
Fall 2024

1

Relational Data Processing on

MapReduce

http://www.csd.uoc.gr/~hy562

University of Crete, Fall 2024

Fall 2024

2

12+ TBs
of tweet data

every day

25+ TBs of
log data every day
generated by a new
user being added

every sec. for 3 years

1
0
0
 P

B
s

o
f

d
a

ta
 e

v
e

ry
 d

a
y

2+

billion
people on
the Web in

2011

30 billion RFID

tags in 2014
(1.3B in 2005)

4.6

billion
camera
phones

world wide

100s of

millions

of GPS

enabled
devices sold

annually

200 million smart

meters in 2014

Peta-scale Data Analysis

4 billion views/day
YouTube is the 2nd most used
search engine next to Google © 2014 IBM Corporation

Fall 2024

3

Big Data Analysis

 A lot of these datasets have some

structure

Query logs

Point-of-sale records

User data (e.g., demographics)

…

 How do we perform data analysis at

scale?

Relational databases and SQL

MapReduce (Hadoop) & Spark

Fall 2024

4

Relational Databases vs. MapReduce

 Relational databases:

Multi-purpose: analysis and transactions; batch and interactive

Data integrity via ACID transactions

Lots of tools in software ecosystem (for ingesting, reporting, etc.)

Supports SQL (and SQL integration, e.g., JDBC)

Automatic SQL query optimization

 MapReduce & Spark:

Designed for large clusters, fault tolerant

Data is accessed in “native format”

Supports many query languages

Programmers retain control over performance

Fall 2024

5

Parallel Relational Databases

vs. MapReduce

 Parallel relational databases

Schema on “write”

Failures are relatively infrequent

“Possessive” of data

Mostly proprietary

 MapReduce

Schema on “read”

Failures are relatively common

In situ data processing

Open source

Shared-nothing architecture for parallel processing

Hadoop v2.0 (YARN) architecture

Fall 2024

6

MapReduce vs Parallel DBMS

Parallel DBMS MapReduce

Schema Support ✓ Not out of the box

Indexing ✓ Not out of the box

Programming Model
Declarative

(SQL)

Imperative

(C/C++, Java, …)

Extensions through

Pig and Hive

Optimizations

(Compression, Query

Optimization)

✓ Not out of the box

Flexibility Not out of the box ✓

Fault Tolerance
Coarse grained

techniques
✓

[Pavlo et al., SIGMOD 2009, Stonebraker et al., CACM 2010, …]

Fall 2024

7

Database Workloads

 OLTP (online transaction processing)

captures, stores, and processes data from transactions in real time

Typical applications: e-commerce, banking, airline reservations

User facing: real-time, low latency, highly concurrent

Data access pattern: random reads, updates, writes (involving

relatively small amounts of data)

 OLAP (online analytical processing)

uses complex queries to analyze aggregated historical data

Typical applications: business intelligence (BI), data mining

Back-end processing: batch workloads, less concurrency

Data access pattern: table scans, large amounts of data involved per

query

Fall 2024

8

One Database or Two?

 Downsides of co-existing OLTP

and OLAP workloads

Poor memory management

Conflicting data access patterns

Variable latency

 Solution: separate databases

User-facing OLTP database for high-

volume transactions

Data warehouse for OLAP workloads

How do we connect the two?

Fall 2024

9

OLTP/OLAP Integration

 OLTP database for user-facing transactions

Retain records of all activity

Periodic ETL (e.g., nightly)

 Extract-Transform-Load (ETL)

Extract records from source

Transform: clean data, check integrity, aggregate, etc.

Load into OLAP database

 OLAP database for data warehousing

Business intelligence: reporting, ad hoc queries, data mining, etc.

Feedback to improve OLTP services

OLTP OLAP

ETL
(Extract, Transform, Load)

Fall 2024

10

OLTP/OLAP Architecture: Hadoop?

OLTP OLAP

ETL
(Extract, Transform, Load)

Hadoop here?

What about here?

Fall 2024

11

OLTP/OLAP/Hadoop Architecture

 Why does this make sense?

OLTP OLAP

ETL
(Extract, Transform, Load)

Hadoop

Fall 2024

12

ETL Bottleneck

 ETL is often a nightly task:

processing 24h of data may take longer than 24h!

