Finding Similar Sets

http://www.csd.uoc.gr/~hy562
University of Crete
A small workshop first

https://www.menti.com/altfoogpsu8z
Motivation

Many Web-mining problems can be expressed as finding “similar” sets:
- Pages with similar words, e.g., for classification by topic
- Netflix users with similar tastes in movies for recommendation systems
 - Dual: movies with similar sets of fans
- Images of related things

The best techniques depend on whether you are looking for items that are very similar or only somewhat similar
- Special cases are easy, e.g., identical documents, or one document contained character-by-character in another
- General case, where many small pieces of one document appear out of order in another, is very hard
Finding Similar Documents

Applications: Given a body of documents, find pairs of documents with a lot of text in common, e.g.:

- **Mirror Web sites**, or approximate mirrors
 - Application: Don’t want to show both in a search
- **Plagiarism**, including large quotations
- **Similar news articles** at many news sites
 - Application: Cluster articles by “same story”

Simple IR approaches are not suited:

- Document = set of words appearing in document
- Document = set of “important” words

Why? *we need to account for ordering of words!*
Main Issues

- What is the **right representation** of the document when we check for similarity?
 - E.g., representing a document as a set of characters will not do (why?)

- When we have billions of documents, keeping the full text in memory is not an option
 - We need to find a **shorter representation**

- How do we do **pairwise comparisons** of billions of documents?
 - If exact match was the issue it would be ok, can we replicate this idea?
Three Essential Techniques for Detecting Similar Documents

- **Shingling**: convert documents, emails, etc., to sets
- **Min-hashing**: convert large sets to short signatures, while preserving similarity
- **Locality-sensitive hashing**: focus on pairs of signatures likely to be similar

Document

Documents are transformed into a set of strings of length k that appear in the document.

Signatures

Short integer vectors that represent the sets and reflect their similarity.

Candidate pairs: those pairs of signatures that we need to test for similarity.
Shingling

The set of strings of length k that appear in the document

Signatures:
short integer vectors that represent the sets, and reflect their similarity

Candidate pairs:
those pairs of signatures that we need to test for similarity
A k-shingle (or k-gram) for a document is a sequence of k characters (or words) that appears in the document.

- Represent a document by its set of k-shingles.

Example: doc="abcab".

- **Set of 2-shingles**
 - \{ab, bc, ca\}
 - **Alternative:**
 - **Bag of 2-shingles** = \{ab, bc, ca, ab\}

Working Assumption: Documents that have lots of shingles in common have similar text, even if the text appears in different order.

- What if two documents differ by a word?
 - Affects only k-shingles within distance k from the word.
- What if we reorder paragraphs?
 - Affects only k-shingles that cross paragraph boundaries.
Is $k=2$ a good choice for a shingle size?

Example:
- $\text{doc1} = \text{“abcab”}. \ 2\text{-shingles} = \{ab, \ bc, \ ca\}$
- $\text{doc2} = \text{“cabc”}. \ 2\text{-shingles} = \{ab, \ bc, \ ca\}$

Careful decision: you must pick k to be
- Large enough, or most documents will have most shingles in common
- Not too large, or most documents will have no shingles in common

$k = 5$ is OK for short documents
$k = 10$ is better for long documents
Many similarity problems can be couched as finding subsets of some universal set that have significant intersection.

Examples:
- Documents represented by their sets of shingles
- Similar customers or products

Each document is a 0/1 vector in the space of k-shingles
- Each unique shingle is a dimension
- Vectors are very sparse

Interpret set intersection as bitwise AND, and set union as bitwise OR
The Jaccard similarity of two sets is the size of their intersection divided by the size of their union.

\[\text{Sim}(C_1, C_2) = \frac{|C_1 \cap C_2|}{|C_1 \cup C_2|} \]

3 in intersection
8 in union
Jaccard similarity = 3/8
From Sets to Boolean Matrices

- **Rows** = elements (shingles) of the universal set
- **Columns** = sets (documents)
 - 1 in row e and column S if and only if e is a member of S
 - Column similarity is the Jaccard similarity of the sets of their rows with 1
- **Typical matrix is sparse**
 - Sparse matrices are usually better represented by the list of places where there is a non-zero value
 - But the Boolean matrix picture is conceptually useful
Example: Jaccard Similarity of Columns

