Introduction to Map/Reduce: From Hadoop to SPARK

Serafeim Mustakas
Computer Science Department
University of Crete, Greece

What we will cover...

- Dataflow Languages for Cluster Computing
- What is MapReduce?
- How does it work?
- A simple word count example
 ◦ (the “Hello World!” of MapReduce)
- From MapReduce to Spark
The datacenter *is* the computer!

— What’s the instruction set?

So you like programming in assembly.
Traditional Network Programming

Message-passing between nodes (e.g. MPI)

Very difficult to do at scale:
• How to split problem across nodes?
 • Must consider network & data locality

How to deal with failures? (inevitable at scale)

Even worse: stragglers (node not failed, but slow)

Ethernet networking not fast
• Have to write programs for each machine

Data Flow Models

Restrict the programming interface so that the system can do more automatically

Express jobs as graphs of high-level operators »System picks how to split each operator into tasks and where to run each task
• Run parts twice fault recovery

Biggest example: MapReduce
Why Use a Data Flow Engine?

- Ease of programming
 - High-level functions instead of message passing
- Wide deployment
 - More common than MPI, especially “near” data
- Scalability to very largest clusters
 - Even HPC world is now concerned about resilience
- Examples: Pig, Hive, Scalding, Storm, Spark

Data-Parallel Dataflow Languages

We have a collection of records, want to apply a bunch of operations to compute some result

Assumption: static collection of records
(what’s the limitation here?)
We Need Per-record Processing

Remarks: Easy to parallelize maps, record to “mapper” assignment is an implementation detail

What is MapReduce?

A programming model for processing large datasets in parallel on a cluster, by dividing the work into a set of independent tasks (introduced by Google in 2005)

All we have to do is provide the implementation of two methods:
- map()
- reduce()

...but we can do much more...

even that, is optional!
How does it work?

keys and values
- everything is expressed as (key, value) pairs
 - e.g. the information that the word "hello" appears 4 times in a text, could be expressed as: ("hello", 4)

Each *map* method receives a list of (key, value) pairs and emits a list of (key, value) pairs
- the intermediate output of the program

Each *reduce* method receives, for each unique intermediate key \(k \), a list of all intermediate values that were emitted for \(k \).
Then, it emits a list of (key, value) pairs
- the final output of the program
MapReduce – Input Data Splitting

MapReduce – Mapper Input
Example: WordCount

- **Input**: A list of (file-name, line) pairs
- **Output**: A list of (word, frequency) pairs for each unique word appearing in the input

Idea:

Map:
for each word \(w \), emit a \((w, 1)\) pair

Reduce:
for each \((w, \text{list}(1,1,...,1))\), sum up the 1's and emit a \((w, 1+1+...+1)\) pair
WordCount Mapper

```java
public static class Map extends Mapper<LongWritable, Text, Text, IntWritable> {
    private final static IntWritable one = new IntWritable(1);
    private Text word = new Text();
    public void map(LongWritable key, Text value, Context context)
        throws IOException, InterruptedException {
        String line = value.toString();
        StringTokenizer tokenizer = new StringTokenizer(line);
        while (tokenizer.hasMoreTokens()) {
            word.set(tokenizer.nextToken());
            context.write(word, one);
        }
    }
}
```

WordCount Reducer

```java
public static class Reduce extends Reducer<Text, IntWritable, Text, IntWritable> {
    public void reduce(Text key, Iterable<IntWritable> values, Context context)
        throws IOException, InterruptedException {
        int sum = 0;
        for (IntWritable val : values) {
            sum += val.get();
        }
        context.write(key, new IntWritable(sum));
    }
}
```
Combiner: a local, mini-reducer

- An optional class that works like a reducer, run locally
 - for the output of each mapper

- Goal:
 - reduce the network traffic from mappers to reducers
 - could be a bottleneck
 - reduce the workload of the reducers

WordCount Example:
We could sum up the local 1's corresponding to the same key and emit a temporary word count to the reducer
- fewer pairs are sent to the network
- the reducers save some operations

WordCount with Combiner
Map Alone Isn’t Enough!

Where do intermediate results go?
We need an addressing mechanism!
What’s the semantics of the group by?

Once we resolve the addressing, apply another computation
That’s what we call reduce!
(What’s with the sorting then?)

MapReduce
MapReduce

\[\text{List}[(K_1, V_1)] \]

- **map**
 \[f: (K_1, V_1) \Rightarrow \text{List}[(K_2, V_2)] \]
- **reduce**
 \[g: (K_2, \text{Iterable}[V_2]) \Rightarrow \text{List}[(K_3, V_3)] \]

\[\text{List}[K_3, V_3)] \]

MapReduce Workflows

- **map**
 \[\text{HDFS} \]
 \[\text{reduce} \]
- **reduce**
 \[\text{HDFS} \]
 \[\text{reduce} \]
 \[\text{reduce} \]
 \[\text{reduce} \]
 \[\text{reduce} \]

What's wrong?
Want MM?

Want MRR?
Spark

Answer to “What's beyond MapReduce?”

