
Rya: A Scalable RDF Triple Store for the Clouds

Roshan Punnoose
Proteus Technologies

roshanp@gmail.com

Adina Crainiceanu
US Naval Academy
adina@usna.edu

David Rapp
Laboratory for Telecommunication

Sciences
rapp@ltsnet.net

ABSTRACT
Resource Description Framework (RDF) was designed with the ini-
tial goal of developing metadata for the Internet. While the Internet
is a conglomeration of many interconnected networks and comput-
ers, most of today’s best RDF storage solutions are confined to a
single node. Working on a single node has significant scalability
issues, especially considering the magnitude of modern day data.
In this paper we introduce a scalable RDF data management system
that uses Accumulo, a Google Bigtable variant. We introduce stor-
age methods, indexing schemes, and query processing techniques
that scale to billions of triples across multiple nodes, while pro-
viding fast and easy access to the data through conventional query
mechanisms such as SPARQL. Our performance evaluation shows
that in most cases, our system outperforms existing distributed RDF
solutions, even systems much more complex than ours.
Categories and Subject Descriptors: H.3.2 Information Storage,
H.3.3 Information Search and Retrieval, H.3.4 Systems and Soft-
ware - Distributed Systems H.2.4 Systems - Distributed Databases,
Query Processing
General Terms: Algorithms, Management, Performance.
Keywords: RDF triple store, distributed, scalable.

1. INTRODUCTION
The Resource Description Framework (RDF) [14] is a family of

W3C specifications traditionally used as a metadata data model,
a way to describe and model information, typically of the World
Wide Web. In the most fundamental form, RDF is based on the
idea of making statements about resources in the form of <subject,
predicate, object> expressions called triples. To specify the title of
the main US Naval Academy web page, one could write the triple
<USNA Home, :titleOf , http://www.usna.edu/homepage.php>. As
RDF is meant to be a standard for describing the Web resources, a
large and ever expanding set of data, methods must be devised to
store and retrieve such a large data set.

While very efficient, most existing RDF stores [19, 5, 11, 8, 2]
rely on a centralized approach, with one server running very spe-
cialized hardware. With the tremendous increase in data size, such
solutions will likely not be able to scale up.

With improvements in parallel computing, new methods can be
devised to allow storage and retrieval of RDF across large compute

(c) 2012 Association for Computing Machinery. ACM acknowledges that
this contribution was authored or co-authored by an employee, contractor or
affiliate of the United States government. As such, the United States Gov-
ernment retains a nonexclusive, royalty-free right to publish or reproduce
this article, or to allow others to do so, for Government purposes only.
Cloud-I ’12, August 31 2012, Istanbul, Turkey.
Copyright 2012 ACM 978-1-4503-1596-8/12/08 ...$15.00.

clusters; this allows handling data of unprecedented magnitude.
In this paper, we propose Rya, a new scalable system for storing

and retrieving RDF data in a cluster of nodes. We introduce a new
serialization format for storing the RDF data, an indexing method
to provide fast access to data, and query processing techniques for
speeding up the evaluation of SPARQL queries. Our methods take
advantage of the storing, sorting, and grouping of data that Ac-
cumulo [1, 13] provides. We show through experiments that our
system scales RDF storage to billions of records and provides mil-
lisecond query times.

2. BACKGROUND

2.1 Accumulo
Accumulo [1, 13] is an open-source, distributed, column-oriented

store modeled after Google’s Bigtable [3]. Accumulo provides ran-
dom, realtime, read/write access to large datasets atop clusters of
commodity hardware. Accumulo leverages Apache Hadoop Dis-
tributed File System [4], the open source implementation of the
Google File System [16]. In addition to Google Bigtable features,
Accumulo features automatic load balancing and partitioning, data
compression, and fine grained security labels [13].

