_numC2, money);

�E�� 6WDWHOHVV GHVLJQ� GHILQLWLRQ RI WKH

RSHUDWLRQDO FODVVHV Withdraw � Deposit DQG

Payment DQG FOLHQW FRGH

)LJXUH �� $Q H�6HUYLFH IRU WKH SD\PHQW�

ZKLFK FRQVLVWV LQ ZLWKGUDZLQJ

PRQH\ IURP DQ DFFRXQW &� DQG

GHSRVLW WKHP LQWR DQ DFFRXQW &��

We want to remark that the main difference between
the two design choices is that in the former case a
conceptual object (as in the real world) is identified, and it
is directly represented in the software component (the
class Account in Figure 1a). In the latter case, there is
not an immediate object of the world, but the operations
required are modeled (the classes Withdraw , Deposit
and Payment in Figure 1b). Note that when considering
the two approaches, we are not dealing with the data used
by the system or stored in the back-end databases: clearly
data about the payment must be present in both
approaches. The second design reproduces quite naturally
the procedural transactions of the legacy system, while the
first one requires an integration layer which resolve the
mismatch among the OO conceptual view and the actual
access mechanisms.

Stateless components differ from the stateful ones for
different point of views: they represent collections of ser-

1

The example uses a pseudocode Java-like. In particular it is available
a base type Currency for money variables.

5

Web site

Web site + simple
applications

Integrated Web site
(enterprise portal)

Virtual Enterprise

Integration & complexity

Organization evolution (time)

Web pages
Java applets

XML
Java servlets

CGI
Homegrown sw

Wrappers
Application servers

and CTMs
Integration brokers

Cooperation of
heterogeneous

systems of
different

organizations

)LJXUH �� 7KH � VWDJHV RI HYROXWLRQ WRZDUGV YLUWXDO HQWHUSULVH DQG H�$SSOLFDWLRQV

vices (1:1 relationship between a service and a method),
instead stateful components represents “concepts”, that is
things of the real world. A stateless component is a way to
provide an object oriented interface to existing legacy
functionalities, without a real underlying object oriented
model. The method invocations on the same stateless
component instances are not related, since the component
does not preserve a state, possibly it obtain it embedded in
the method invocation itself (e.g. accountNumber in
Figure 1b): two different invocations of the same methods
executed by the same client could be served from different
instances. Instead a stateful component instance typically
is associated with a particular client, because it represents
a view on concepts relevant only for that client.

Stateless components are “operational”, that is the
operation they offer are functions, taking input
information, elaborating it and returning a result, without
visible side-effects on the state of the component. Note
that this does not mean that the back-end systems are not
modified; on the contrary, the state of the legacy
information base has been modified, typically through a
legacy transaction. The absence of visible state changes is
with respect at the component interface: the component
does not offer attributes and therefore its state is
unmodified by the method invocations. This can be
explained considering that the component is a wrapper.

In stateful components, the interface export objects,
which correspond to the conceptual entities considered in
the information base of the legacy systems. That is the
component exports an OO schema which is the
“conceptual” model of the information asset of the
organization: the information is modeled as classes and
associations, using the typical notation of the UML class
diagrams. The schema offers integrated views over data
and services, as if the system were a “virtual” object

oriented database. The component instances offer objects
and links which are instances of the classes and
associations from the conceptual model. A client
organization, willing to access the information asset,
needs to access some objects and to follow the links
among different objects. These objects and links are the
instances of the classes and associations represented in the
OO schema, and through their properties and operations
they export the information. The act of determining which
classes to use and which associations to follow is referred
to as the “navigation” of the conceptual model. After
determining the particular paths, a software application to
effectively access the objects will be developed (e-
Application). The “navigation” of the OO schema by the
client organization is a conceptual step: during the
development of a new cooperative application, the client
organization considers the OO schema in order to identify
how to access the exported information.

Both component types can be designed and deployed
by using OO principles and languages. Stateful
components are more suited to be implemented by OO
languages, while stateless components could be
implemented either through OO languages or procedural
ones, because the interfaces they expose are “procedural”.
The principles of late binding and polymorphism are valid
for both, while the design principle that software objects
corresponds to conceptual real ones is valid only for
stateful component.

