Relational Data Processing on MapReduce

V. Christophides, V. Efthymiou
{christop|vefthym}@csd.uoc.gr
http://www.csd.uoc.gr/~hy562
University of Crete, Fall 2020
Peta-scale Data Analysis

12+ TBs of tweet data every day

25+ TBs of log data every day generated by a new user being added every sec. for 3 years

12+ TBs of tweet data every day

100s of millions of GPS enabled devices sold annually

2+ billion people on the Web by end 2011

4.6 billion camera phones worldwide

30 billion RFID tags today (1.3B in 2005)

76 million smart meters in 2009... 200M by 2014

30 billion RFID tags today (1.3B in 2005)

25+ TBs of log data every day generated by a new user being added every sec. for 3 years

4 billion views/day

YouTube is the 2nd most used search engine next to Google

76 million smart meters in 2009... 200M by 2014

© 2014 IBM Corporation
A lot of these datasets have some structure
- Query logs
- Point-of-sale records
- User data (e.g., demographics)
- …

How do we perform data analysis at scale?
- Relational databases and SQL
- MapReduce (Hadoop)
Relational Databases vs. MapReduce

- **Relational databases:**
 - Multi-purpose: analysis and transactions; batch and interactive
 - Data integrity via ACID transactions
 - Lots of tools in software ecosystem (for ingesting, reporting, etc.)
 - Supports SQL (and SQL integration, e.g., JDBC)
 - Automatic SQL query optimization

- **MapReduce (Hadoop):**
 - Designed for large clusters, fault tolerant
 - Data is accessed in “native format”
 - Supports many query languages
 - Programmers retain control over performance
Parallel Relational Databases vs. MapReduce

- **Parallel relational databases**
 - Schema on “write”
 - Failures are relatively infrequent
 - “Possessive” of data
 - Mostly proprietary

- **MapReduce**
 - Schema on “read”
 - Failures are relatively common
 - In situ data processing
 - Open source
MapReduce vs Parallel DBMS

<table>
<thead>
<tr>
<th></th>
<th>Parallel DBMS</th>
<th>MapReduce</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schema Support</td>
<td>✓</td>
<td>Not out of the box</td>
</tr>
<tr>
<td>Indexing</td>
<td>✓</td>
<td>Not out of the box</td>
</tr>
<tr>
<td>Programming Model</td>
<td>Declarative (SQL)</td>
<td>Imperative (C/C++, Java, ...) Extensions through Pig and Hive</td>
</tr>
<tr>
<td>Optimizations (Compression, Query Optimization)</td>
<td>✓</td>
<td>Not out of the box</td>
</tr>
<tr>
<td>Flexibility</td>
<td>Not out of the box</td>
<td>✓</td>
</tr>
<tr>
<td>Fault Tolerance</td>
<td>Coarse grained techniques</td>
<td>✓</td>
</tr>
</tbody>
</table>

[Pavlo et al., SIGMOD 2009, Stonebraker et al., CACM 2010, …]
Database Workloads

- **OLTP (online transaction processing)**
 - Typical applications: e-commerce, banking, airline reservations
 - User facing: *real-time, low latency, highly-concurrent*
 - Tasks: relatively small set of “standard” *transactional queries*
 - Data access pattern: *random reads, updates, writes* (involving relatively small amounts of data)

- **OLAP (online analytical processing)**
 - Typical applications: business intelligence, data mining
 - Back-end processing: *batch workloads, less concurrency*
 - Tasks: complex *analytical queries*, often ad hoc
 - Data access pattern: *table scans*, large amounts of data involved per query
One Database or Two?

- **Downsides of co-existing OLTP and OLAP workloads**
 - Poor memory management
 - Conflicting data access patterns
 - Variable latency

- **Solution**: separate databases
 - User-facing OLTP database for high-volume transactions
 - Data warehouse for OLAP workloads
 - How do we connect the two?
OLTP/OLAP Integration

- OLTP database for user-facing transactions
 - Retain records of all activity
 - Periodic ETL (e.g., nightly)
- Extract-Transform-Load (ETL)
 - Extract records from source
 - Transform: clean data, check integrity, aggregate, etc.
 - Load into OLAP database
- OLAP database for data warehousing
 - Business intelligence: reporting, ad hoc queries, data mining, etc.
 - Feedback to improve OLTP services
OLTP/OLAP Architecture: Hadoop?

What about here?

OLTP

Hadoop here?

ETL
(Extract, Transform, Load)

OLAP
OLTP/OLAP/Hadoop Architecture

- Why does this make sense?