Accumulo is essentially a distributed key-value store that pro-
vides sorting of keys in lexicographical ascending order. Each key
is composed of (Row ID, Column, Timestamp) as shown in Table 1.
Rows in the table are stored in contiguous ranges (sorted by key)
called tablets, so reads of short ranges are very fast. Tablets are
managed by tablet servers, with a tablet server running on each
node in a cluster. Section 3 describes how the locality proper-
ties provided by sorting of the Row ID is used to provide efficient
lookups of triples in Rya.

Key
ValueRow ID Column TimestampFamily Qualifier Visibility

Table 1: Accumulo Key-Value

We chose Accumulo as the backend persistence layer for Rya
over other notable Google BigTable variants such as HBase [6] be-
cause it provides a few extra important features. First, Accumulo
provides a server side Iterator model that helps increase perfor-
mance by performing large computing tasks directly on the servers
and not on the client machine, thus avoiding the need to send large
amounts of data across the network. Second, Accumulo provides a
simple cell level security mechanism for clients that are interested
in such fine grained security. Triples loaded with specific security
labels can also be queried with the same labels. Third, Accumulo



also provides a Batch Scanner client API that allows us to reduce
multiple range scans into one merged client request. The Batch
Scanner is an efficient method for processing a large number of
range scans quickly; it does this by merging all the scans into the
smallest number of scans possible to return the correct data set. See
Section 5.2 for more information. Fourth, Accumulo provides an
efficient method of Bulk Importing large data sets to reduce ingest
(data loading) time. The Bulk Import process uses Map Reduce to
move rows to the correct servers and perform a direct import locally
on the servers reducing ingest throughput significantly. Fifth, Ac-
cumulo provides native Bloom filters to increase the performance
of row based lookups.

2.2 RDF, OWL, and SPARQL
RDF is a standard used in describing resources on the World

Wide Web. The smallest data unit is a triple consisting of: subject,
predicate, and object. Using this framework, it is very easy to de-
scribe any resource. In general, RDF is an open world framework
that allows anyone to make any statement about any resource. For
example, to say that S0 is a graduate student, the simplified version
of the RDF triple is <S0, rdf:type, ub:GraduateStudent>.

The Web Ontology Language (OWL) is a framework for describ-
ing models or ’ontologies’ for RDF. It defines concepts, relation-
ships, and/or structure of RDF documents. These models can be
used to ’reason’ information about entities within a given domain.
For example, the OWL model could define the predicate hasMother
to be equivalent to hasMom. Then if a triple <Bob, hasMother,
Rose> is defined, it is also ’reasoned’ that <Bob, hasMom, Rose>.

SPARQL is an RDF query language. Similar with SQL, SPARQL
has SELECT and WHERE clauses; however, it is based on query-
ing and retrieving RDF triples. The WHERE clause typically con-
tains a set of triple patterns. Unlike RDF triples, the triple patterns
can contain variables. For example, the SPARQL query to find
all the graduate students in some data set would be: SELECT ?x
WHERE{ ?x rdf:type ub:GraduateStudent}.

2.3 OpenRDF Sesame Framework
OpenRDF Sesame [12] is a well-known framework for process-

ing RDF data. The framework provides out of the box utilities to
parse, store, and query RDF data. Sesame currently fully supports
the SPARQL 1.1 query language. In addition, it provides utilities
to parse a variety of triple formats: RDF/XML, NTriples, N3, etc.
The framework also provides an extension API, the SAIL API, to
plug in a custom RDF persistence layer. Implementing the SAIL
(Storage and Inference Layer) API can be as simple as providing
a method to store a triple and a method to query based on a triple
pattern. The framework provides the wrapper layers to parse vari-
ous triple formats and convert high level query languages, such as
SPARQL, into simple triple patterns.

However, if desired, the SAIL API provides interfaces to work
more deeply with the query by interacting directly with the Execu-
tion Plan. The Execution Plan defines the order of execution, the
results returned, where joins are to occur, etc. Here is a sample
Execution Plan from the SAIL API given a SPARQL query:

SPARQL Query:

SELECT ?x
WHERE{

?x rdf:type ub:GraduateStudent .
?x ub:takesCourse <.../GraduateCourse2> .