<table>
<thead>
<tr>
<th>1-shingles</th>
<th>C₁</th>
<th>C₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>c</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>d</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>e</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>f</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

\[\text{Sim} (C₁, C₂) = \frac{2}{5} = 0.4 \]

$C₁ = \text{“bce”}$
$C₂ = \text{“acef”}$
Shingles: Compression Option

- How about **space overhead**?
 - Each character can be represented as a byte
 - One *k*-shingle requires *k* bytes

- To compare a pair of 9-shingles we need to compare 9 bytes

- To improve efficiency, we can **compress long shingles**:
 - hash them to (say) 4 bytes, and
 - represent a document by the set of hash values of its *k*-shingles

 (aaabbbcccc)(abcabcabc) → h(aaabbbcccc)h(abcabcabc)

 18 bytes → 8 bytes

- **Working Assumption**: Two documents with shared hash values will almost always have shingles in common.
Outline: Finding Similar Columns

● Naïve approach:
 1. Compute **signatures** of documents = small summaries of columns
 2. Examine pairs of signatures to find similar columns
 • Requirement: similarities of signatures and columns are related
 3. Optional: check that columns with similar signatures are really similar

● This scheme works but …
 ◆ What if the set of signatures (or k-shingles) is too large to fit in the memory?
 ◆ Or the number of documents is too big?

● Idea: Hash a document (column) to a single (small-size) value and similar documents to the same value!
 ◆ Warning: These methods can produce false negatives, and even false positives (if the above optional check is not made)
Signatures

- **Key idea:** “hash” $h(\cdot)$ each column C to a small signature, such that:
 1. $h(C)$ is small enough that we can fit a signature in main memory for each column
 2. $\text{Sim}(C_1, C_2)$ is approximated by the “similarity” of $h(C_1)$ and $h(C_2)$

- By hashing columns into buckets we expect that “most” pairs of near duplicate documents hash into the same bucket!

- **Goal:** Find a hash function $h(\cdot)$ such that:
 - If $\text{sim}(C_1, C_2)$ is high, then with high probability $h(C_1) = h(C_2)$
 - If $\text{sim}(C_1, C_2)$ is low, then with high probability $h(C_1) \neq h(C_2)$

- Clearly, the hash function depends on the similarity metric:
 - Not all similarity metrics have a suitable hash function!
 - There is a suitable hashing technique for the Jaccard similarity:
 • It is called Min-Hashing!
MinHashing

The set of strings of length \(k\) that appear in the document

Signatures: short integer vectors that represent the sets, and reflect their similarity

Candidate pairs: those pairs of signatures that we need to test for similarity
Minhashing

- History: invented by Andrei Broder in 1997 (AltaVista) to detect near duplicate web pages

- Imagine the rows of the Boolean matrix permuted under random permutation π

- Define a “hash” function $h_{\pi}(C)$:
 - the index of the first (in the permuted order π) row in which column C has value 1:
 $h_{\pi}(C) = \min_{\pi} \pi(C)$
MinHashing - Example

2nd element of the permutation is the first to map to a 1 in col C_1

Permutations

Input matrix

Signature matrix M

C_1 C_2 C_3 C_4

<table>
<thead>
<tr>
<th>1</th>
<th>4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

C_1 C_2 C_3 C_4

<table>
<thead>
<tr>
<th>2</th>
<th>1</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

$h(C_1) = 2$ $h(C_2) = 1$ $h(C_3) = 4$ $h(C_4) = 1$

$h_2(C_3) = 4$ (permutation 2, column C_3)

4th element of the permutation is the first to map to a 1 in C_3
Surprising Property

- The probability (over all permutations of the rows) that $h(C_1)=h(C_2)$ is the same as $\text{Sim}(C_1, C_2)$:
 $$\text{Pr}[h_\pi(C_1) = h_\pi(C_2)] = \text{sim}(C_1, C_2)$$

- With multiple signatures (i.e., permutations or hash functions) we get a good approximation

- Use several independent hash functions to create a signature of a column
 - The similarity of signatures is the fraction of the hash functions in which they agree
 - Because of this MinHash property, the similarity of columns is the same as the expected similarity of their signatures
Why?