OLTP

ETL
(Extract, Transform, Load)

Hadoop

OLAP

- Why does this make sense?
ETL Bottleneck

- Reporting is often a nightly task:
 - ETL is often slow
 - processing 24 h of data may take longer than 24 h!
- Often, with noisy datasets, ETL is the analysis!
 - ETL necessarily involves brute-force data scans: L, then E and T?
- Using Hadoop:
 - Most likely, you already have some data warehousing solution
 - *Ingest is limited by speed of HDFS*
 - *Scales out* with more nodes
 - *Massively parallel* and much cheaper than parallel databases
 - Ability to use *any processing tool*
 - ETL is a *batch process* anyway!
MapReduce Algorithms for Processing Relational Data
Working Scenario

- Two tables:
 - User demographics (gender, age, income, etc.)
 - User page visits (URL, time spent, etc.)

- Analyses we might want to perform:
 - Statistics on demographic characteristics
 - Statistics on page visits
 - Statistics on page visits by URL
 - Statistics on page visits by demographic characteristic
 - …
Relational Algebra

- Set operations
 - Union (\(\cup \))
 - Intersection (\(\cap \))
 - Difference (\(\setminus \))
 - Cartesian product (\(\times \))

- Relational database specific operations
 - Selection (\(\sigma \))
 - Projection (\(\pi \))
 - Join (\(\bowtie \))

- Set functions
 - Sum
 - Average
 - Count
 - Any
 - Max
 - Min
Projection

\[\pi_S(R) \]
Projection in MapReduce

- **Easy!**
 - Map over tuples, emit new tuples with the projected attributes
 - For each tuple \(t \) in \(R \), construct a tuple \(t' \) by eliminating those components whose attributes are not in \(S \), emit a key/value pair (\(t', t' \))
 - No reducers (reducers are the *identity* function), unless for regrouping or resorting tuples
 - the Reduce operation performs duplicate elimination
 - Alternatively: perform in reducer, after some other processing

- Basically **limited by HDFS streaming speeds**
 - Speed of *encoding/decoding* tuples becomes important
 - Relational databases take advantage of *compression*
 - Semi-structured data? No problem!
Selection

\[\sigma_C(R) \]
Selection in MapReduce

● Easy!
 ◆ Map over tuples, emit only tuples that meet selection criteria
 • For each tuple t in R, check if t satisfies C and if so, emit a key/value
 pair (t, t)
 • equivalent in Spark: filter()
 ◆ No reducers (reducers are the identity function), unless for regrouping or
 resorting tuples
 ◆ Alternatively: perform in reducer, after some other processing

● Basically limited by HDFS streaming speeds:
 ◆ Speed of encoding/decoding tuples becomes important
 ◆ Relational databases take advantage of compression
 ◆ Semi-structured data? No problem!
Set Operations in Map Reduce

- \(R(X, Y) \cup S(Y, Z) \)
 - **Map**: for each tuple \(t \) either in \(R \) or in \(S \), emit \((t,t)\)
 - **Reduce**: either receive \((t,[t,t])\) or \((t,[t])\)
 - Always emit \((t,t)\)
 - We perform duplicate elimination

- \(R(X, Y) \cap S(Y, Z) \)
 - **Map**: for each tuple \(t \) either in \(R \) or in \(S \), emit \((t,t)\)
 - **Reduce**: either receive \((t,[t,t])\) or \((t,[t])\)
 - Emit \((t,t)\) in the former case and nothing \((t, \text{NULL})\) in the latter

- \(R(X, Y) \setminus S(Y, Z) \)
 - **Map**: for each tuple \(t \) either in \(R \) or in \(S \), emit \((t, R \text{ or } S)\)
 - **Reduce**: receive \((t,[R])\) or \((t,[S])\) or \((t,[R,S])\)
 - Emit \((t,t)\) only when received \((t,[R])\) otherwise nothing \((t, \text{NULL})\)
Group by… Aggregation

- Example: What is the average time spent per URL?

- In SQL:
 - `SELECT url, AVG(time) FROM visits GROUP BY url`

- In MapReduce: Let $R(A, B, C)$ be a relation to which we apply $\gamma_{A, \theta(B)}(R)$
 - The map operation prepares the grouping e.g., emit $(url, time)$ pairs
 - The grouping is done by the framework
 - The reducer computes the aggregation (e.g. average)
 - Eventually, optimize with combiners
- Simplifying assumptions: *one grouping attribute* and *one aggregation function*
Relational Joins
Types of Relationships

Many-to-Many One-to-Many One-to-One
Join Algorithms in MapReduce

- “Join” usually just means equi-join, but we also want to support other join predicates

- Hadoop has some built-in join support, but our goal is to understand important algorithm design principles

- Algorithms
 - Reduce-side join
 - Map-side join
 - In-memory join
 - Striped variant
 - Memcached variant
Reduce-side Join

- Relation S
- Relation R
- Different join keys

Reducers perform the actual join

Shuffling and sorting over the network:
- Each mapper processes one block (split)
- Each mapper produces the join key and the record pairs

HDFS stores data blocks (Replicas are not shown)
Reduce-side Join: 1-to-1

Map

Reduce

Note: no guarantee if R is going to come first or S!
Reduce-side Join: 1-to-Many

Map

<table>
<thead>
<tr>
<th>R1</th>
<th>S2</th>
<th>S3</th>
<th>S9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reduce

<table>
<thead>
<tr>
<th>keys</th>
<th>values</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>S2</td>
</tr>
</tbody>
</table>

What’s the problem?