4. Development of e-Applications

4.1. Stages of e-Applications

The development of e-Applications leads to the notion
of virtual enterprise [1][25], that is an enterprise whose

6

business processes are constructed by combining the
services provided by different organizations. In this way,
the information and communication technologies allow
the business processes to go beyond the organizational
boundaries: tools and services of different organizations
are the building blocks (e-Services) of a higher level
system supporting cooperative processes and data flow
within the cooperating organizations.

An organization which aims at cooperating with others
through e-Applications typically gets to the virtual
enterprise concept evolving through 4 stages [14][22][26],
shown in Figure 2.

The first stage represents the simple Web site, in which
the only e-Service offered is advertising through Web
pages, possibly embedding Java applets. The second stage
adds to the simple Web site the opportunity of exploiting
simple applications (e-Services), as the retrieval of
information from back-end databases of the organization
and remote data entry of some information about
customers and orders. Typically the technologies used at
this stage are based on Web pages, XML, Java applets and
servlets, CGI and homegrown software for the
communication with the back-end databases. In these two
stages the organization is completely independent, the
only cooperation with other organizations consists
possibly in links among their sites.

The third stage integrates the legacy applications of the
organization with the Web front-end, allowing customers
to effectively use e-Services. Typical examples are
enterprise portals; the technologies used at this stage are
based both on the technologies used in the previous stages
for the Web front-end, and on a set of middleware
technologies (i.e. integration brokers, mediators and
legacy wrappers, application servers and component
transaction monitors, etc.) for the integration and
interoperation of the back-end systems.

Finally the last stage is the virtual enterprise, that is a
network of organizations in which heterogeneous
information systems cooperate in order to offer services to
customers. The technologies used are mainly the same
used in the previous stage, the main difference is that in
the third stage the integration is mainly intra-organization,
while in the last one is completely inter-organizations.

4.2. Stateless and Stateful component based
development of e-Services

e-Services can be developed as software components,
that is as a set of related distributed objects. In particular,
when the back-end applications are legacy systems, such
components are wrappers over the existing functionalities.

In Figure 3 a comparison among the two different
approaches for designing wrapper components presented
in Section 3 is shown.

Components

Characteristics

Stateful Stateless

Wrapping type Object Access

e-Service design
complexity

High Low

Component development
time

Long Short

Integration logic Distributed Centralized

e-Application composition Easy Difficult

e-Application development
time

Short Long

)LJXUH �� &KDUDFWHULVWLFV RI FRPSRQHQW

EDVHG GHYHORSPHQW VWDUWLQJ

IURP OHJDF\ V\VWHPV

From the complexity of stateful design stems that
required e-Service development time is longer than in
stateless design. This issue must be considered when the
time constraints are very strict.

Conversely, as regards the characteristics of the overall
e-Application, it must be pointed out that the main
difference between the two designs is the “fatness” of the
e-Application: in the stateless case, it carries out the
integration logic, it is a “fat” application, while in the
stateful case the e-Application is “thin”, simply managing
the “navigation” among objects. In the stateless design,
the e-Service interfaces exactly reproduce the “legacy”
features, therefore, as legacy applications are very often
vertical and non-integrated, it is necessary a centralized
integration logic. In the stateful design, the interfaces
exported by the different organizations are semantically
rich (they carry out the integration logic pertaining to the
particular organization), thus the e-Application has only to
“navigate” among them, because each object hides its
“legacy” features; we can say that the integration logic is
distributed among the e-Services assembled to build the e-
Application.

Clearly it stems that the complexity of the e-
Application and its development time result inferior than
in stateless design. Moreover, the e-Application flexibility
is increased by stateful design: adding a new organization
is not very complex, because each organization carries out
its own integration logic and the objects exported are
always the same (for the same kind of organization). In
stateless design, every time it is necessary to add a new
organization, all the integration logic must be modified,
because it is based on an organization-to-organization
basis, while in the stateful situation the integration at the
conceptual level encapsulates all the differences.

From the previous comparison, we draw the
conclusions shown in Figure 4.

When the scope of the e-Application is restricted to a
single organization (2nd and 3rd stages) stateless design is
appropriate, because the centralization and the “fatness”
of the integration logic are not a dramatic issue, being
involved only one organization. On the other hand, in this

7

case stateless design results in shorter development time.
Stateful design can be chosen as an alternative in the 3rd

stage with two goals: (i) a flexible e-Application (if
several modifications can be anticipated) and (ii)
preparation of the next stage.