- Given columns C_1 and C_2, rows may be classified as:

 \[
 \begin{array}{c|cc}
 & C_1 & C_2 \\
 \hline
 a & 1 & 1 \\
 b & 1 & 0 \\
 c & 0 & 1 \\
 d & 0 & 0 \\
 \end{array}
 \]

- Let $A = \#$ rows of type a, $B = \#$ rows of type b, $C = \#$ rows of type c

- Look down the permuted columns C_1 and C_2 until we see a 1
 - If it’s a type-a row, then $h(C_1) = h(C_2)$
 - If it’s a type-b or type-c row, then $h(C_1) \neq h(C_2)$
 - Then: $Pr[h(C_1) = h(C_2)] = A / (A + B + C)$

- Note $Sim(C_1, C_2) = A / (A + B + C)$
 - Then: $Pr[h(C_1) = h(C_2)] = Sim(C_1, C_2)$
MinHashing – Example

Input matrix

<table>
<thead>
<tr>
<th></th>
<th>C₁</th>
<th>C₂</th>
<th>C₃</th>
<th>C₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Signature matrix \(M \)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Similarities:

\[
\begin{array}{cccc}
1-3 & 2-4 & 1-2 & 3-4 \\
0.75 & 0.75 & 0 & 0 \\
0.67 & 1.00 & 0 & 0 \\
\end{array}
\]
MinHash – False Positive/Negative

- False positive?
 - False positive can be easily dealt with by doing an additional layer of checking (treat minhash as a filtering mechanism)

- False negative?
 - Requiring full match of signature is strict, some similar sets will be lost

- High error rate! Can we do better?
MinHash Signatures

• Pick (say) 100 random permutations of the rows

• Think of $\text{Sig}(C)$ as a column vector

• Let $\text{Sig}(C)[i] = \min(\pi_i(C))$

 according to the i th permutation, the number of the first row that has a 1 in column C

• **Note**: The sketch (signature) of column C is small ~ 400 bytes!

 ◆ We achieved our goal! We “compressed” long bit vectors into short signatures
Implementation Trick

- Permuting rows even once is prohibitive
- An approximation to permuting rows: pick many hash functions h_i
 - Instead of a permutation, use a random hash function that maps row numbers to as many buckets as there are rows
 - Row hashing: ordering under h_i gives a random row permutation!
- One-pass implementation
 - For each column C and each hash function h_i, keep a “slot” $M(i, C)$ for the min-hash value
 - all slots initialized to infinity
 - Intent: $M(i, C)$ will become the smallest value of $h_i(r)$ for which column C has 1 in row r
 - i.e., $h_i(r)$ gives order of rows for i-th permutation
Implementation

\[M(i,C) = \infty \]
for each row \(r \)
 for each column \(C \)
 if \(C \) has 1 in row \(r \) // Scan rows looking for 1s
 for each hash function \(h_i \) do
 if \(h_i(r) < M(i,C) \) then
 \[M(i,C) := h_i(r); \]

How to pick a random hash function \(h(x) \)?
Universal hashing:
\[h_{a,b}(x) = ((a \cdot x+b) \mod p) \mod N \]
where:
\(a, b \) ... random integers
\(p \) ... prime number (\(p > N \))
Example

$h_1(x) = x \mod 5$
$h_2(x) = 2x + 1 \mod 5$

<table>
<thead>
<tr>
<th>Row</th>
<th>C_1</th>
<th>C_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>r_2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>r_3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>r_4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>r_5</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Jaccard = $\frac{1}{5}$

Sig1 Sig2

$h_1(1)$	1	∞
$h_2(1)$	3	∞
$h_1(2)$	2	2
$h_2(2)$	0	0
$h_1(3)$	3	2
$h_2(3)$	2	0
$h_1(4)$	4	2
$h_2(4)$	4	0
$h_1(5)$	0	1
$h_2(5)$	1	2

$M(1,1)$
$M(1,2)$
$M(2,1)$
$M(2,2)$
So far …

- Represent a document as a set of hash values (of its k-shingles)
- Transform set of k-shingles to a set of minhash signatures
- Use Jaccard to compare two documents by comparing their signatures
- Is this method (i.e., transforming sets to signature) necessarily “better”?
Locality-Sensitive Hashing

- **Document**
 - **Shingling**: The set of strings of length \(k\) that appear in the document

- **Min-hashing**

- **Locality-sensitive Hashing**
 - **Signatures**: short integer vectors that represent the sets, and reflect their similarity
 - **Candidate pairs**: those pairs of signatures that we need to test for similarity
Finding Similar Pairs

- While the signatures of all columns may fit in main memory, comparing the signatures of all pairs of columns is quadratic in the number of columns.

