Frequent Item Sets & Association Rules

V. Christophides, V. Efthymiou
{christop|vefthym}@csd.uoc.gr
http://www.csd.uoc.gr/~hy562
University of Crete, Fall 2020
Some History

- Barcode technology allowed retailers to collect massive volumes of sales data
 - **Basket data**: transaction date, set of items bought
 - Data is stored in tertiary storage

- Leverage information for **marketing**
 - How to design coupons?
 - How to organize shelves?

- The **birth of data mining**!
 - Agrawal et al. (SIGMOD 1993) introduced the problem of mining a large collection of basket data to discover association rules
 - Many papers followed…
Example: Supermarket Shelf Management

- **Goal**: Process the sales data to find dependencies among items
 - Given a set of transactions, predict the occurrence of an item based on the occurrences of other items in the transactions (*association rules*).
- **Approach**: Identify items that are bought together by sufficiently many customers (*frequent itemsets*).
- The famous “diapers-and-beer” example:
 - If one buys diapers, then he is likely to buy beer.
 - Don’t be surprised if you find six-packs next to diapers!

Rules Discovered:

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Coke, Milk</td>
</tr>
<tr>
<td>2</td>
<td>Beer, Bread</td>
</tr>
<tr>
<td>3</td>
<td>Beer, Coke, Diaper, Milk</td>
</tr>
<tr>
<td>4</td>
<td>Beer, Bread, Diaper, Milk</td>
</tr>
<tr>
<td>5</td>
<td>Coke, Diaper, Milk</td>
</tr>
</tbody>
</table>

{Milk} --> {Coke}
{Diaper, Milk} --> {Beer}
The Market-Basket Model

- A large set of items, e.g., things sold in a store
 \[I = \{i_1, i_2, \ldots, i_m\} \]

- A large set of baskets/transactions, e.g., things one customer buys in one visit to the store
 \[B_i \text{ a set of items, and } B_i \subseteq I \]

- Transaction Database \(T \): a set of transactions \(B = \{B_1, B_2, \ldots, B_n\} \)

- Our interest: Identify associations among “items”, not “baskets”

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Coke, Milk</td>
</tr>
<tr>
<td>2</td>
<td>Beer, Bread</td>
</tr>
<tr>
<td>3</td>
<td>Beer, Coke, Diaper, Milk</td>
</tr>
<tr>
<td>4</td>
<td>Beer, Bread, Diaper, Milk</td>
</tr>
<tr>
<td>5</td>
<td>Coke, Diaper, Milk</td>
</tr>
</tbody>
</table>
Application Examples of Association Rules

- **Items** = products; **Baskets** = sets of products someone bought in one transaction
 - Reveals typical buying behaviour of customers
 - Marketing and sales promotion (suggests tie-in “tricks”)
 - product \(p \) appearing as rule’s consequent
 - “what should be done to boost \(p \) sales?”
 - product \(p’ \) appearing as rule’s antecedent
 - “which products would be affected if we stop selling \(p’ \)?”
 - Shelf management: position certain items strategically
 - Recommendations
 - Amazon customers who bought \(X \) also bought \(Y \)
 - Product Bundling (e.g., phone + case + car holder + charger)

- High support needed, or no €€’s
 - Only useful if many customers buy diapers and beer
Market-Baskets and Associations

- A many-many mapping (association) between two kinds of things
 - E.g., 90% of transactions that purchase diaper & milk also purchase beer

- Given a set of baskets, discover association rules
 - The technology focuses on common events, not rare events (“long tail”)

- 2-step approach
 - Find frequent itemsets
 - Generate association rules

Rules Discovered:
{Milk} --> {Coke}
{Diaper, Milk} --> {Beer}
Causation vs. Association

- In machine learning, $X \rightarrow Y$ usually implies a **causal relationship**
 - “a change in X (seen as cause) forces a change in Y (seen as effect)”
 - causation is complex and difficult to prove
- In rule mining, $X \rightarrow Y$ is an **association relationship**
 - “X is associated with Y”
 - Much easier to calculate and prove
 - of less interest for medical research than for market research
- Association rules indicate only the **existence** of a statistical relationship (correlation) between X and Y
 - They do not specify the **nature** of the relationship
Frequent Itemsets

• Find sets of items, called itemsets, that appear “frequently” in the baskets
 • k-itemset: a set of k items
 • $B_1 = \{b, c, m\}$ is a 3-itemset

• A transaction B_i contains an itemset $A = \{i_1, i_2, \ldots, i_k\}$, if $A \subseteq B_i$
 • $B_3 = \{b, c, d, m\}$ contains the 3-itemset $\{b, c, m\}$