On the contrary, in the 4th stage, when e-Services are
mainly concerned with different organizations, which
need to cooperate with as loose constraints as possible, the
encapsulation, abstraction level and distributed integration
logic offered by stateful components is absolutely needed.
Therefore we argue that the 4th stage requires stateful
(conceptual) components.

Stages of e-Applications Suitable Component type(s)

1
st
 (Web site) n.a.

2
nd

 (Web site + simple applications) Stateless

3rd (Integrated enterprise portal) Stateless / Stateful

4th (Virtual enterprise) Stateful

)LJXUH �� 6XLWDEOH ZUDSSHU FRPSRQHQW W\SHV

IRU H�$SSOLFDWLRQ VWDJHV

5. A complete example

In this section a complete example will be carried out,
starting from the same initial situation and designing both
stateful wrapper components and stateless wrapper
components. The context is the one of a simple
explanatory e-Application for buying goods in remote
way. The involved organizations are a Bank, which holds
the accounts of the customers, and the Virtual Shop,
which offers its catalog and the opportunity to customers
to buy goods. These items will be delivered by a third
organization, the Deliver Company, which is actually part
of the cooperative system, but it will be no further
considered in this example.

The back-end legacy information systems are “program
decomposable”[27], that is semistructured systems in
which applications can be separated into two units: the
interface processing unit, and a combination of business
logic and database processing unit. For systems in this
class, the data layer can only be accessed through a set of
predefined functions, and never directly (i.e. through a
direct query interface). In the legacy jargon, these
functions (a mix of data and business logic) are called
transactions. The word “transaction” should not be
confused with the database-centric meaning of the same
word in a modern client/server DBMS based environment:
on a mainframe, every programming entity running under
the control of a software manager is called a transaction.
Refer to [11] for a brief and precise overview of the
mainframe infrastructure.

The Bank legacy information system provides some
transactions: the first one, namely Tran_CUST, taking in
input an identifier (proprietary of the bank system) of the

customer, returns the personal data about the customer,
formatted in a proprietary way according to the record I/O
layout of the transaction. The second transaction, namely
Tran_LIST, taking in input the same identifier used in the
previous transaction, returns the list of identifiers
(proprietary of the bank system) of all the accounts owned
by the customers, together with few other information
about each account. Note that for different causes, to be
found in the evolution of the legacy information system,
not all the accounts are stored in the same database;
therefore it happens that according to the identifier of the
account, different transactions must be invoked to perform
account management (i.e., each transaction performs the
same logical operations on different non-integrated
databases). These transaction will be referred to as
Tran_ACCi, all functionally equivalent but with slightly

different record I/O layouts.
The Virtual Shop owns a legacy database, with a

procedure for the order entry, i.e., it takes in input the list
of codes of the ordered goods and triggers the process of
deliver preparation. The Virtual Shop was specialized in
telephone shopping, this is the cause why this procedure is
already running: it was used by the operators at the call
center to receive customer orders. The customer
management is provided through a modern relational
database, but it is completely non-integrated with the
other legacy applications.

Starting from this situation, we want to outline the
design of an e-Application allowing customers to buy
goods through a computer network (e.g. Internet) and
automatically have the money transferred from the
customer account to the Virtual Shop account (assuming,
for simplicity, that the Virtual Shop owns an account in
the Bank). e-Applications of this kind are nowadays very
common, we want to point out how a conceptual design
can obtain better flexibility and a looser coupling among
cooperating organizations with respect to an operational
design.

5.1. Stateful design

With a stateful design, it is needed to design a
conceptual OO schema of the information on top of which
the organizations must cooperate. This model is shown in
Figure 5.