- Naïve solution
 - For each document, compare with the other \(N-1 \) documents
 - \(N-1 \) comparisons for each document
 - Requires \(N*(N-1)/2 \) comparisons

- Example:
 - \(10^7 \) documents implies \(\sim 10^{14} \) document-comparisons
 - At 1 \(\mu s \)/comparison \(10^8 \) (~ 3 years!)
Locality-Sensitive Hashing

- A function $f(x, y)$ tells whether or not x and y is a candidate pair: a pair of elements whose similarity must be evaluated.
- With only one hash function on one entire column of signature, likely to have many false negatives (i.e., missed similar pairs).
- Key idea: Apply the hash function on the columns of signature matrix M multiple times, each on a partition of the column (i.e., for a few rows only).
 - Arrange that (only) similar columns are likely to hash (i.e., with high probability) to the same bucket.
 - Each pair of columns that hashes at least once into the same bucket is a candidate pair.

![Diagram](image-url)
Partition Into Bands

- Divide matrix M into b bands of r rows
 - For each document, compute b sets of r minhash values
 - Each set is a mini-signature with r minhash functions

$\quad n = b \times r$ hash functions

Matrix M
For each band, hash its portion of each column to a hash table with \(k \) buckets.

- Larger \(k \) => fewer collisions (false positives).

Candidate column pairs are those that hash to the same bucket for at least one band.

Tune \(b \) and \(r \) to catch most similar pairs, but few non-similar pairs.

Intuitively:
- Larger \(b \) for lower sim thresholds
- Smaller \(b \) for larger sim thresholds

Matrix \(M \):

Columns 2 and 6 are probably identical.

Columns 6 and 7 are surely different.
Simplifying Assumption

- There are enough buckets that columns are unlikely to hash to the same bucket unless they are identical in a particular band
 - Hereafter, we assume that “same bucket” means “identical in that band”
 - Assumption needed only to simplify analysis, not for correctness of algorithm

- Finding all pairs within a bucket becomes computationally cheaper!
 - Declare all pairs within a bucket to be “matching” (*faster but noisy*)
 - Perform pair-wise comparisons for those documents that fall into the same bucket (*slower but more accurate*)
 - Much smaller than pair-wise over all documents
Example: Effect of Bands

- Suppose 10^5 columns of M (100k docs)

- Signatures of 100 integers (total rows in M)

- If each integer requires 4 bytes, we only need $10^2 \times 4 \times 10^5 = 40\text{MB}$ of memory!

Goal: Find pairs of documents that are at least $s = 0.8$ similar

- 5×10^9 pairs to compare… this can take a while

- Choose 20 bands of 5 integers/band…
Analysis of the Banding Technique

- Find pairs with similarity at least $s = 0.8$. Set $b=20$, $r=5$

Assume: $\text{sim}(C_1, C_2) = 0.8$

- Since $\text{sim}(C_1, C_2) \geq s$, we want C_1, C_2 to be a candidate pair
- We want them to hash to at least 1 common bucket (at least one band is identical)

- Probability C_1, C_2 identical in one particular band: $(0.8)^5 = 0.328$

- Probability C_1, C_2 are *not* identical in any of the 20 bands: $(1-0.328)^{20} = 0.00035$
 - i.e., about 1 in 3000 similar documents are false negatives (we miss them)

- We would find 99.965% pairs of truly similar documents
Analysis of the Banding Technique

- Find pairs with similarity at least $s = 0.8$. Set $b=20$, $r=5$

- Assume: $\text{sim}(C_1, C_2) = 0.3$
 - Since $\text{sim}(C_1, C_2) < s$ we want C_1, C_2 to hash to NO common buckets (all bands should be different)