◆ R is the one side, S is the many
Map-side (in-memory) Join

Load one dataset into memory, stream over other dataset

Distribute the smaller relation to all nodes

Mapper 1

Mapper 2

Mapper 3

Mapper N

Relation S

Relation R

Different join keys
Map-side (in-memory) Join

- MapReduce implementation
 - Distribute R to all nodes
 - Map over S, each mapper loads R in memory, hashed by join key
 - For every tuple in S, look up join key in R
 - No reducers, unless for regrouping or resorting tuples

- Downside: need to copy R to all mappers
 - Not so bad, since R is small
Reducer-Centric Cost Model

- Difference between join implementations starts with Map output

Diagram:
- Mapper output
- Sort input by key
- Read input
- Run join algorithm
- Send join output

Timing:
- time = f(input size)
- time = f(output size)
Join Implementations on MapReduce

MapReduce join implementations

\(\theta \)-join

Equijoin

Semi-join

Map-only join

Broadcast join

Trojan join

Similarity join

Multiway join

Multiple MapReduce jobs

Replicated join

Processing Relational Data: Summary

- MapReduce algorithms for processing relational data:
 - Group by, sorting, partitioning are handled automatically by shuffle/sort in MapReduce
 - Selection, projection, and other computations (e.g., aggregation), are performed either in mapper or reducer

- Complex operations require multiple MapReduce jobs
 - Example: top ten URLs in terms of average time spent
 - Opportunities for automatic optimization

- Multiple strategies for relational joins
Evolving Roles for Relational Database and MapReduce
Need for High-Level Languages

- Hadoop is great for large-data processing!
 - But writing Java programs for everything is **verbose** and **slow**
 - Analysts don’t want to (or can’t) write Java

- **Solution**: develop higher-level data processing languages
 - Hive: HQL is like SQL
 - Pig: Pig Latin is a bit like Perl
Hive and Pig

- **Hive**: data warehousing application in Hadoop
 - Query language is HQL, variant of SQL
 - Tables stored on HDFS as flat files
 - Developed by Facebook, now open source

- **Pig**: large-scale data processing system
 - Scripts are written in Pig Latin, a dataflow language
 - Developed by Yahoo!, now open source
 - Roughly 1/3 of all Yahoo! internal jobs

- **Common idea**:
 - Provide higher-level language to facilitate large-data processing
 - Higher-level language “compiles down” to Hadoop jobs
Hive: Example

- Hive looks similar to an SQL database
- Relational join on two tables:
 - Table of word counts from Shakespeare collection
 - Table of word counts from the bible

```sql
SELECT s.word, s.freq, k.freq FROM shakespeare s
JOIN bible k ON (s.word = k.word) WHERE s.freq >= 1 AND k.freq >= 1
ORDER BY s.freq DESC LIMIT 10;
```

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>the</td>
<td>25848</td>
<td>62394</td>
</tr>
<tr>
<td>I</td>
<td>23031</td>
<td>8854</td>
</tr>
<tr>
<td>and</td>
<td>19671</td>
<td>38985</td>
</tr>
<tr>
<td>to</td>
<td>18038</td>
<td>13526</td>
</tr>
<tr>
<td>of</td>
<td>16700</td>
<td>34654</td>
</tr>
<tr>
<td>a</td>
<td>14170</td>
<td>8057</td>
</tr>
<tr>
<td>you</td>
<td>12702</td>
<td>2720</td>
</tr>
<tr>
<td>my</td>
<td>11297</td>
<td>4135</td>
</tr>
<tr>
<td>in</td>
<td>10797</td>
<td>12445</td>
</tr>
<tr>
<td>is</td>
<td>8882</td>
<td>6884</td>
</tr>
</tbody>
</table>

Source: Material drawn from Cloudera training VM
Hive: Behind the Scenes

```
SELECT s.word, s.freq, k.freq FROM shakespeare s
   JOIN bible k ON (s.word = k.word) WHERE s.freq >= 1 AND k.freq >= 1
ORDER BY s.freq DESC LIMIT 10;
```

(Abstract Syntax Tree)

(one or more of MapReduce jobs)
Hive: Behind the Scenes

STAGE DEPENDENCIES:
Stage-1 is a root stage
Stage-2 depends on stages: Stage-1
Stage-0 is a root stage