 Often, with noisy datasets, ETL is the analysis!

ETL necessarily involves brute-force data scans: L, then E and T?

 Using Hadoop:

Most likely, you already have some data warehousing solution

Ingest is limited by speed of HDFS

Scales out with more nodes

Massively parallel and much cheaper than parallel databases

Ability to use any processing tool

ETL is a batch process anyway!

Fall 2024

13

MapReduce Algorithms

for Processing Relational Data

Fall 2024

14

Working Scenario

 Two tables:

User demographics (gender, age, income, etc.)

User page visits (URL, time spent, etc.)

 Analyses we might want to perform:

Statistics on demographic characteristics

Statistics on page visits

Statistics on page visits by URL

Statistics on page visits by demographic characteristic

…

Fall 2024

15

Relational Algebra

www.mathcs.emory.edu/~cheung/Courses/377/Syllabus/4-RelAlg/intro.html

Fall 2024

16

Projection

R1

R2

R3

R4

R5

R1

R2

R3

R4

R5

πS (R)

Fall 2024

17

Projection in MapReduce

 Easy!

Map over tuples, emit new tuples with the projected attributes

For each tuple t in R, construct a tuple t’ by eliminating those

components whose attributes are not in S, emit a key/value pair (t’, t’)

No reducers (reducers are the identity function), unless for regrouping or

resorting tuples

 the Reduce operation performs duplicate elimination

Alternatively: perform in reducer, after some other processing

 Basically limited by HDFS streaming speeds

Speed of encoding/decoding tuples becomes important

Relational databases take advantage of compression

Semi-structured data? No problem!

Fall 2024

18

Selection

R1

R2

R3

R4

R5

R1

R3

σC (R)

Fall 2024

19

Selection in MapReduce

 Easy!

Map over tuples, emit only tuples that meet selection criteria

For each tuple t in R, check if t satisfies C and if so, emit a key/value

pair (t, t)

• equivalent in Spark: filter()

No reducers (reducers are the identity function), unless for regrouping or

resorting tuples

Alternatively: perform in reducer, after some other processing

 Basically limited by HDFS streaming speeds:

Speed of encoding/decoding tuples becomes important

Relational databases take advantage of compression

Semi-structured data? No problem!

Fall 2024

20

Set Operations in Map Reduce

 R(X,Y) ⋃ S(X,Y)

Map: for each tuple t either in R or in S, emit (t,t)

Reduce: either receive (t,[t,t]) or (t,[t])

Always emit (t,t)

We perform duplicate elimination

 R(X,Y) ⋂ S(X,Y)

Map: for each tuple t either in R or in S, emit (t,t)

Reduce: either receive (t,[t,t]) or (t,[t])

Emit (t,t) in the former case and nothing in the latter

 R(X,Y) \ S(X,Y)

Map: for each tuple t either in R or in S, emit (t, R or S)

Reduce: receive (t,[R]) or (t,[S]) or (t,[R,S])

Emit (t,t) only when received (t,[R]), otherwise emit nothing

Fall 2024

21

Group by… Aggregation

 Example: What is the average time spent per URL?

 In SQL:

SELECT url, AVG(time) FROM visits GROUP BY url

 In MapReduce: Let R(A, B, C) be a relation to which we apply γA,θ(B)(R)

The map operation prepares the grouping e.g., emit (url, time) pairs

The grouping is done by the framework

The reducer computes the aggregation (e.g. average)

Eventually, optimize with combiners

Simplifying assumptions: one grouping attribute and one aggregation

function

Fall 2024

22

Relational Joins

R1

R2

R3

R4

S1

S2

S3

S4

R1 S2

R2 S4

R3 S1

R4 S3

R S

Fall 2024

23

Types of Relationships

One-to-OneOne-to-ManyMany-to-Many

Fall 2024

24

Join Algorithms in MapReduce

 “Join” usually just means equi-join, but we also want to support other join

predicates

 Hadoop has some built-in join support, but our goal is to understand

important algorithm design principles

 Algorithms

Reduce-side join

Map-side join

In-memory join

Striped variant

Memcached variant

Fall 2024

25

Reduce-side Join

25

Relation S Relation R Different join keys

HDFS stores data blocks

(Replicas are not shown)

MapperMMapper2Mapper 1 Mapper3

- Each mapper processes

one block (split)

- Each mapper produces

the join key and the
record pairs

Reducer 1 Reducer 2 Reducer N
Reducers perform

the actual join

Shuffling and Sorting Phase
Shuffling and sorting

over the network

Fall 2024

26

Reduce-side Join: 1-to-1

Note: no guarantee if R is going to come first or S!