- Probability C_1, C_2 identical in one particular band: $(0.3)^5 = 0.00243$
 - Probability C_1, C_2 identical in at least 1 of 20 bands: $1-(1-0.00243)^{20} = 0.0474$
 - In other words, approximately 4.74% pairs of docs with similarity 0.3 end up becoming candidate pairs
 - They are false positives since we will have to examine them (they are candidate pairs) but then it will turn out their similarity is below threshold s
LSH Involves a Tradeoff

- **How to get a step-function?**
- **Pick:**
 - The number of Min-Hashes (rows of M)
 - The number of bands b, and
 - The number of rows r per band to balance false positives/negatives

Analysis of LSH – What We Want

- Probability threshold s defines the probability of sharing a bucket:
 - Probability = 1 if $t > s$
 - Probability = 0 if $t < s$

- Similarity $t = \text{sim}(C_1, C_2)$ of two sets
One Band of One Row

False Positives

Probability of sharing a bucket

False Negatives

Single hash signature

Similarity \(t = \text{sim}(C_1, C_2) \) of two sets

Remember:

\[
Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = \text{sim}(C_1, C_2)
\]
The S-curve is where the “magic” happens

\[s \sim (1/b)^{1/r} \]

1. At least one band identical
2. No bands identical
3. Some row of a band unequal
4. All rows of a band are equal

\[1 - (1 - t^r)^b \]

Similarity \(t = \text{sim}(C_1, C_2) \) of two sets
Picking r and b: The S-Curve

- Picking r and b to get the best S-curve

Blue area: *False Negative* rate
These are pairs with $\text{sim} > s$ but the X fraction won’t share a band and they will never become candidates. This means we will never consider these pairs for (slow/exact) similarity calculation!

Green area: *False Positive* rate
These are pairs with $\text{sim} < s$ but we will consider them as candidates. This is not too bad, we will consider them for (slow/exact) similarity computation and discard them.
S-curves as a Function of b and r

- Given a fixed threshold s
- We want to choose r and b such that the $Pr(\text{Candidate pair})$ has a “step” right around s
Example: $b = 20; r = 5$

<table>
<thead>
<tr>
<th>t</th>
<th>$1 - (1 - t^r)^b$</th>
</tr>
</thead>
<tbody>
<tr>
<td>.2</td>
<td>.006</td>
</tr>
<tr>
<td>.3</td>
<td>.047</td>
</tr>
<tr>
<td>.4</td>
<td>.186</td>
</tr>
<tr>
<td>.5</td>
<td>.470</td>
</tr>
<tr>
<td>.6</td>
<td>.802</td>
</tr>
<tr>
<td>.7</td>
<td>.975</td>
</tr>
<tr>
<td>.8</td>
<td>.9996</td>
</tr>
</tbody>
</table>

$s = 0.5 \left(\frac{1}{20}\right)^{1/5}$

If we had only 20 bands of 5 rows, the number of false negatives would go down, but the number of false positives would go up.
Picking r, b to Get Desired Performance

- 50 hash-functions ($r \times b = 50$)

$r=2$, $b=25$
$r=5$, $b=10$
$r=10$, $b=5$
Limitations of Minhash

- Minhash is great for near-duplicate detection
 - Set high threshold for Jaccard similarity

- Limitations:
 - Jaccard similarity only
 - Set-based representation, no way to assign weights to features

- Random projections:
 - Works with arbitrary vectors using cosine similarity
 - Same basic idea, but details differ
 - Slower but more accurate: no free lunch!
LSH Generalizations
Multiple Hash Functions

- For Min-Hashing signatures, we got a Min-Hash function for each permutation of rows

- So far, we have assumed only one hash function (even applied multiple times)
 - Shorthand: \(h(x) = h(y) \) implies “\(h \) says \(x \) and \(y \) are equal”

- We could have used a family of hash functions
 - A (large) set of related hash functions generated by some mechanism
 - We should be able to efficiently pick a hash function at random from such a family
Locality-Sensitive (LS) Families

- Consider a space S of points with a distance measure d
- A family H of hash functions is said to be (d_1, d_2, p_1, p_2)-sensitive if for any x and y in S:
 - If $d(x, y) \leq d_1$, then prob over all h in H that $h(x)=h(y)$ is at least p_1
 - If $d(x, y) \geq d_2$, then prob over all h in H that $h(x)=h(y)$ is at most p_2