} limit 10

Execution Plan:

QueryRoot

Slice ( limit=10 )
Projection
ProjectionElemList

ProjectionElem "x"
Join
StatementPattern
Var (name=x)
Var (value=rdf:type)
Var (value=ub:GraduateStudent)

StatementPattern
Var (name=x)
Var (value=ub:takesCourse)
Var (value=http://.../GraduateCourse2)

In addition to working directly with the triple patterns (State-
mentPattern in the above plan) provided by the Execution Plan, the
Rya query engine also parses the Execution Plan directly to perform
various operations. For example, it reorders joins to achieve better
performance, or expands triple patterns to implement inferencing.

This paper introduces Rya, an RDF triple store that utilizes the
OpenRDF Sesame SAIL API to create a custom, pluggable, RDF
persistence layer to store and query RDF triples from Accumulo.

3. RYA: STORING AND RETRIEVING RDF

3.1 Three Table Index
An RDF triple contains a subject, predicate, and object. Our so-

lution is based on the fact that Accumulo sorts and partitions all
key-value pairs based on the Row ID part of the key. This means
that as the data grows, rows will be grouped and sorted based on the
lexicographical sort of the Row ID, providing very fast read/write
access to short ranges across a large data set. Rows with similar IDs
will be grouped into the same tablet/server for faster access. In ad-
dition, Accumulo will divide large groups based on a configuration
parameter and move them to separate servers.

Designing the table layout in Accumulo requires a thorough un-
derstanding of how the data will be queried. Using the SAIL in-
terface to query Rya, triples are queried using triple patterns. An
example of triple pattern may be (subject, predicate, *), which re-
quires that the persistence layer returns all triples that match the
given subject and predicate.

We propose a new method of storing triples in Accumulo, by
indexing triples across three separate tables to satisfy all the per-
mutations of the triple pattern. These tables store the triple in the
Accumulo Row ID and order the subject, predicate, object differ-
ently for each table. This solution utilizes the row-sorting scheme
of Accumulo to efficiently store and query triples across multiple
Accumulo tablets, in effect creating three clustered indexes for the
data. The three tables are SPO, POS, and OSP, and are named based
on the components order of the triples stored. The SPO table stores
a triple in the Row ID as (Subject, Predicate, Object), the POS table
as (Predicate, Object, Subject), and the OSP table as (Object, Sub-
ject, Predicate). While there are six possible permutations of the
triple components (subject, predicate, object), three of these per-
mutations are sufficient and necessary to efficiently answer each
possible triple pattern by using only a range scan. Table 2 shows
how all eight types of the triple patterns can map to an Accumulo
range scan of one of the three tables.

All the data for the triple resides in the Accumulo Row ID. This
offers several benefits: 1) by using a direct string representation,
we can do direct range scans on the literals; 2) the format is very
easy to serialize and deserialize, which provides for faster query



Triple Pattern Accumulo Table to Scan
(subject, predicate, object) SPO
(subject, predicate, *) SPO
(subject, *, object) OSP
(*, predicate, object) POS
(subject, *, *) SPO
(*, predicate, *) POS
(*, *, object) OSP
(*, *, *) SPO (full table scan)

Table 2: Triple Patterns Mapped to Table Scans

and ingest; 3) since no information needs to be stored in the Col-
umn Family, Qualifier, or Value fields of the Accumulo tables, the
storage requirements for the triples are significantly reduced. Sec-
tion 3.2 describes concrete examples of how these triples are stored
and queried.

3.2 Sample Storage and Querying of Triples
We show through an example how a triple is stored in Rya and

how queries are processed.
Table 3 shows an example triple taken from the LUBM [9]

dataset. The triple expresses the fact that a particular professor
(subject) earned his/her degree (predicate) from a given university
(the object). Table 4 shows how the triple is stored in the three table
indexes SPO, POS, and OSP. For easy of reading, we use comma as
separator in the examples, but the Unicode null character \u0000 is
used in practice. In each table, the triple is stored in the Row ID part
of the table, and the three components of the triple are concatenated
in the order corresponding to the particular table.