• **Support** of itemset A: the number (or fraction) of baskets containing all items in A
 • Support of $\{\text{Milk}\} = 4$
 • Support of $\{\text{Milk}, \text{Diaper}, \text{Beer}\} = 2$

• **Frequent itemsets**: sets of items that appear in at least s baskets
 • s is a given support threshold

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Coke, Milk</td>
</tr>
<tr>
<td>2</td>
<td>Beer, Bread</td>
</tr>
<tr>
<td>3</td>
<td>Beer, Coke, Diaper, Milk</td>
</tr>
<tr>
<td>4</td>
<td>Beer, Bread, Diaper, Milk</td>
</tr>
<tr>
<td>5</td>
<td>Coke, Diaper, Milk</td>
</tr>
</tbody>
</table>
Example: Frequent Itemsets

- Items = \{b, c, d, j, m\}
- Support threshold $s = 3$ baskets

 $B_1 = \{m, c, b\} \quad B_2 = \{m, d, j\}$
 $B_3 = \{m, b\} \quad B_4 = \{c, j\}$
 $B_5 = \{m, d, b\} \quad B_6 = \{m, c, b, j\}$
 $B_7 = \{c, b, j\} \quad B_8 = \{b, c\}$

- Frequent itemsets: \{b\}, \{c\}, \{j\}, \{m\}, \{m, b\}, \{b, c\}, \{c, j\}
An association rule is an implication of the form:
\[
\{i_1, i_2, \ldots, i_k\} \rightarrow \{j_1, j_2, \ldots, j_l\},
\]
where \(\{i_1, i_2, \ldots, i_k\}, \{j_1, j_2, \ldots, j_l\} \subseteq I\), and
\[
\{i_1, i_2, \ldots, i_k\} \cap \{j_1, j_2, \ldots, j_l\} = \emptyset
\]

If-then rules about the contents of baskets
\[
\{i_1, i_2, \ldots, i_k\} \rightarrow j
\]
means:
“if a basket contains all of \(i_1, \ldots, i_k\) then it is \textit{likely} to contain \(j\)"

A general form of an association rule is \textbf{Body}→\textbf{Head}[\textit{Support, Confidence}]
\begin{itemize}
 \item \textit{Antecedent}, left-hand side (LHS), body
 \item \textit{Consequent}, right-hand side (RHS), head
 \item \textit{Support}, frequency
 \item \textit{Confidence}, strength
\end{itemize}
Support of the rule $A \rightarrow B$: the frequency of the rule within all transactions in the database T, i.e., the probability that a transaction contains the union of A and B

- $\text{support}(A \rightarrow B) = p(A \cup B) = \text{support}({A,B})$

Confidence of the rule $A \rightarrow B$: denotes the percentage of transactions that contain B, among those that contain A, i.e., the conditional probability that a transaction containing A also contains B

- $\text{confidence}(A \rightarrow B) = p(B|A) = \frac{p(A \cup B)}{p(A)}$
 $= \frac{\text{support}({A,B})}{\text{support}({A})}$
Example: Confidence

\[B_1 = \{m, c, b\} \quad B_2 = \{m, d, j\} \]
\[B_3 = \{m, b\} \quad B_4 = \{c, j\} \]
\[B_5 = \{m, d, b\} \quad B_6 = \{m, c, b, j\} \]
\[B_7 = \{c, b, j\} \quad B_8 = \{b, c\} \]

- An association rule: \(\{m, b\} \rightarrow \{c\} \)
 - Support (\(\{m, b\} \)) = 4, Support (\(\{m, b, c\} \)) = 2
 - Confidence (\(\{m, b\} \rightarrow c \)) = \(\frac{2}{4} = 50\% \)

\[
\text{conf}(I \rightarrow j) = \frac{\text{support}(I \cup j)}{\text{support}(I)}
\]
Interesting Association Rules

- Not all high-confidence rules are interesting
 - The rule \{i_1, i_2, ..., i_k\} \rightarrow milk may have high confidence for many itemsets \{i_1, i_2, ..., i_k\}, because milk is purchased very often (independent of the itemset) and the confidence will be very high.

