)

\-

Introduction to Map/Reduce:
Fromn Hadoop to SPARK

Serafeim Mustakas
Computer Science Department
University of Crete, Greece

What we will cover...
o Dataflow Languages for Cluster Computing
o What is MapReduce?

How does it work?

A simple word count example
> (the “Hello World!" of MapReduce)

From MapReduce to Spark

The datacenter is the computer'

hats tﬁe |nstruct|0T1=set7

o ‘»),-"’ N
—
’5 S e

So ycu llke;}; ng:r;assembfy!l

‘f"‘ ""'&“

Traditional Network Programlnming

Message-passing between nodes (e.g. MPI)
Very difficult to do at scale:
* How to split problem across nodes?

« Must consider network & data locality
How to deal with failures? (inevitable at scale)

Even worse: stragglers (node not failed, but slow)

Ethernet networking not fast
+ Have to write programs for each machine

'S

Data Flow Models

Restrict the programming interface so that the system can do more
automatically

Express jobs as graphs of high-level operators »System picks how

to split each operator into tasks and where to run each task
* Run parts twice fault recovery

Biggest example: MapReduce

Why Use a Data Flow Engine?

Ease of programming
* High-level functions instead of message passing

Wide deployment
* More common than MPI, especially “near” data

Scalability to very largest clusters
» Even HPC world is now concerned about resilience

Examples: Pig, Hive, Scalding, Storm, Spark

Data-Parallel Dataflow Languages

We have a collection of records,
want to apply a bunch of operations
to compute some result

Assumption: static collection of records

(what's the limitation here?)

We Need Per-record Processing What is MapReduce?

{

. A programming model for processing large datasets in
| parallel on a cluster, by dividing the work into a set of

independent tasks
Q? QQ QQ (introduced by Google in 2005)
i L HE All we have to do is provide the implementation of two
methods:
0000 00
o reduce()
...but we can do much more...

Remarks: Easy to parallelize maps, oven that is
record to “mapper” assignment is an implementation detail optionall

How does it work?

keys and values
> everything is expressed as (key, value) pairs

e.g. the information that the word “hello” appears 4 times in a text,

could be expressed as: (“helld’, 4)

Each map method receives a list of (key, value) pairs and

emits a list of (key, value) pairs
o the intermediate output of the program

Each reduce method receives, for each unique
intermediate key k, a list of all intermediate values that
were emitted for k.

Then, it emits a list of (key, value) pairs
> the final output of the program

el

e2

e3

e4

e5

e6

e7

e8

MapReduce — Input Data

MapReduce — Input Data Splitting MapReduce — Mapper Input

I I Mapper 1
I I Mapper 2
13

Mapper 3

MapReduce — Mapper Output

I3 I I
» OEOoe
mEmne

Mapper 1

.I

ol s [o]
= CEmEE
B o [oo i) o

Mapper 2

MapReduce — Shuffling & Sorting
(simplified)

I-»

EEEE
s Les [s |

Mapper 3

e CIE EIEN

k1
» mEDe e
1
mEme el
eI A

k1

» HE
» s DEEsa s
oo [o Lo Lol SR - |
o Jes]
o Jas|
o) IEACIE g
L L Jiel e b
e o |

MapReduce — Reducing MapReduce - Reducing
nDoomos 3 L s Jia s [1o o1 |
[1 [<2 3 o) BEEEe
o Lo [ia s | 2 o e [ia [] “\
| Cmenn EE} CIEEIEIE)
(k2 [ea | k1 [es] I!II!!/ Reducer 1 (2 [ea [k [ea | Reducer 1
= e
» OEEE O M » CEos - Eg}amu »
ka m e m
FEOEEE RS mmnn B . [T T
mm gﬂ\ Reducer 2 mm g Reducer 2
mmmm G CEmeme oo o Emamm»-
s | Reducer 3 mm/ Reducer 3

Example: WordCount

o Input: Alist of (file-name, line) pairs
o Output: A list of (word, frequency) pairs for each unique
word appearing in the input