Subject Predicate Object
http://Univ0/Professor3 urn:degreeFrom http://Univ2

Table 3: Sample RDF Triple

Table Stored Triple
SPO http://Univ0/Professor3,urn:degreeFrom,http://Univ2
POS urn:degreeFrom,http://Univ2,http://Univ0/Professor3
OSP http://Univ2,http://Univ0/Professor3,urn:degreeFrom

Table 4: Sample RDF Triple in Rya

Example Query: Consider the query: Find all Graduate Stu-
dents that take the course identified by ub:U0:C0. The correspond-
ing SPARQL query is

SELECT ?x
WHERE {
?x ub:takesCourse ub:U0:C0 .
?x rdf:type ub:GraduateStudent

}

The query evaluation plan created by the SAIL API is shown
below:

QueryRoot
Projection

ProjectionElemList
ProjectionElem "x"

Join

StatementPattern
Var (name=x)
Var (value=ub:takesCourse)
Var (value=ub:U0:C0)

StatementPattern
Var (name=x)
Var (value=rdf:type)
Var (value=ub:GraduateStudent)

The triple patterns generated are (*,ub:takesCourse,ub:U0:C0)
and (*,rdf:type,ub:GraduateStudent). The query plan executed by
Rya’s Query Evaluation Engine is:

Step 1: Accumulo Range Query

• Table: POS

• Scan Start Value: ub:takesCourse,ub:U0:C0

• Scan End Value: ub:takesCourse,ub:U0:C0

• Result: Return all subjects (?x)

Step 2: Accumulo Equality Query (For each ”?x” from Step 1)

• Table: SPO

• Scan Value: ?x,rdf:type,ub:GraduateStudent, where ?x is bo-
und to the value found in Step 1

• Result: Does row exist?

This SPARQL query is evaluated using an index nested loops
join where Step 1 scans for all rows starting with ”ub:takesCourse,
ub:U0:C0” in the POS table. For each result found in Step 1, an
index lookup is performed in Step 2 to find those results (?x) that
are of rdf:type ub:GraduateStudent.

4. QUERY PROCESSING
One of RDF’s strengths is the ability to ’infer’ relationships or

properties. Rya supports rdfs:subClassOf, rdfs:subPropertyOf, and
owl:EquivalentProperty inferences. We describe below our meth-
ods for inferencing and query processing.

4.1 Query Planner Stage 1
The first stage of the query inferencing is performed only once,

and deals with creating explicit relationships based on the implicit
relationships defined by an OWL model, the standard of defining
inferred relationships. For example, given the following explicit
relationships: FullProfessor (subClassOf) Professor and Professor
(subClassOf) Faculty, the implicit relationship FullProfessor (sub-
ClassOf) Faculty exists.

While some of the relationships are defined explicitly in the OWL
model, the work of inferencing is to find the relationships that are
not explicitly defined.

In Rya, we express an OWL model as a set of triples and store
them in the triple store. One of the benefits of storing all the data
in the triple store is that Hadoop MapReduce can be utilized to run
large batch processing jobs against the data set.

The first stage of the process is performed only once, at the time
the OWL model is loaded into Rya. Stage 1 consists of running a
MapReduce job to iterate through the entire graph of relationships
and output the implicit relationships found as explicit RDF triples
stored into the RDF store. The amount of time taken to complete
Stage 1 is directly related to the depth of the tree of relationships
in the original OWL model. In our use cases, we tested with trees
as large as 5 levels deep. Each level requires a separate iteration of



the MapReduce phase, each taking about 30 seconds to complete.
Since this stage is only applied to the OWL model relationships,
and not to the actual RDF data that matches the model, the size
of the data passed between iterations depends only on the size and
depth of the model. In practice, the number of triples to represent
the data model is a very small fraction of the data stored.