STAGE PLANS:
Stage: Stage-0
Fetch Operator
limit: 10

Stage: Stage-1
Map Reduce
Alias -> Map Operator Tree:

- TableScan
 alias: s
 Filter Operator
 predicate:
 expr: (freq >= 1)
 type: boolean
 Reduce Output Operator
 key expressions:
 expr: word
 type: string
 sort order: +
 Map-reduce partition columns:
 expr: word
 type: string
 tag: 0
 value expressions:
 expr: freq
 type: int
 expr: word
 type: string

- TableScan
 alias: k
 Filter Operator
 predicate:
 expr: (freq >= 1)
 type: boolean
 Reduce Output Operator
 key expressions:
 expr: word
 type: string
 sort order: +
 Map-reduce partition columns:
 expr: word
 type: string
 tag: 1
 value expressions:
 expr: freq
 type: int

- Reduce Operator Tree:
 Join Operator
 condition map:
 Inner Join 0 to 1
 condition expressions:
 0 (VALUE._col0) (VALUE._col1)
 1 (VALUE._col0)
 outputColumnNames: _col0, _col1, _col2
 Filter Operator
 predicate:
 expr: ((_col0 >= 1) and (_col2 >= 1))
 type: boolean
 Select Operator
 expressions:
 expr: _col1
 type: string
 expr: _col0
 type: int
 expr: _col2
 type: int
 outputColumnNames: _col0, _col1, _col2
 File Output Operator
 compressed: false
 GlobalTableId: 0
 table:
 input format: org.apache.hadoop.mapred.TextInputFormat
 output format: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat

Stage: Stage-2
Map Reduce
Alias -> Map Operator Tree:

- hdfs://localhost:8022/tmp/hive-training/364214370/10002
 Reduce Output Operator
 key expressions:
 expr: _col1
 type: int
 sort order: -
 tag: -1
 value expressions:
 expr: _col0
 type: string
 expr: _col1
 type: int
 expr: _col2
 type: int

- Reduce Operator Tree:
 Extract
 Limit
 File Output Operator
 compressed: false
 GlobalTableId: 0
 table:
 input format: org.apache.hadoop.mapred.SequenceFileInputFormat
 output format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat

Stage: Stage-0
Fetch Operator
limit: 10
Pig: Example

- Task: Find the top 10 most visited pages in each category

<table>
<thead>
<tr>
<th>User</th>
<th>Url</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amy</td>
<td>cnn.com</td>
<td>8:00</td>
</tr>
<tr>
<td>Amy</td>
<td>bbc.com</td>
<td>10:00</td>
</tr>
<tr>
<td>Amy</td>
<td>flickr.com</td>
<td>10:05</td>
</tr>
<tr>
<td>Fred</td>
<td>cnn.com</td>
<td>12:00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Url</th>
<th>Category</th>
<th>PageRank</th>
</tr>
</thead>
<tbody>
<tr>
<td>cnn.com</td>
<td>News</td>
<td>0.9</td>
</tr>
<tr>
<td>bbc.com</td>
<td>News</td>
<td>0.8</td>
</tr>
<tr>
<td>flickr.com</td>
<td>Photos</td>
<td>0.7</td>
</tr>
<tr>
<td>espn.com</td>
<td>Sports</td>
<td>0.9</td>
</tr>
</tbody>
</table>
Pig Query Plan

1. Load Visits
2. Group by url
3. Foreach url generate count
4. Load Url Info
5. Join on url
6. Group by category
7. Foreach category generate top10(urls)
visits = load ‘/data/visits’ as (user, url, time);
gVisits = group visits by url;
visitCounts = foreach gVisits generate url, count(visits);
urlInfo = load ‘/data/urlInfo’ as (url, category, pRank);
visitCounts = join visitCounts by url, urlInfo by url;
gCategories = group visitCounts by category;
topUrls = foreach gCategories generate top(visitCounts, 10);
store topUrls into ‘/data/topUrls’;
Pig Query Plan

Map_1
- Load Visits
- Group by url
 - Reduce_1
 - Foreach url generate count
 - Join on url
 - Group by category
 - Foreach category generate top10(urls)

Map_2
- Load Url Info
References

- CS9223 – Massive Data Analysis J. Freire & J. Simeon New York University Course 2013
- INFM 718G / CMSC 828G Data-Intensive Computing with MapReduce J. Lin University of Maryland 2013
- CS 6240: Parallel Data Processing in MapReduce Mirek Riedewald Northeastern University 2014
- Extreme Computing Stratis D. Viglas University of Edinburg 2014
- MapReduce Algorithms for Big Data Analysis Kyuseok Shim VLDB 2012 TUTORIAL