Idea:
Map:
for each word w, emit a (w, 1) pair
Reduce:
for each (w, list(1,1,..,1)), sum up the
1's and emit a (w, 1+1+.+1)) pair

Example: WordCount

Input

fil
el.
tx

hello
world

Reduce

fil
e2
x

the big
fish eat
the little
fish

Reduce

fil
e3
x

hello,
fish and
chips
please!

fish, 1
chips 1
please, 1

Output

and, 1
hello, 2
little, 1
the, 2
world, 1

TeO

[eNeNeoNeoNe]

big, 1
chips, 1
eat, 1
fish, 3
please, 1

Te0

- 000O0

WordCount Mapper

public static class Map extends
Mapper<LongWritable, Text, Text, IntWritable> {
private final static IntWritable one = new
IntWritable(1);
private Text word = new Text();

public void map(LongWritable key, Text value,
Context context) throws
IOException, InterruptedException {
String line = value.toString();
StringTokenizer tokenizer = new
StringTokenizer(line);
while (tokenizer.hasMoreTokens()) {
word.set(tokenizer.nextToken());
context.write(word, one);

} o
:

WordCount Reducer

public static class Reduce extends Reducer<Text,
IntWritable, Text, IntWritable>

public void reduce(Text key,
Iterable<IntWritable> values, Context context)
throws IOException,

InterruptedException {

int sum = 0;

for (IntWritable val : values) {

sum += val.get();
¥
context.write(key, new IntWritable(sum));

Combiner: a local, mini-reducer

» An optional class that works like a reducer, run locally
o for the output of each mapper

e Goal:
> reduce the network traffic from mappers to reducers
could be a bottleneck
> reduce the workload of the reducers

WordCount Example:
We could sum up the local 1's corresponding to the same key and
emit a temporary word count to the reducer

> fewer pairs are sent to the network

o the reducers save some operations

WordCount with Combiner

Input

fil
el.
tx

hello
world

hello, 1
world, 1

the, 2

fil
e2
x

the big
fish eat
the little
fish

little, 1

fil
e3
x

hello,
fish and
chips
please!

please, 1

Output

Reduce

and, 1
hello, 2
little, 1
the, 2
world, 1

TeO

[eNeNeoNeoNe]

Reduce

big, 1
chips, 1
eat, 1
fish, 3
please, 1

Te0

- 000O0

Map Alone Isn't Enough!

Where do intermediate results go?
We need an addressing mechanism!
What's the semantics of the group by?

Once we resolve the addressing, apply another computation

That's what we call reduce!
(What's with the sorting then?)

MapReduce

MapReduce

List[(K1,V1)]

e
=3

List[K3,V3])

v gy
| ﬁ

MapReduce Workflows

]

What’s wrong!?

(N

Want MM?

~GEE

Want MRR?

-
-

Spark

Answer to “What's beyond MapReduce?”

Brief history:
Developed at UC Berkeley AMPLab in 2009
Open-sourced in 2010
Became top-level Apache project in February 2014
Commercial support provided by DataBricks

Spark vs. Hadoop Popularity

MapReduce e Map-like Operations
@
List[(K1,V1)] "~ ROD[T] ROD[T] RDDI[T] RDD([T]
reduce
g: (K2, Iterable[V2]) =

List[(K3, V3)]

} RDD[U] RDD[T] RDD[U] RDDI[U]
List[K3,V3])

(Not meant to be exhaustive)

Reduce-like Operations

Sort Operations

RDD[(K, V)] RDD[(K, V)]
rt repartitionAnd
SO SortWithinPartitions

RDD[(K, V)] RDD[(K, V)] RDD[(K, V)]
aggregateByKey
groupByKey re.duceByKey seqOp: (U, V) = U,
=Y combOp: (U, U)= U
RDD[(K, Iterable[V])] RDD[(K, V)] RDD[(K, U)]

(Not meant to be exhaustive)

l l

RDD[(K, V)] RDD[(K, V)]