4.2 Query Planner Stage 2
The second stage of the process is performed every time a query

is run. Once all the explicit and implicit relationships are stored in
Rya, the Rya query planner is able to expand the query at runtime to
utilize all these relationships. The expansion technique is applied to
”rdf:type”, ”subPropertyOf” and ”EquivalentProperty” inferences.
For example, consider the following SPARQL query:

SELECT ?prof
WHERE {

?prof rdf:type ub:Faculty }

Based on the data generated in Stage 1, the OWL model for the
ontology used by the query specifies that FullProfessor is a ”sub-
ClassOf” Professor, and Professor is ”subClassOf” Faculty, and im-
plies that FullProfessor is ”subClassOf” Faculty. When the query
asks for all triples with ”rdf:type” Faculty, it is really asking for all
triples that have ”rdf:type” FullProfessor or Professor or Faculty,
based on the ”subClassOf” relationships.

The query evaluation plan generated by the SAIL API for the
above query is given below:

QueryRoot
Projection

ProjectionElemList
ProjectionElem "prof"

StatementPattern
Var (name=prof)
Var (value=rdf:type)
Var (value=ub:Faculty)

The query planner in Rya traverses the query evaluation plan
produced by the SAIL API, searching for StatementPattern nodes
that contain ”rdf:type”. The Rya query planner has built-in rules to
expand the ”rdf:type” predicate as a separate join, part of the same
query, using ”rdfs:subClassOf” and ”rdf:type” predicates. The re-
sulting expanded query evaluation plan is given below:

QueryRoot
Projection

ProjectionElemList
ProjectionElem "prof"

Join
StatementPattern

Var (name=type)
Var (value=rdfs:subClassOf)
Var (value=ub:Faculty)
Var (name=subclass_expanded)

StatementPattern
Var (name=prof)
Var (value=rdf:type)
Var (name=type)
Var (name=subclass_expanded)

The first triple pattern (?type, rdfs:subClassOf, ub:Faculty) asks
for all ”subClassOf” Faculty relationships, which returns ?type in

{FullProfessor, Professor, Faculty}. To evaluate the second triple
pattern, (?prof, rdf:type, ?type), three parallel queries are run to find
all subjects that have ”rdf:type” equal to the value of ?type. This
query returns all subjects that have ”rdf:type” in {FullProfessor,
Professor, Faculty}. In addition to the query expansion, we add
a marker on each StatementPattern, subclass-expanded, to identify
the nodes that have already been expanded, so query expansion is
not applied again.

5. PERFORMANCE ENHANCEMENTS
The first iteration of Rya simply made use of the three table in-

dexes to perform scans and return results. This approach was very
fast and worked well in many real situations; however, the method
can be improved using an array of key techniques that we describe
below.

5.1 Parallel Joins
The OpenRDF Sesame framework provides a default ”Evalua-

tion Strategy” that executes the query plan created by the frame-
work for an input SPARQL query. However, much of the query pro-
cessing is done in a single thread. For example, consider the ques-
tion of finding the students that take a particular course Course0
which translates as the following join between two triple patterns:

TQ1: (?x, takesCourse, Course0)
TQ2: (?x, type, Student)

The default join algorithm executes first the TQ1 query which
may return ?x in {Alex, Bob, Rachel}. The next execution step
creates an Accumulo scan for each of these answers to check if
they are ”type, Student”. For example, a scan will first check the
existence of the triple (Alex, type, Student), then another scan for
(Bob, type, Student), then for (Rachel,type, Student). The default
implementation is sequential, all in one thread. By executing the
joins in parallel, we improve performance up to 10-20x the normal
speed. We achieve parallelization by utilizing the Java concurrent
library to submit tasks. The default size of the thread pool associ-
ated with the parallelization of joins is set to 10. In our testing, this
setting depends entirely on the processor speed, number of cores,
and the type of query.