R1

R4

S2

S3

R1

R4

S2

S3

keys values

R1

R4

S2

S3

keys values

Map

Reduce

Fall 2024

27

Reduce-side Join: 1-to-Many

R1

S2

S3

R1

S2

S3

S9

keys values
Map

R1 S2

keys values

Reduce

S9

S3 …

Fall 2024

28

Map-side (in-memory) Join

Relation S Relation R Different join keys

28

Distribute the smaller

relation to all nodes

Mapper NMapper 1 Mapper 2

Load one dataset into

memory, stream over

other datasetMapper 3

Fall 2024

29

Map-side (in-memory) Join

 MapReduce implementation

Distribute R to all nodes (assumption: R is small!)

Map over S, each mapper loads R in memory, hashed by join key

For every tuple in S, look up join key in R

No reducers, unless for regrouping or resorting tuples

 Downside: need to copy R to all mappers

Not so bad, since R is small

Fall 2024

31

Join Implementations on MapReduce

Feng Li, Beng Chin Ooi, M. Tamer Özsu, and Sai Wu. 2014. Distributed

data management using MapReduce. ACM Comput. Surv. 46, 3, January 2014

Fall 2024

32

Processing Relational Data: Summary

 MapReduce algorithms for processing relational data:

Group by, sorting, partitioning are handled automatically by shuffle/sort

in MapReduce

Selection, projection, and other computations (e.g., aggregation), are

performed either in mapper or reducer

 Complex operations require multiple MapReduce jobs

Example: top ten URLs in terms of average time spent

Opportunities for automatic optimization

 Multiple strategies for relational joins

Fall 2024

33

Evolving Roles for Relational

Database and MapReduce

Fall 2024

34

Need for High-Level Languages

 Hadoop is great for large-data processing!

But writing Java programs for everything is verbose and slow

Analysts don’t want to (or can’t) write Java

 Solution: develop higher-level data processing languages

Hive: HQL is like SQL

Pig: Pig Latin is a bit like Perl

Spark SQL: execute SQL on top of Spark

Fall 2024

35

Hive and Pig

 Hive: data warehousing application in Hadoop

Query language is HiveQL (aka HQL), variant of SQL

Tables stored on HDFS as flat files

Developed by Facebook, now open source

 Pig: large-scale data processing system

Scripts are written in Pig Latin, a dataflow language

Developed by Yahoo!, now open source

Roughly 1/3 of all Yahoo! internal jobs

 Common idea:

Provide higher-level language to facilitate large-data processing

Higher-level language “compiles down” to Hadoop jobs

Fall 2024

36

Hive: Example

 Hive looks similar to an relational database

 Relational join on two tables:

Table of word counts from Shakespeare collection

Table of word counts from the bible

SELECT s.word, s.freq, k.freq FROM shakespeare s

JOIN bible k ON (s.word = k.word) WHERE s.freq >= 1 AND k.freq >= 1
ORDER BY s.freq DESC LIMIT 10;

the 25848 62394

I 23031 8854
and 19671 38985

to 18038 13526

of 16700 34654
a 14170 8057

you 12702 2720
my 11297 4135

in 10797 12445

is 8882 6884

Source: Material drawn from Cloudera training VM

Fall 2024

37

Hive: Behind the Scenes

SELECT s.word, s.freq, k.freq FROM shakespeare s

JOIN bible k ON (s.word = k.word) WHERE s.freq >= 1 AND k.freq >= 1
ORDER BY s.freq DESC LIMIT 10;