Small distance, high probability of hashing to the same value

Large distance, low probability of hashing to the same value
Example of LS Family: MinHash

Let
- S = space of all sets,
- d = Jaccard distance,
- H is family of Min-Hash functions for all permutations of rows

Minhashing gives a (d_1, d_2, p_1, p_2)-sensitive family for any $d_1 < d_2$
- E.g., H is a $(1/3, 2/3, 2/3, 1/3)$-sensitive family for S and d
- If distance $\leq 1/3$ (i.e., similarity $\geq 2/3$), then probability that minhash values agree is $\geq 2/3$
- This is because for any hash function $h \in H$, $\Pr(h(x) = h(y)) = 1 - d(x, y)$

Simply restates theorem about Min-Hashing in terms of distances rather than similarities!
Example of LS Family: MinHash

- **Claim:** Min-hash H is a $(1/3, 2/3, 2/3, 1/3)$-sensitive family for S and d

 If distance $< 1/3$
 (so similarity $\geq 2/3$)

 Then probability that Min-Hash values agree $\geq 2/3$

- For Jaccard similarity, Min-Hashing gives a $(d_1, d_2, (1-d_1), (1-d_2))$-sensitive family for any $d_1 < d_2$

- Theory leaves unknown what happens to pairs that are at distance between d_1 and d_2
 - **Consequence:** No guarantees about fraction of false positives in that range
Amplifying an LS-family

- Can we reproduce the “S-curve” effect we saw before for any LS family?

- The “banding” technique we learned for signature matrices carries over to this more general setting
 - So we can do LSH with any \((d_1, d_2, p_1, p_2)\)-sensitive family

- Two constructions:
 - \textbf{AND} construction like “rows in a band”
 - \textbf{OR} construction like “many bands”
AND Construction of Hash Functions

- Given family \(H\), construct family \(H'\) consisting of \(r\) functions from \(H\)

- For \(h=[h_1, \ldots, h_r]\) in \(H'\), \(h(x)=h(y)\) if and only if \(h_i(x)=h_i(y)\) for all \(i: 1 \leq i \leq r\)

- Note this has the same effect as “\(r\) signatures”
 - \(x\) and \(y\) are considered a candidate pair if every one of the \(r\) rows say that \(x\) and \(y\) are equal

- Theorem: If \(H\) is \((d_1, d_2, p_1, p_2)\)-sensitive, then \(H'\) is \((d_1, d_2, p_1^r, p_2^r)\)-sensitive
 - That is, for any \(p\), if \(p\) is the probability that a member of \(H\) will declare \((x, y)\) to be a candidate pair, then the probability that a member of \(H'\) will so declare is \(p^r\)
 - Proof: Use the fact that \(h_i\)'s are independent
OR Construction of Hash Functions

- Given family H, construct family H' consisting of b functions from H
- For $h=[h_1, ..., h_b]$ in H', $h(x)=h(y)$ if and only if $h_i(x)=h_i(y)$ for at least one i, $1 \leq i \leq b$
- Mirrors the effect of combining "b bands":
 - x and y become a candidate pair if any set makes them a candidate pair
- Theorem: If H is (d_1, d_2, p_1, p_2)-sensitive, then H' is $(d_1, d_2, 1-(1-p_1)^b, 1-(1-p_2)^b)$-sensitive
 - That is, for any p, if p is the probability that a member of H will declare (x, y) to be a candidate pair, then $(1-p)$ is the probability that it will not declare so
 - $(1-p)^b$ is the probability that none of the family h_1, h_b will declare (x, y) a candidate pair
 - $1-(1-p)^b$ is the probability that at least one h_i will declare (x, y) a candidate pair, and therefore that H' will declare (x, y) to be a candidate pair
Effect of AND & OR Constructions

- **AND** makes all probabilities shrink, but by choosing \(r \) correctly, we can make the lower probability approach 0 while the higher does not.
- **OR** makes all probabilities grow, but by choosing \(b \) correctly, we can make the upper probability approach 1 while the lower does not.
Composing Constructions: AND-OR Composition