5.2 Batch Scanner
Consider again the example of finding students that take Course0,

which requires the join between two triple patterns:

TQ1: (?x, takesCourse, Course0)
TQ2: (?x, type, Student)

As described above, the join algorithm executes first TQ1, and
then for each result returned, runs TQ2 with (?x) bound to a value
returned by TQ1. For a query that is not very selective, TQ1 may
return a large number of answers, say 5000; for each row returned, a
new Accumulo Scanner is instantiated and invoked to check whether
the returned answer satisfies TQ2. This process consumes network
resources, and can be improved by introducing the Accumulo Batch
Scanner. The Batch Scanner is designed to efficiently scan many
ranges in Accumulo. For example, an Accumulo cluster may have
100 tablets; however, the join of TQ1 and TQ2 may require 5000
ranges to be queried; the Batch Scanner can condense these 5000
ranges to a maximum of 100, since there are only 100 tablets, and
even find overlapping ranges and merge them. Using the Batch
Scanner to process the join, a particular tablet (server in the clus-
ter) is not accesses multiple times for the same query, so the per-
formance is much improved (similar with using clustered indexes
versus non-clustered indexes in traditional relational databases).



5.3 Time Ranges
All of the examples used up to now in the paper are of data that is

mostly static in nature: students, courses, professors, etc. In many
applications, data can be very dynamic and have a time component.
For example, in a load monitoring application for a data center, the
CPU load is measured every 10 seconds and stored in the RDF
store; suppose that one is interested in determining the CPU load
for the last 30 minutes. In a naive approach, a query may be written
as

SELECT ?load
WHERE {

?measurement cpuLoad ?load.
?measurement timestamp ?ts.
FILTER (?ts > "30 min ago")

}

and evaluated like this: 1) Return all cpuLoad measurements, 2)
For each measurement, return the timestamp, 3) Perform a client-
side filter for measurements that have timestamps > 30 minutes
ago. Depending on how much cpu-load data is currently in the
store, this query could take a very long time to return. Given a
year’s data, the first triple pattern (?measurement, cpuLoad, ?load)
returns over four million rows, which have to be joined with the
timestamp retrieval to return another four million rows. This result
will eventually be filtered to return only the last 30 minutes of data,
about 180 rows. This naive approach is clearly not feasible in a
real world setting. Instead, the timestamp filter can be pushed to
the server side in two ways.

First, we suggest using the tablet level scan filters provided by
Accumullo. Each table row contains a timestamp (in milliseconds),
which by default records when the row was inserted. Accumulo
provides an Age Off Filter, which accepts a time to live (TTL) pa-
rameter and runs on the tablet level to return only the rows with
the insert timestamp greater than the current time minus TTL. Rya
provides a mechanism to specify this TTL value with each query
submitted. For example, in the above query, the TTL value could
be 108000000 (30 minutes in milliseconds). The first triple pattern
would then only return the cpuLoad measurements stored in the
last 30 minutes. Instead of four million rows returned to perform
the join, only 180 rows would be returned. The TTL parameter sig-
nificantly cuts down on processing time and network utilization of
each query. Nevertheless, the row insertion time and the predicate
”timestamp” recorded in the RDF triple can be very different, so
use of TTLs requires understanding of when the data is measured
and when it is inserted into Rya. However, for most queries, any
TTL value (even for the last few hours, to be conservative) would
be better than retrieving all the data stored.

A second approach to push the timestamp filter down, is to spec-
ify a time range in the underlying scan itself. In the above SPARQL
query, the line ”?measurement timestamp ?ts” will be by default
converted to a scan for range [(timestamp,*,*),(timestamp,*,*)] in
the POS table, which will in effect return all the triples in the
store with predicate ”timestamp”. Instead, by defining a custom
SPARQL function (timeRange), we can instruct the Rya query plan-
ner to build the timestamp range directly into the underlying scan.
For example, for the time range [13141201490, 13249201490], the
SPARQL query would be modified to:

SELECT ?load
WHERE {

?measurement cpuLoad ?load.
?measurement timestamp ?ts.
timeRange(?ts, 13141201490, 13249201490).