The interface Customer is used as gateway among
the two systems of the Bank and of the Virtual Shop2. The

2 In practice, each organization exports a “bootstrap” object (e.g. the

Bank offer an object of class BankServer), a Factory through
which clients can obtain instances of Customer that are specialized
for a particular organization The Factory provided for each
organization supplies specialized objects through the standard method
FindCustomer() (e.g. it returns BankCustomer objects). The
common shared interface for the Customer entity is central to the
interoperation across different organizations. In a typical flow, a client

8

Bank system offers BankCustomer and
BankAccount classes; when a BankCustomer object
is allocated, the transactions of the legacy systems are
invoked, all the data are collected and integrated, the
related BankAccount objects are allocated and the links
among them are created3. The same is true when a
ShopCustomer object is allocated. Note that the
allocation of an object consists of retrieving all the needed
data from the back-end systems and fill in the opportune
attributes of the objects; these objects “live” for the
session duration in the wrapping components exporting
the information. The e-Application simply manages the
link among these objects; for example, when a customer
wants to buy some goods, through the Web interface he
introduces some data identifying himself (e.g. userID and
password). The related ShopCustomer object is
allocated, together with a new ShoppingBag object.
During the session, the products acquired are added to the
ShoppingBag object. Finally, when he stops shopping,
the e-Application stores permanently the data (through the
transactions wrapped in the component) and asks to the
Bank for him, passing the object. The Bank, through the
common interface, is able to allocate its own
BankCustomer object with its BankAccount objects.
The e-Application asks to the Bank also for the
VirtualShop, in order to have the BankAccount object
of the VirtualShop. Finally the methods on the
BankAccount objects for the billing are invoked
(Figure 6).

From a technological viewpoint, the classes of the
components are distributed middleware classes, for
example EJBs or CORBA classes. The e-Application
consists of a simple Web front-end, e.g. a servlet, with
which the human customer interacts; it manages the
“navigation” among the objects. Note that each system
maintain all the business logic needed to allocate its own
objects, and the exchanges among systems are carried out
through objects modeled in a conceptual way.

organization A starts by obtaining an instance α of class
CustomerA , filling in enough information to identify a particular
customer. CustomerA implements the generic Customer interface
for organization A. In order to obtain information and services about
that customer from organization B, the client invokes method
FindCustomer() on the well-known bootstrap object of B,
providing α as an input parameter. B uses α (in particular the interface
Customer) to derive key data that can be used to obtain the
information about the customer from its back-end systems, resulting in
a new instance β of class CustomerB that can be returned to the
client. Using β, the client can then further “navigate” organization B
to obtain additional information about that customer [13].

3 In particular, it is firts invoked Tran_CUST, then Tran_LIST and for
each account the relative Tran_ACCi.

5.2. Stateless design

In stateless design, the classes and objects exported are
simple access wrappers over the preexisting transactions.
This means that objects are at low abstraction level, not
very integrated among them and it is needed to exchange
also the proprietary identifiers. Each class simply
reproduces the transaction it is a wrapper for, and the e-
Application carries out all the integration logic. When a
customer wants to buy some goods, through the Web
interface he introduces some data identifying himself (e.g.
userID and password); the acquired goods are temporarily
stored and finally the transaction is invoked. Note that all
these operations are performed by the e-Application,
while in the previous design each of them was the result
of the cooperation of different objects, possibly located on
different components. As regards the billing, the bank is
directly invoked, that is the class BankServer offers
directly the method pay(accountID,money) . In this
case the e-Application must know which codes to use, at
least the identifier of the customer.

The used technologies are the same, but there is a big
amount of exchange of proprietary information. This data
exchange can be conveniently carried out through the use
of XML as interoperable language, or through the use of
flat middleware structures.

We want to remark that the final result is the same, the
difference is the abstraction level of the interfaces
exported by the different organizations: in the former case
they are semantically rich, the e-Application has only to
“navigate” among them, because each object hides its
“legacy” features. Instead in the latter design the
interfaces exactly reproduce the “legacy” features,
therefore, as legacy applications are very often vertical
and non-integrated, it is necessary a centralized
integration logic.

6. Concluding remarks

In the present paper, we have introduced the concept of
stateless wrapper component, as the basis for providing
access to existing functionalities, and stateful wrapper
component, providing a more abstract and conceptual
object oriented view to existing legacy applications.

The general requirements of development in the
domain of web based applications is rapid application
development and a flexible composition of different e-
Services, subject to frequent modifications. To achieve
this goal, both stateful and stateless components can be
used to build an e-Application, and in the paper we have
discussed the principal characteristics of each approach to
create e-Services and e-Applications.