(Not meant to be exhaustive)

Join-like Operations | Join-like Operations

RDD[(K, V)] RDD[(K, W)] RDD[(K, V)] RDD[(K, W)] 'RDD[(K, V)] RDD[(K, W)] RDD[(K, V)] RDD[(K, W)]
join cogroup leftOuterJoin fullOuterJoin
RDD[(K, (V, W))] RDD[(K, (Iterable[V], Iterable[W]))] RDD[(K, (V, Option[W]))] RDD[(K, (Option[V], Option[W1))]

(Not meant to be exhaustive) (Not meant to be exhaustive)

Set-ish Operations

RDD[T] RDD[T] RDD[T] RDD[T]
union intersection
RDD[T] RDD[T]

(Not meant to be exhaustive)

Set-ish Operations

RDD[T] RDD[T] RDD[U]
distinct cartesian
RDD[T] RDD[(T, U)]

(Not meant to be exhaustive)

T

MapReduce in Spark?

RDD[T] RDD[T]
reduceByKey reduceByKey
f: (V,V)=>V f:(V,V)=>V
RDD[(K, V)] RDD[(K, V)]

Not quite...

MapReduce in Spark?

RDD[T] RDD[T]

groupByKey groupByKey

Nope, this isn't “odd”
RDD[(R, S)] RDD[(R, S)]

Still not quite...

Spark Word Count

val textFile = sc.textFile(args.input())

textFile
.flatMap(line => tokenize(line))
.map(word => (word, 1))
.reduceByKey(_ + _)
.saveAsTextFile(args.output())

(X, y) =>x +y

Aside: Scala tuple access notation, e.g., a._1

Don't focus on Java verbosity!

val textFile = sc.textFile(args.input())

textFile
.map(object mapper {
def map(key: Long, value: Text) =
tokenize(value).foreach(word => write(word, 1))
)
.reduce(object reducer {
def reduce(key: Text, values: Iterable[Int]) = {
var sum = 0
for (value <- values) sum += value
write(key, sum)
)
.saveAsTextFile(args.output())

Install Spark

Let's get started using Apache Spark, in just four easy steps...

Step 1: Install Java |DK 6/7 on MacOSX or Windows
oracle.com/technetwork/java/javase/downloads/jdk7-downloads-188026
0.html

follow the license agreement instructions

then click the download for your OS

need |DK instead of JRE (for Maven, etc.)

this is much simpler on Linux: sudo apt-get -y install openjdk-7-jdk
Step 2: Download the latest Spark version 2.4.4

open spark.apache.org/downloads.html with a browser

double click the archive file to open it

connect into the newly created directory

Install Spark

Step 3: Run Spark Shel

welll run Spark’s interactive shell...
/bin/spark-shell

then from the “scala>" REPL prompt,

let's create some data...

val data = 1t0 10000

Step 4: Create an RDD

create an RDD based on that data...

val distData = sc.parallelize(data)

then use a filter to select values less than 10...
distData.filter(_ < 10).collect()

Check your output :
gist.github.com/ceteri/f2c3486062c9610eacld#file-O1-repl-txt

Optional Downloads

Python:

For Python 2.7, check out Anaconda by
Continuum Analytics for a full-featured platform:
store.continuum.io/cshop/anaconda/

Maven

Java builds later also require Maven, which you can download at:

maven.apache.org/download.cgi

Resources

o Jimmy Lin. CS 489/698 Big Data Infrastructure, Winter 2017.
David R. Cheriton School of Computer Science, University of
Waterloo http://lintool.github.io/bigdata-2017w/ This work is
licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 United States

o First part of this tutorial was adapted from
https://developer.yahoo.com/hadoop/tutorial/index.html, under a
Creative Commons Attribution 3.0 Unported License.

http://lintool.github.io/bigdata-2017w/
https://developer.yahoo.com/hadoop/tutorial/index.html
https://creativecommons.org/licenses/by/3.0/