- Lift (originally called interest) of an association rule \(A \rightarrow B\) is the difference between its confidence and the fraction of baskets that contain B:
 \[
 \text{Lift} (A \rightarrow B) = | \text{conf}(A \rightarrow B) - \Pr[B] |
 \]
 - Interesting rules are those with high positive or negative lift values thus we take the absolute value.
 - For uninteresting rules, the fraction of baskets containing itemset B will be the same as the fraction of the subset baskets including A \cup B.
 - So confidence may be high, but interest low.
Example: Confidence and Lift

\[B_1 = \{m, c, b\} \]
\[B_2 = \{m, d, j\} \]
\[B_3 = \{m, b\} \]
\[B_4 = \{c, j\} \]
\[B_5 = \{m, d, b\} \]
\[B_6 = \{m, c, b, j\} \]
\[B_7 = \{c, b, j\} \]
\[B_8 = \{b, c\} \]

- An association rule: \(\{m, b\} \rightarrow c \)
 - Confidence (\(\{m, b\} \rightarrow c \)) = \(\frac{2}{4} = 50\% \)
 - Lift (\(\{m, b\} \rightarrow c \)) = \(|0.5 - \frac{5}{8}| = \frac{1}{8}\)
 - Item \(c \) appears in \(\frac{5}{8} \) of the baskets
 - Rule is not very interesting!

\[
\text{Lift (} A \rightarrow B \text{)} = |\text{conf}(A \rightarrow B) - \text{Pr}[B]|
\]
Finding Association Rules

Goal: Find all rules that satisfy the user-specified minimum support (\textit{minsup}) and minimum confidence (\textit{minconf})

\[
\text{support} \geq s \quad \text{AND} \quad \text{confidence} \geq c
\]

Key Features

- Completeness: find all rules
- Mining with data on disk (not in memory)

Hard part: Finding the frequent itemsets

- If $A \rightarrow B$ has high support and confidence, then both A and B will be frequent
How to Set the Appropriate MinSup?

- Many real data sets have skewed support distribution

- If minsup is too high, we could miss itemsets involving interesting rare items (e.g., expensive products)

- If minsup is too low, it is computationally expensive and the number of itemsets is very large

- A single minsup threshold may not be always effective
Association Rule Mining Task

Brute-force approach:

- List all possible association rules
 - Given d unique items:
 - Total number of itemsets $= 2^d$
 - Total number of ARs $= R$

 $$R = \sum_{k=1}^{d-1} \left(\binom{d}{k} \times \sum_{j=1}^{d-k} \binom{d-k}{j} \right)$$

 $$= 3^d - 2^{d+1} + 1$$

- Compute the support and confidence for each rule
 - Prune rules that fail the minsup and minconf thresholds
- Computationally prohibitive!
Compacting Output Rules: Classes of Itemsets

- To **reduce** the number of rules we can post-process and only output:
 - **Maximal Frequent itemsets**: no *immediate superset is frequent*
 - Can generate all frequent itemsets (without support)
 - **Closed itemsets**: no *immediate superset has the same count (>0)*
 - Can generate all frequent itemsets and their support
- Alternately:
 - **Free itemset**: no *immediate subset has the same count (>0)*
Example: Maximal/Closed

<table>
<thead>
<tr>
<th>Count</th>
<th>Maximal (s=3)</th>
<th>Closed</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4</td>
<td>No</td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>No</td>
</tr>
<tr>
<td>AB</td>
<td>4</td>
<td>Yes</td>
</tr>
<tr>
<td>AC</td>
<td>2</td>
<td>No</td>
</tr>
<tr>
<td>BC</td>
<td>3</td>
<td>Yes</td>
</tr>
<tr>
<td>ABC</td>
<td>2</td>
<td>No</td>
</tr>
</tbody>
</table>

- **Frequent, but superset BC also frequent**
- **Frequent, and its only superset, ABC, not frequent**
- **Superset BC has same count**
- **Its only superset, ABC, has smaller count**
Apriori Algorithm
Reducing the Number of Candidates: The Apriori algorithm

- Rules from the same itemset have equal support but can have different confidence
 - Thus, we may decouple the support and confidence

- Two steps:
 1. **Frequent Itemsets**: Find all itemsets that have minimum support
 - Key idea: anti-monotonicity of support: \(\forall A, B \ A \subseteq B \Rightarrow s(A) \geq s(B) \)
 2. **Rule generation**: Use frequent itemsets to generate rules
 - For every subset \(A \) of a frequent itemset \(I \), generate rule \(A \rightarrow I \setminus A \)
 - Variant 1: Perform a single pass to compute the rule confidence
 - \(\text{conf}(A, B \rightarrow C, D) = \frac{\text{supp}(A, B, C, D)}{\text{supp}(A, B)} \)
 - Variant 2: Filter out bigger rules from smaller ones
 - If \(A, B \rightarrow C \rightarrow D \) is below confidence, so is \(A, B \rightarrow C, D \)
 - Confidence of rules generated from the same itemset has an anti-monotone property
 - e.g., \(I = \{A, B, C, D\} \): \(\text{conf}(ABC \rightarrow D) \geq \text{conf}(AB \rightarrow CD) \geq \text{conf}(A \rightarrow BCD) \)
 - Confidence is anti-monotone w.r.t. number of items on the RHS of the rule
Example

\[B_1 = \{m, c, b\} \quad B_2 = \{m, d, j\} \]
\[B_3 = \{m, c, b, n\} \quad B_4 = \{c, j\} \]
\[B_5 = \{m, d, b\} \quad B_6 = \{m, c, b, j\} \]
\[B_7 = \{c, b, j\} \quad B_8 = \{b, c\} \]