9

These classes
are offered by
the
VirtualShop
component

These classes
are offered by
the Bank
com ponent

Common
cooperative
interface

Custom er

Nam e : S tring
S urnam e : S tring

S SN : S tr ing

OrderLine

Quantity

P roduc t

S hoppingB ag

DateOfP urchase : Date

A ddItem (newP rod : P roduct) 1..*0..* 1..*0..*

contain

S hopCus tom er

B uy()
GetShoppingB ag() : S hoppingB ag

0..*

1

0..*

1

b uy

B ill

A m ount : Currency

B ankA cc ount

W ithdraw(m oney : Currency)
Depos it(m oney : Curren c y)

pay

B ankCus tom er

GetAc count() : BankA ccount

1..*
1. .*

1..*
1. .*

own

)LJXUH �� 7KH 22 VFKHPD RI WKH VWDWHIXO GHVLJQ

In this paper, we have showed that the general
requirements mentioned above can be better focused
examining the stage of web development in which the
organizations, willing to develop e-Applications, can be
positioned. For each stage, different design and
development solutions can be more appropriate to
realize effective e-Applications based on components
exploiting legacy systems.

Future research work is needed in this direction. One
important issue concerns the adaptation of stateful
components to specific needs of different e-
Applications. For instance, the Customer object can
present different attributes if used in a medical
application domain or in a virtual bookstore. An
application specific view of each object might be needed
to provide applications with services which are tailored
to their needs, from different point of views: both the
semantics and quality of information and performance.
Even in a stateless approach some sort of filtering of
provided functionalities could help in providing better e-
Services.

Further investigation is also needed to provide more
detailed criteria to evaluate at design time the more
appropriate choices concerning whether to develop
stateless or stateful components.

Acknowledgements

Some of the ideas exposed in this paper stems from
the summer internship that Massimo Mecella held in
Telcordia Technologies. Thanks go to Amjad Umar,
Paolo Missier and Francesco Caruso.

Thanks to Carlo Batini (AIPA) for important
discussions about many issues dealt in this paper.

Special thanks to Monica Scannapieco who studied
some issues about distributed components during her
master thesis and suggested some definitions and
examples.

References

[1] Alonso G., Fielder U., Hagen C., Lazcano A., Schuldt
H., Weiler N.: “WISE: Business to Business E-
Commerce”. Proceedings of the 9th International
Workshop on Research Issues on Data Engineering
(RIDE’99): Information Technology for Virtual
Enterprises, Sydney, Australia, 1999.

[2] Autorità per l’Informatica nella Pubblica
Amministrazione (AIPA):
http://www.aipa.it/english[4/ .

[3] Booch G., Rumbaugh J., Jacobson I.: The Unified
Modeling Language User Guide. Addison Wesley,
1998.

10

new new

return

return

AddItem()

Buy()

FindCustomer()

return A'

new
new

return

return

GetShoppingBag()

return SB

FindCustomer()

new
new

return

return

return VS

GetAccount()

return ACC

GetAccount()

return B

Withdraw()

Deposit()

This operation is
performed for each
good to buy

When Buy() is
performed, the
total bill is
calculated

: Web front
end

A : Shop
Customer

SB :
ShoppingBag

: BankServer A’ : Bank
Customer

ACC : Bank
Account

VS : Bank
Customer

B : Bank
Account

)LJXUH �� 6HTXHQFH GLDJUDP RI DQ H�$SSOLFDWLRQ VFHQDULR

11

[4] Brodie M.L.: The Cooperative Computing Initiative. A
Contribution to the Middleware and Software
Technologies. The Cooperative Computing Initiative,
January 1998.

[5] Brodie M.L., Stonebraker M.: Migrating Legacy
Systems: Gateways, Interfaces & The Incremental
Approach. Morgan Kaufmann, 1995.

[6] Cabinet Office CITU Central IT Unit: UK Government
Interoperability Framework. London, 28th March 2000.

[7] Casati F., Castano S., Fugini M.G., Mirbel-Sanchez I.,
Pernici B.: “Using Patterns to design rules in
workflows”. To be published on IEEE Transactions on
Software Engineering.