• r-way **AND** construction followed by b-way **OR** construction
 ◆ Exactly what we did with minhashing
 • If b bands match in all r values hash to same bucket
 • Columns that are hashed into ≥ 1 common bucket -> candidate

• Take points \(x \) and \(y \) s.t. \(\Pr[h(x)=h(y)] = p \)
 ◆ H will make \((x, y)\) a **candidate** pair with probability \(p \)

• Construction makes \((x, y)\) a **candidate** pair with probability \(1-(1-p^r)^b \)
 ◆ The S-Curve!
Example:

- **Example:** Take H and construct H' by the **AND** construction with $r = 4$. Then, from H', construct H'' by the **OR** construction with $b = 4$

- E.g., transform a $(0.2, 0.8, 0.8, 0.2)$-sensitive family into a $(0.2, 0.8, 0.8785, 0.0064)$-sensitive family
Composing Constructions: OR-AND Composition

- b-way OR construction followed by r-way AND construction
- Transforms probability p into $(1-(1-p)^b)^r$
 - The same S-curve, mirrored horizontally and vertically
Example

- **Example:** Take H and construct H' by the OR construction with $b = 4$. Then, from H', construct H'' by the AND construction with $r = 4$

- E.g., transform a $(0.2, 0.8, 0.8, 0.2)$-sensitive family into a $(0.2, 0.8, 0.9936, 0.1215)$-sensitive family

<table>
<thead>
<tr>
<th>p</th>
<th>$(1-(1-p)^4)^4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>.1</td>
<td>.0140</td>
</tr>
<tr>
<td>.2</td>
<td>.1215</td>
</tr>
<tr>
<td>.3</td>
<td>.3334</td>
</tr>
<tr>
<td>.4</td>
<td>.5740</td>
</tr>
<tr>
<td>.5</td>
<td>.7725</td>
</tr>
<tr>
<td>.6</td>
<td>.9015</td>
</tr>
<tr>
<td>.7</td>
<td>.9680</td>
</tr>
<tr>
<td>.8</td>
<td>.9936</td>
</tr>
</tbody>
</table>
Example: Apply the (4,4) OR-AND construction followed by the (4,4) AND-OR construction

Transforms a (.2,.8,.8,.2)-sensitive family into a (.2,.8,.9999996,.0008715)-sensitive family

♦Note this family uses 256 (= 4*4*4*4) of the original hash functions
Applications of LSH
An LHS Family for Fingerprint Matching

- Fingerprint can be uniquely defined by its minutiae.
- By overlaying a grid on the fingerprint image, we can extract the grid squares where the minutiae are located.
- Two fingerprints are similar if the set of grid squares significantly overlap.
 - Jaccard distance and minhash can be used, but ...
- Let F be a family of functions.
 - $f \in F$ is defined by, say 3, grid squares such that f returns the same bucket whenever the fingerprint has minutiae in all three grid squares.
 - f sends all fingerprints that have minutiae in all three of f's grid points to the same bucket.
 - Two fingerprints match if they are in the same bucket.
LSH for Fingerprint Matching

- Suppose probability of finding a minutiae in a random grid square of a random finger is 0.2
- And probability of finding one in the same grid square of the same finger (different fingerprint) is 0.8
- Prob two fingerprints from different fingers match = \((0.2)^3 \times (0.2)^3 = 0.000064\)
- Prob two fingerprints from the same finger match = \((0.2)^3 \times (0.8)^3 = 0.004096\)
- Use more functions from \(F\)
- Take 1024 functions and do an OR construction
 - Prob putting the fingerprints from the same finger in at least one bucket is \(1 - (1-0.004096)^{1024} = 0.985\)
 - Prob two fingerprints from different fingers falling into the same bucket is \(1 - (1-0.000064)^{1024} = 0.063\)
 - We have 1.5% false negatives and 6.3% false positives
- Using AND construction will
 - Greatly reduce the prob of a false positive
 - Small increase in false-negative rate
References

- CS9223 – Massive Data Analysis J. Freire & J. Simeon New York University Course 2013
- CS246: Mining Massive Datasets Jure Leskovec, Stanford University, 2014
- CS5344: Big Data Analytics Technology, TAN Kian-Lee, National University of Singapore 2014