- Support threshold \(s = 3 \), confidence \(c = 0.75 \)

1) Frequent itemsets:
- \(\{b, m\} \quad \{b, c\} \quad \{c, m\} \quad \{c, j\} \quad \{m, c, b\} \)

2) Generate rules:
- \(b \rightarrow m: c = \frac{4}{6} \quad b \rightarrow c: c = \frac{5}{6} \quad b, c \rightarrow m: c = \frac{3}{5} \)
- \(m \rightarrow b: c = \frac{4}{5} \quad \ldots \quad b, m \rightarrow c: c = \frac{3}{4} \)
- \(b \rightarrow c, m: c = \frac{3}{6} \)

\[\text{conf}(A \rightarrow B) = \frac{\text{supp}(A, B)}{\text{supp}(A)} \]
Given d items, there are 2^d possible candidate itemsets
Illustrating the Apriori Principle

Found to be Infrequent

Pruned supersets
Rule Generation Example
Example

Market-Basket transactions

<table>
<thead>
<tr>
<th>Item</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bread</td>
<td>4</td>
</tr>
<tr>
<td>Coke</td>
<td>2</td>
</tr>
<tr>
<td>Milk</td>
<td>4</td>
</tr>
<tr>
<td>Beer</td>
<td>3</td>
</tr>
<tr>
<td>Diaper</td>
<td>4</td>
</tr>
<tr>
<td>Eggs</td>
<td>1</td>
</tr>
</tbody>
</table>

Items (1-itemsets)

<table>
<thead>
<tr>
<th>Itemset</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>{Bread, Milk}</td>
<td>3</td>
</tr>
<tr>
<td>{Bread, Beer}</td>
<td>2</td>
</tr>
<tr>
<td>{Bread, Diaper}</td>
<td>3</td>
</tr>
<tr>
<td>{Milk, Beer}</td>
<td>2</td>
</tr>
<tr>
<td>{Milk, Diaper}</td>
<td>3</td>
</tr>
<tr>
<td>{Beer, Diaper}</td>
<td>3</td>
</tr>
</tbody>
</table>

Pairs (2-itemsets)

(no need to generate candidates involving Coke or Eggs)

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Milk</td>
</tr>
<tr>
<td>2</td>
<td>Bread, Diaper, Beer, Eggs</td>
</tr>
<tr>
<td>3</td>
<td>Milk, Diaper, Beer, Coke</td>
</tr>
<tr>
<td>4</td>
<td>Bread, Milk, Diaper, Beer</td>
</tr>
<tr>
<td>5</td>
<td>Bread, Milk, Diaper, Coke</td>
</tr>
</tbody>
</table>

Minimum Support = 3

<table>
<thead>
<tr>
<th>Itemset</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>{Bread, Milk, Diaper}</td>
<td>2</td>
</tr>
</tbody>
</table>

Triplets (3-itemsets)
Candidate Generation

- **Contrapositive for pairs**: if item i does not appear in s baskets, then no pair including i can appear in s baskets.

- **Basic principle (Apriori)**:
 - An itemset of size $k+1$ is candidate to be frequent only if all of its subsets of size k are known to be frequent.

- **Main idea**:
 - Construct a candidate of size $k+1$ by combining two frequent itemsets of size k.
 - Prune the generated $k+1$-itemsets that do not have all k-subsets to be frequent.

- **So, how does Apriori find frequent pairs?**
 - A two-pass approach limiting the need for main memory counts.
Apriori Algorithm

- **Pass 1**: Read baskets and count in main memory the occurrences of each item
 - Requires only memory proportional to #items
 - Items that appear at least s times (minsup) are the *frequent items*

- **Pass 2**: Read baskets again and count in main memory only those pairs where both elements were found in Pass 1 to be frequent
 - Requires memory proportional to square of *frequent* items only (for counts)
 - Plus a list of the frequent items (so you know what must be counted)
For each k, we construct two sets of k–itemsets:

- $C_k =$ candidate k–itemsets: supersets of $(k-1)$-itemsets with support $\geq s$
- $L_k =$ the set of truly frequent k-itemsets
The Apriori algorithm