[8] D’Souza D.F., Wills A.C.: Objects, Components and
Frameworks with UML: The Catalysis Approach.
Addison Wesley, 1999.

[9] Fowler M.: Analysis Patterns. Reusable Object Models.
Addison Wesley, 1997.

[10] Johnson R.: “Framework = (Components + Patterns)”.
Communications of the ACM, vol. 40, no. 10, October
1997.

[11] Koch T., Murer S.: “Service Architecture Integrates
Mainframes in a CORBA Environment”. Proceedings of
the 3rd International Enterprise Distributed Object
Computing Conference (EDOC’99), Mannheim,
Germany, 1999.

[12] Laufmann S., Spaccapietra S., Yokoi T.: “Foreword”.
Proceedings of the 3rd International Conference on
Cooperative Information Systems (CoopIS’95), Vienna,
Austria, 1995.

[13] Mecella M., Batini C.: “Cooperation of Heterogeneous
Legacy Information Systems: a Methodological
Framework”. Proceedings of the 4th International
Enterprise Distributed Object Computing Conference
(EDOC 2000), Makuhari, Japan, 2000.

[14] Mecella M., Umar A., Missier P.: “Electronic Commerce
Workbench (A Decision Support System for Building
Web Architectures). A Java Prototype”. Presentation of
the Summer Internship Project, Telcordia Applied
Research, Morristown, NJ, August 1999.

[15] Mylopoulos J., Papazoglou M.: “Cooperative
Information Systems”. IEEE Expert, 1997.

[16] Morgenthal J.P.: “Enterprise Application Integration
Tutorial”. Presentation at the OMG EAI Workshop, Lake
Buena Vista, FL, 2000.

[17] Orfali R., Harkey D., Edwards J.: The Essential
Distributed Object Survival Guide. Wiley & Sons, 1996.

[18] PA Consulting Group: CITU Portal Feasibility Study.
London, 29th June 1999.

[19] Pernici B., Mecella M., Batini C.: “Conceptual Modeling
and Software Components Reuse: Towards the
Unification”. In Sølvberg A., Brinkkemper S.,
Lindencrona E. (eds.): Information Systems Engineering:
State of the Art and Research Themes. Springer Verlag,
2000.

[20] Persson E.: “Shibboleth of Many Meanings. An Essay on
the Ontology of Business Objects”. Proceedings of the
3rd International Enterprise Distributed Object
Computing Conference (EDOC’99), Mannheim,
Germany, 1999.

[21] Persson E.: “The Quest for the Software Chip. The Roots
of Software Components. A Study and Some
Speculations”. Proceedings of the 1st Nordic Workshop
on Software Architecture (NOSA’98), Ronneby, Sweden,
1998.

[22] Pezzini M.: “From Business to E-Commerce: Integration
Infrastructure as the Enabling Factor”. Presentation at
the BEA Systems Seminar with Gartner Group, Roma,
Italy, 2th March 2000.

[23] Phifer G.: “Enterprise Portals”. Symposium
Documentation of the Gartner Group ITxpo’99, Cannes,
France, 1999.

[24] Sims O.: The OMG Business Object Facility and the
OMG Business Object. OMG Document cf/96-02-03,
OMG, Framingham, MA, 1996.

[25] Umar A., Missier P.: “A Framework for Analyzing
Virtual Enterprise Infrastructure”. Proceedings of the 9th
International Workshop on Research Issues on Data
Engineering (RIDE’99): Information Technology for
Virtual Enterprises, Sydney, Australia, 1999.

[26] Umar A., Telcordia Applied Research, Morristown, NJ,
personal communication, 1999.

[27] Umar A.: Application Reengineering. Building Web-
Based Applications and Dealing With Legacy. Prentice
Hall, 1997.

[28] Wallnau K., Weiderman N., Northrop L.: “Distributed
Object Technology with CORBA and Java: Key
Concepts and Implications”. Technical Report
CMU/SEI-97-TR-004, Carnegie Mellon University,
Software Engineering Institute, Pittsburgh, PA, 1997.

[29] Weiderman N., Northrop L., Smith D., Tilley S.,
Wallnau K.: “Implications of Distributed Object
Technology for Reengineering”. Carnegie Mellon
University, Software Engineering Institute Technical
Report CMU/SEI-97-TR-005, 1997.