(TOK_QUERY (TOK_FROM (TOK_JOIN (TOK_TABREF shakespeare s) (TOK_TABREF bible k) (= (.
(TOK_TABLE_OR_COL s) word) (. (TOK_TABLE_OR_COL k) word)))) (TOK_INSERT
(TOK_DESTINATION (TOK_DIR TOK_TMP_FILE)) (TOK_SELECT (TOK_SELEXPR (.
(TOK_TABLE_OR_COL s) word)) (TOK_SELEXPR (. (TOK_TABLE_OR_COL s) freq)) (TOK_SELEXPR
(. (TOK_TABLE_OR_COL k) freq))) (TOK_WHERE (AND (>= (. (TOK_TABLE_OR_COL s) freq) 1)
(>= (. (TOK_TABLE_OR_COL k) freq) 1))) (TOK_ORDERBY (TOK_TABSORTCOLNAMEDESC (.
(TOK_TABLE_OR_COL s) freq))) (TOK_LIMIT 10)))

(one or more of MapReduce jobs)

(Abstract Syntax Tree)

Fall 2024

38

Hive: Behind the Scenes

STAGE DEPENDENCIES:

Stage-1 is a root stage

Stage-2 depends on stages: Stage-1

Stage-0 is a root stage

STAGE PLANS:

Stage: Stage-1

Map Reduce

Alias -> Map Operator Tree:

s

TableScan

alias: s

Filter Operator

predicate:

expr: (freq >= 1)

type: boolean

Reduce Output Operator

key expressions:

expr: word

type: string

sort order: +

Map-reduce partition columns:

expr: word

type: string

tag: 0

value expressions:

expr: freq

type: int

expr: word

type: string

k

TableScan

alias: k

Filter Operator

predicate:

expr: (freq >= 1)

type: boolean

Reduce Output Operator

key expressions:

expr: word

type: string

sort order: +

Map-reduce partition columns:

expr: word

type: string

tag: 1

value expressions:

expr: freq

type: int

Reduce Operator Tree:

Join Operator

condition map:

Inner Join 0 to 1

condition expressions:

0 {VALUE._col0} {VALUE._col1}

1 {VALUE._col0}

outputColumnNames: _col0, _col1, _col2

Filter Operator

predicate:

expr: ((_col0 >= 1) and (_col2 >= 1))

type: boolean

Select Operator

expressions:

expr: _col1

type: string

expr: _col0

type: int

expr: _col2

type: int

outputColumnNames: _col0, _col1, _col2

File Output Operator

compressed: false

GlobalTableId: 0

table:

input format: org.apache.hadoop.mapred.SequenceFileInputFormat

output format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat

Stage: Stage-2

Map Reduce

Alias -> Map Operator Tree:

hdfs://localhost:8022/tmp/hive-training/364214370/10002

Reduce Output Operator

key expressions:

expr: _col1

type: int

sort order: -

tag: -1

value expressions:

expr: _col0

type: string

expr: _col1

type: int

expr: _col2

type: int

Reduce Operator Tree:

Extract

Limit

File Output Operator

compressed: false

GlobalTableId: 0

table:

input format: org.apache.hadoop.mapred.TextInputFormat

output format: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat

Stage: Stage-0

Fetch Operator

limit: 10

Fall 2024

39

Pig: Example

 Task: Find the top 10 most visited pages in each category

Fall 2024

40

Pig Query Plan

Fall 2024

41

Pig Script

visits = load ‘/data/visits’ as (user, url, time);

gVisits = group visits by url;

visitCounts = foreach gVisits generate url, count(visits);

urlInfo = load ‘/data/urlInfo’ as (url, category, pRank);

visitCounts = join visitCounts by url, urlInfo by url;

gCategories = group visitCounts by category;

topUrls = foreach gCategories generate top(visitCounts,10);

store topUrls into ‘/data/topUrls’;

Fall 2024

42

Pig Query Plan

Fall 2024

43

References

 CS9223 – Massive Data Analysis J. Freire & J. Simeon New York University

Course 2013

 INFM 718G / CMSC 828G Data-Intensive Computing with MapReduce J.

Lin University of Maryland 2013

 CS 6240: Parallel Data Processing in MapReduce Mirek Riedewald

Northeastern University 2014

 Extreme Computing Stratis D. Viglas University of Edinburg 2014

 MapReduce Algorithms for Big Data Analysis Kyuseok Shim VLDB 2012

TUTORIAL