Level-wise approach

- **C**\(_k\) = candidate \(k\)-itemsets
- **L**\(_k\) = frequent \(k\)-itemsets

1. \(k = 1\), \(C_1\) = all items
2. While \(C_k\) not empty
3. Scan the database to find which itemsets in \(C_k\) are frequent and put them into \(L_k\)
4. Use \(L_k\) to generate a collection of candidate \((k+1)\)-itemsets \(C_{k+1}\)
5. \(k = k+1\)
Recall: Example from Last time

\[B_1 = \{m, c, b\}\]
\[B_2 = \{m, d, j\}\]
\[B_3 = \{m, c, b, n\}\]
\[B_4 = \{c, j\}\]
\[B_5 = \{m, d, b\}\]
\[B_6 = \{m, c, b, j\}\]
\[B_7 = \{c, b, j\}\]
\[B_8 = \{b, c\}\]

- Frequent itemsets \((s = 3)\):
 - \{b\}, \{c\}, \{j\}, \{m\}
 - \{b, m\} \{b, c\} \{c, j\} \{c, m\}
 - \{b, c, m\}

- How we can compute them with Apriori?
Apriori Execution Example

Database

TDB

<table>
<thead>
<tr>
<th>Tid</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>b, c, m</td>
</tr>
<tr>
<td>20</td>
<td>d, j, m</td>
</tr>
<tr>
<td>30</td>
<td>b, c, m, n</td>
</tr>
<tr>
<td>40</td>
<td>c, j</td>
</tr>
<tr>
<td>50</td>
<td>b, d, m</td>
</tr>
<tr>
<td>60</td>
<td>b, c, j, m</td>
</tr>
<tr>
<td>70</td>
<td>b, c, j</td>
</tr>
<tr>
<td>80</td>
<td>b, c</td>
</tr>
</tbody>
</table>

1st scan

C_1

<table>
<thead>
<tr>
<th>Itemset</th>
<th>sup</th>
</tr>
</thead>
<tbody>
<tr>
<td>{b}</td>
<td>6</td>
</tr>
<tr>
<td>{c}</td>
<td>6</td>
</tr>
<tr>
<td>{d}</td>
<td>2</td>
</tr>
<tr>
<td>{j}</td>
<td>4</td>
</tr>
<tr>
<td>{m}</td>
<td>5</td>
</tr>
<tr>
<td>{n}</td>
<td>1</td>
</tr>
</tbody>
</table>

L_1

<table>
<thead>
<tr>
<th>Itemset</th>
<th>sup</th>
</tr>
</thead>
<tbody>
<tr>
<td>{b}</td>
<td>6</td>
</tr>
<tr>
<td>{c}</td>
<td>6</td>
</tr>
<tr>
<td>{d}</td>
<td>2</td>
</tr>
<tr>
<td>{j}</td>
<td>4</td>
</tr>
<tr>
<td>{m}</td>
<td>5</td>
</tr>
</tbody>
</table>

2nd scan

C_2

<table>
<thead>
<tr>
<th>Itemset</th>
<th>sup</th>
</tr>
</thead>
<tbody>
<tr>
<td>{b, c}</td>
<td>5</td>
</tr>
<tr>
<td>{b, j}</td>
<td>2</td>
</tr>
<tr>
<td>{b, m}</td>
<td>4</td>
</tr>
<tr>
<td>{c, j}</td>
<td>3</td>
</tr>
<tr>
<td>{c, m}</td>
<td>3</td>
</tr>
<tr>
<td>{j, m}</td>
<td>2</td>
</tr>
</tbody>
</table>

L_2

<table>
<thead>
<tr>
<th>Itemset</th>
<th>sup</th>
</tr>
</thead>
<tbody>
<tr>
<td>{b, c}</td>
<td>5</td>
</tr>
<tr>
<td>{b, j}</td>
<td>2</td>
</tr>
<tr>
<td>{b, m}</td>
<td>4</td>
</tr>
<tr>
<td>{c, j}</td>
<td>3</td>
</tr>
<tr>
<td>{c, m}</td>
<td>3</td>
</tr>
<tr>
<td>{j, m}</td>
<td>2</td>
</tr>
</tbody>
</table>

3rd scan

C_3

<table>
<thead>
<tr>
<th>Itemset</th>
<th>sup</th>
</tr>
</thead>
<tbody>
<tr>
<td>{b, c, m}</td>
<td>3</td>
</tr>
<tr>
<td>{b, c, j}</td>
<td>2</td>
</tr>
<tr>
<td>{b, m, j}</td>
<td>1</td>
</tr>
<tr>
<td>{c, m, j}</td>
<td>1</td>
</tr>
</tbody>
</table>

L_3

<table>
<thead>
<tr>
<th>Itemset</th>
<th>sup</th>
</tr>
</thead>
<tbody>
<tr>
<td>{b, c, m}</td>
<td>3</td>
</tr>
</tbody>
</table>

$s = 3$
How to Improve Apriori Efficiency?