Brief history:
Developed at UC Berkeley AMPLab in 2009
Open-sourced in 2010
Became top-level Apache project in February 2014
Commercial support provided by DataBricks

Spark vs. Hadoop Popularity
MapReduce

List[(K1, V1)]

map
f: (K1, V1) => List[(K2, V2)]

reduce
g: (K2, Iterable[V2]) => List[(K3, V3)]

List[K3,V3])

Map-like Operations

RDD[T]

map
f: (T) => U

RDD[U]

filter
f: (T) => Boolean

RDD[T]

flatMap
f: (T) => TraversableOnce[U]

RDD[U]

mapPartitions
f: (Iterator[T]) => Iterator[U]

RDD[T]

(Not meant to be exhaustive)
Reduce-like Operations

- `groupByKey`:
 - `RDD[(K, V)]` → `RDD[(K, Iterable[V])]`

- `reduceByKey` (f: (V, V) ⇒ V):
 - `RDD[(K, V)]` → `RDD[(K, V)]`

- `aggregateByKey` (seqOp: (U, V) ⇒ U, combOp: (U, U) ⇒ U):
 - `RDD[(K, V)]` → `RDD[(K, U)]`

(Not meant to be exhaustive)

Sort Operations

- `sort`:
 - `RDD[(K, V)]` → `RDD[(K, V)]`

- `repartitionAndSortWithinPartitions`:
 - `RDD[(K, V)]` → `RDD[(K, V)]`

(Not meant to be exhaustive)
Join-like Operations

- `join`:
 - `RDD[(K, V)]` to `RDD[(K, (V, W))]
 - `RDD[(K, W)]`
 - `RDD[(K, (V, W))]`

- `cogroup`:
 - `RDD[(K, W)]`

(Not meant to be exhaustive)

Join-like Operations

- `leftOuterJoin`:
 - `RDD[(K, V)]`
 - `RDD[(K, (V, Option[W]))]

- `fullOuterJoin`:
 - `RDD[(K, V)]`
 - `RDD[(K, (Option[V], Option[W]))]

(Not meant to be exhaustive)
Set-ish Operations

- `union` (Not meant to be exhaustive)
- `intersection` (Not meant to be exhaustive)
- `distinct` (Not meant to be exhaustive)
- `cartesian` (Not meant to be exhaustive)
MapReduce in Spark?

Orange boxes:
- **map**
 - f: (T) ⇒ (K, V)
- **flatMap**
 - f: (T) ⇒ T(T(K, V))
- **reduceByKey**
 - f: (V, V) ⇒ V

Green boxes:
- **reduceByKey**
 - f: (V, V) ⇒ V

Not quite...

MapReduce in Spark?

Orange boxes:
- **flatMap**
 - f: (T) ⇒ T(T(K, V))
- **mapPartitions**
 - f: (Iter[T]) ⇒ Iter(T(K, V))
- **groupByKey**

Green boxes:
- **map**
 - f: ((K, Iter[V])) ⇒ (R, S)

Nop, this isn’t “odd”

Still not quite...
Spark Word Count

```scala
val textFile = sc.textFile(args.input())

val mapper = object {
  def map(key: Long, value: Text) = tokenize(value).foreach(word => write(word, 1))
}

val reducer = object {
  def reduce(key: Text, values: Iterable[Int]) = {
    var sum = 0
    for (value <- values) sum += value
    write(key, sum)
  }
}

val textFile = sc.textFile(args.input())

val textFile = textFile.map(object mapper {
  def map(key: Long, value: Text) = tokenize(value).foreach(word => write(word, 1))
}).reduce(object reducer {
  def reduce(key: Text, values: Iterable[Int]) = {
    var sum = 0
    for (value <- values) sum += value
    write(key, sum)
  }
}).saveAsTextFile(args.output())
```

Aside: Scala tuple access notation, e.g., `a._1`

Don’t focus on Java verbosity!

```scala
val textFile = sc.textFile(args.input())

textFile.flatMap(line => tokenize(line)).map(word => (word, 1)).reduceByKey(_ + _).saveAsTextFile(args.output())

(x, y) => x + y
```

val textFile = sc.textFile(args.input())

textFile
 .flatMap(line => tokenize(line))
 .map(word => (word, 1))
 .reduceByKey(_ + _)
 .saveAsTextFile(args.output())
Install Spark

Let's get started using Apache Spark, in just four easy steps...

Step 1: Install Java JDK 6/7 on MacOSX or Windows
oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html
follow the license agreement instructions
then click the download for your OS
need JDK instead of JRE (for Maven, etc.)
this is much simpler on Linux: sudo apt-get -y install openjdk-7-jdk

Step 2: Download the latest Spark version 2.4.4
open spark.apache.org/downloads.html with a browser
double click the archive file to open it
connect into the newly created directory

Step 3: Run Spark Shell
we'll run Spark's interactive shell...
./bin/spark-shell
then from the "scala>" REPL prompt,
let's create some data...
val data = 1 to 10000
Step 4: Create an RDD
create an RDD based on that data...
val distData = sc.parallelize(data)
then use a filter to select values less than 10...
distData.filter(_ < 10).collect()
Check your output:
gist.github.com/ceteri/f2c3486062c9610eac1d#file-01-repl-txt
Optional Downloads

Python:
For Python 2.7, check out Anaconda by Continuum Analytics for a full-featured platform:
store.continuum.io/cshop/anaconda/

Maven
Java builds later also require Maven, which you can download at:
maven.apache.org/download.cgi

Resources

- Jimmy Lin. CS 489/698 Big Data Infrastructure, Winter 2017, David R. Cheriton School of Computer Science, University of Waterloo http://lintool.github.io/bigdata-2017w/ This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States

- First part of this tutorial was adapted from https://developer.yahoo.com/hadoop/tutorial/index.html, under a Creative Commons Attribution 3.0 Unported License.