- **Dynamic itemset counting**
 - Add new candidate itemsets only when *all* of the subsets are estimated to be frequent

- **Transaction Reduction**
 - A transaction that does not contain *any* frequent k-itemset is useless in subsequent scans

- **Hash-based itemset counting**
 - A k-itemset whose corresponding *hashing bucket count* is below the threshold cannot be frequent

- **Partitioning**
 - Any itemset that is potentially frequent in DB must be *frequent in at least one of the partitions* of the DB

- **Sampling**
 - Mining on a subset of given data, *lower support threshold* and consider a method to determine completeness
Improvements to Apriori
Observations

- In pass 1 of the Apriori algorithm
 - only individual item counts are stored
 - remaining memory is unused

- In pass 2, the pair \((i, j)\) may not be frequent even if \(i\) and \(j\) are frequent
 - but we must still count its frequency (hence need to store it in memory)

- Can we use the idle memory (in pass 1) to reduce the memory required in pass 2?
Pass 1 of PCY: In addition to item counts, maintain a hash table with *as many buckets as can fit in memory*

- Each pair of items is hashed to one bucket
 - Collisions are possible!
- Every time a pair is met in a basket, increase the count of its bucket in the hash table by 1

Pass 2 of PCY: we only count pairs that hash to frequent buckets

Multistage improves PCY (later)
PCY Algorithm – Pass 1

FOR (each basket) {
 FOR (each item in the basket)
 add 1 to item’s count;
 FOR (each pair of items) {
 hash the pair to a bucket;
 add 1 to the count for that bucket
 }
}

- Pairs of items need to be generated
- Before Pass 1 Organize Main Memory
 - Space to count each item: One (typically) 4-byte integer per item
 - Use the rest of the space for as many integers, representing buckets, as we can
Observations about Buckets

- We are not just interested in the presence of a pair
 - but also if its support is \(\geq s \)

- If a bucket contains a frequent pair, then the bucket is surely frequent

- A bucket can be frequent even without any frequent pair (*false positives*)
 - \(\Rightarrow \) We cannot eliminate any member (pair) of a “frequent” bucket

- If a bucket is not frequent, no pair in that bucket could possibly be frequent
 - \(\Rightarrow \) We can safely eliminate pairs of non-frequent buckets

For a bucket with total count \(< s\), none of its pairs can be frequent
PCY Algorithm – Between Passes

- In pass 2, only count pairs that hash to frequent buckets
 - We must count again because:
 - we did not keep the information on the pairs
 - collisions are possible
 - We do not need the count information from pass 1 any more
 - What we need is an indication on whether a pair is possibly frequent or not
- Bit vector serves this purpose well (and consumes less space)
 - 1 means bucket count exceeds the support s (it is frequent); 0 for non-frequent
 - The hash value now corresponds to the bit position
- 4-byte (32-bit) integers are replaced by bits → bit-vector requires $1/32$ of memory
- Also, decide which items are frequent and list them for the second pass
Count all pairs \{ i, j \} that meet the conditions for being a candidate pair:
- Both \(i \) and \(j \) are frequent items
- The pair \{ i, j \}, hashes to a bucket whose bit in the bit vector is 1

Both conditions are necessary for the pair to have a chance of being frequent
Refinement: A *Multistage* Algorithm

- Limit the number of candidates to be counted
 - Remember: memory is the bottleneck
 - Still need to generate all itemsets but we only want to count/keep track of the ones that are frequent

- Key idea: After Pass 1 of PCY, rehash only those pairs that qualify for Pass 2 of PCY
 - i and j are frequent, and
 - $\{i,j\}$ hashes to a frequent bucket from Pass 1

- On *middle* pass, fewer pairs contribute to buckets, so fewer *false positives* – frequent buckets with no frequent pair

- Uses several successive hash tables---requires more than two passes
Multistage Picture

Main memory

First
hash table

Second
hash table

Pass 1
Count items
Hash pairs \{i, j\}

Pass 2
Hash pairs \{i, j\} into Hash2 iff:
\(i, j \) are frequent,
\{i, j\} hashes to freq. bucket in B1

Pass 3
Count pairs \{i, j\} iff:
\(i, j \) are frequent,
\{i, j\} hashes to freq. bucket in B1
\{i, j\} hashes to freq. bucket in B2
Multistage – Pass 3

- Count only those pairs \(\{ i, j \} \) that satisfy these candidate pair conditions:
 - Both \(i \) and \(j \) are frequent items
 - Using the first hash function, the pair \(\{ i, j \} \) hashes to a bucket whose bit in the first bit-vector is 1
 - Using the second hash function, the pair hashes to a bucket whose bit in the second bit-vector is 1

- Important Points
 - The two hash functions have to be independent
 - We need to check both hashes on the third pass
 - If not, we would wind up counting pairs of frequent items that hashed first to an infrequent bucket but happened to hash second to a frequent bucket
 - reduces the number of false positives!
Refinement: The Multihash Algorithm

- **Key idea**: use several independent hash tables on the first pass.

- **Risk**: halving the number of buckets doubles the average count.
 - We have to be sure most buckets will still not reach count s.

- If so, we can get a benefit like multistage, but in only 2 passes!
Numerous approaches and refinements have been studied to keep memory consumption low

- PCY and its refinements (multistage, multihash)

Either multistage or multihash can use more than two hash functions

- In multistage, there is a point of diminishing returns, since the bit-vectors eventually consume all of main memory
- For multihash, the bit-vectors occupy exactly what one PCY bitmap does, but too many hash functions makes all counts $\geq s$
Limited Pass Algorithms
All (Or Most) Frequent Itemsets in ≤ 2 Passes

- A Priori, PCY, etc., take k passes to find frequent k-itemsets
- Can we use fewer passes?
- Use 2 or fewer passes for ALL sizes, but may miss some frequent itemsets
 - Approximate solutions
 - Simple algorithm: Use random sampling
 - Savasere, Omiecinski, and Navathe (SON) algorithm
 - Toivonen
Random Sampling

- Take a random sample of the market baskets
- Load the sample in main memory
 - no disk I/O each time you increase the size of itemsets
- Use as your support threshold s a suitable, scaled-back number
 - E.g., if your sample is 1/100 of the baskets, use $s/100$ as your support threshold instead of s
 - be sure you leave enough space for counts
- Run Apriori or one of its improvements (for itemsets of all sizes, not just pairs)
Random Sampling: Option

- **False positives**
 - Itemset may be frequent in the sample but not in the entire dataset (because of the reduced minsup threshold)
 - Run a second pass through the entire dataset to verify that the candidate pairs are truly frequent
 - Can remove false positives totally

- **False negatives**
 - Itemset is frequent in the original dataset but not picked out from the sample
 - Scanning the whole dataset a second time does not help
 - Using smaller threshold helps catch more truly frequent itemsets, but requires more space
SON Algorithm

- Instead of one random sample, process the entire dataset in memory-sized chunks.
- An itemset becomes candidate if it is found to be frequent in at least one subset of the baskets using a scaled-back support threshold.
- On a second pass, count all the candidate itemsets and determine which are frequent in the entire set.
- Key “monotonicity” idea: an itemset cannot be frequent in the entire set of baskets unless it is frequent in at least one subset.
 - A subset contains a fraction $1/p$ of whole file (number of subsets is p).
 - If itemset is not frequent in any subset, then the support in each subset is less than $1/p \times s$.
 - Hence, the support in whole file is less than s: not frequent!
 - $(1/p) \times s = s$.
SON Distributed Version

● SON lends itself to *distributed data mining*
 ◆ MapReduce

● Baskets distributed among many nodes
 ◆ Subsets of the data may correspond to one or more chunks in distributed file system
 ◆ Compute frequent itemsets at each node
 • Phase 1: *Find candidate Itemsets*
 ◆ Distribute candidates to all nodes
 ◆ Accumulate the counts of all candidates
 • Phase 2: *Find true frequent Itemsets*
SON MapReduce: Phase 1

● Map
 ◆ Input is a chunk/subset of all baskets; fraction 1/p of total input file
 ◆ Find itemsets frequent in that subset:
 • Use support threshold = s / p
 ◆ Output is set of key-value pairs (FrequentItemset,1) where FrequentItemset is found from the chunk

● Reduce
 ◆ Each reduce task is assigned a set of keys, which are itemsets
 ◆ Produce keys that appear one or more times
 ◆ Frequent in some subset; these are candidate itemsets
SON MapReduce: Phase 2

- **Map**
 - Each Map task takes a chunk of the total input data file as well as the output of Reduce tasks from phase 1
 - All candidate itemsets go to every Map task
 - Output pairs (CandidateItemset, support) where the support of the CandidateItemset is computed among the baskets of the input chunk

- **Reduce**
 - Each Reduce task is assigned a set of keys, which are candidate itemsets
 - Sums associated values for each key: total support for CandidateItemset
 - If total support of itemset $\geq s$, emit itemset and its count
SON MapReduce (2 in 1)

Input File: 123, 423, 156

Splitting:
- 123
- 423
- 156

Mapping:
- [1,1], [2,1], [3,1]
- [1,2,1], [2,3,1], [3,1,1]
- [1,2,3,1]
- [4,1], [2,1], [3,1]
- [4,2,1], [2,3,1], [3,4,1]
- [4,2,3,1]
- [1,1], [5,1], [6,1]
- [1,5,1], [5,6,1], [6,1,1]
- [1,5,6,1]

Shuffling & Reducing:
- [1,2]
- [2,2]
- [3,2]
- [1,2,1]
- [2,3,2]
- [3,1,1]
- [4,2,1]
- [3,4,1]
- [1,5,1]
- [5,6,1]
- [6,1,1]
- [1,2,3,1]
- [4,2,3,1]
- [1,5,6,1]

Threshold = 2

Final Result:
- [1,2]
- [2,2]
- [3,2]
- [2,3,2]
Toivonen’s Algorithm

- A \textit{heuristic} algorithm for finding frequent itemsets

- Given \textit{sufficient main memory}, uses \textit{one pass over a small sample} and \textit{one full pass over data}
 - No false positives (always check against the whole)

- BUT, there is a \textit{small chance it will fail to produce an answer}
 - Will not identify frequent itemsets (false negatives)

- Then must be \textit{repeated with a different sample} until it gives an answer
 - small number of iterations needed
Toivonen’s Algorithm

- Start as in the random sampling algorithm, but **lower the threshold slightly** for the sample
 - For fraction p of baskets in sample, use $0.8ps$ ($0.9ps$) as support threshold

- Goal: **avoid missing any itemset** that is frequent in the full set of baskets
 - The **smaller the threshold** the **more memory** is needed to count all candidate itemsets and the **less likely** the algorithm will **not find an answer**

- Add to the itemsets that are frequent in the sample their **negative border**
 - An itemset is in the negative border if it is not deemed frequent in the sample, but all its immediate subsets (subset by deleting a single item) are
Example: Negative Border

- **ABCD** is in the negative border if and only if:
 1. It is not frequent in the sample, but
 2. All of **ABC**, **BCD**, **ACD**, and **ABD** are

- **A** is in the negative border if and only if it is not frequent in the sample
 - Because the empty set is always frequent
 - Unless there are fewer baskets than the support threshold (silly case)
Toivonen’s Algorithm

- In a second pass, count all candidate frequent itemsets from the first pass, and also count their negative border.

- If no itemset from the negative border turns out to be frequent, then the candidates found to be frequent in the whole data are exactly the frequent itemsets.

- What if we find that something in the negative border is actually frequent? We must start over again!

- Try to choose the support threshold so the probability of failure is low, while the number of itemsets checked on the second pass fits in main-memory.
If Something in the Negative Border is Frequent . . .

We broke through the negative border. How far does the problem go?

Frequent Itemsets from Sample

...

tripletons
doubletons
singletons
Toivonen’s Algorithm

- Provides a simplistic framework for discovering frequent itemsets in large data sets while also providing enough flexibility to enable performance optimizations directed towards particular data sets.

- Allows the discovery of all frequent itemsets through a sampling process.

- Numerous optimizations and approximations can be made to improve the algorithm's performance on data sets with particular properties.
 - E.g., using a slightly lowered threshold will minimize the omission of itemsets that are frequent in the entire dataset.
 - Such omissions result in additional passes through the algorithm.
 - The support threshold should also be kept reasonably high.
 - So that the counts for the itemsets in the second pass fit in main memory.
Summary

- Market-Basket Data and Frequent Itemsets
 - Many-to-Many relationship
- Associating rules
 - Confidence and Support
- The Apriori Algorithm
 - Combine only frequent subsets
- The PCY algorithm
 - Hash pairs to reduce candidates
- Multi-stage and Multi-hash algorithm
 - Multiple hashes
- Randomized and SON algorithm
 - Sample, divide into chunks and treat as samples by MapReduce
- Toivonen’s Algorithm
 - Negative Border
References

- CS246: Mining Massive Datasets Jure Leskovec, Anand Rajaraman, Jeff Ullman, Stanford University, 2014
- CS5344: Big Data Analytics Technology, TAN Kian-Lee, National University of Singapore 2014
- CS059: Data Mining, Panayiotis Tsaparas University of Ioannina, Fall 2012