}

The corresponding underlying scan will now be for range [(times-
tamp,13141201490,*), (timestamp,13249201490,*)] in the POS ta-
ble. Instead of returning all timestamp triples, the scan range would
only return timestamp triples that are within the range specified. It
is important to note that only time values that are lexicographically
sorted can use this approach.

5.4 Optimized Joins with Statistics
Another problem with the naive approach to the triple store is

the execution order of the query. As described in the examples
above, a multi triple pattern query starts processing the first triple
pattern and joins the results with each subsequent triple pattern.
Depending on the query, this type of processing can seriously af-
fect performance. For example, consider the query ”find all stu-
dents that take Course0”. The query can be broken down into two
triple patterns: TQ1: (?x, takesCourse, Course0) and TQ2: (?x,
type, Student). Only a few (100) triples satisfy TQ1; however, a lot
more triples (400K) satisfy TQ2. In this case, the order of the triple
patterns works well because the join of TQ1 to TQ2 will only join
100 rows. However, if the query were reordered as: TQ2 followed
by TQ1, the process will take significantly longer because the first
triple pattern returns 400K rows to be joined with the second triple
pattern.

To estimate the selectivity of the queries, we developed a utility
that runs MapReduce jobs in Hadoop to count all the distinct sub-
jects, predicates, and objects stored in Rya. These counts are then
stored in a table for later retrieval. For example, for the LUBM
University dataset, a possible output of this job, in (row, column,
value) format used by Accumulo, is given in Table 5:

Row Column Value
type predicate 1 million
student object 400K
takesCourse predicate 800K
Course0 object 200

Table 5: Sample University Data set Statistics

The table provides a count for how often a particular value is a
subject, predicate, or object. Before a query is run, the selectivity of
each triple pattern is estimated based on the values in the statistics
table, and execution proceeds using the most selective triple pat-
tern first. In the example, the triple pattern TQ1 (?x, takesCourse,
Course0) should take precedence in the join over TQ2 because it
limits the data to 200 results (the minimum of the size of Course0
and takesCourse, Min(200, 800K)).

The statistics only need to be updated if the distribution of the
data changes significantly because the query planner will reorder
the query based on which triple pattern has the highest selectivity.
If the data distribution does not change much over time, the query
planner will not produce a different ordering of the triple patterns.

6. PERFORMANCE EVALUATION
This section describes the experimental setup and the perfor-

mance evaluation of our RDF TripleStore, Rya, as well as com-
parison with other existing approaches.

6.1 Experiments Set-up
Rya is implemented and tested on Accumulo version 1.3.0. For

experiments, we used a cluster consisting of 1 Hadoop NameN-
ode/Secondary NameNode/Job Tracker, 10 Hadoop Data/Task Nod-
es, 1 Accumulo Master, 10 Accumulo Tablet Servers, 81.86 TB



Fig 10. LUBM Query 14 Fig 11. Rya: Data Loading Time

unreplicated storage. Each node has 8 core - Intel Xeon CPU
2.33GHz processor, 16 GB RAM, and 3TB hard drive. We utilized
the Lehigh University Benchmark (LUBM) [9]. The LUBM data
set is modeled after a set of universities with students, professors,
courses, etc.

6.2 Performance Results
The main goal of these experiments is to show the scalability of

Rya as the size of the data increases. We also want to measure the
effect of using the Batch Scanner in improving query performance.
We use the Queries Per Second metric to report the performance of
our system. We measure not only the performance of one query,
but of multiple clients interacting with the RDF store simultane-
ously. In the following tests, we use 8 parallel clients, running a
total of 504 runs (24 warmup, 480 measured). A few of the queries
return a significantly large result set, which is a measure more of
the network performance of transferring a large set of data than of
the RDF query performance. To alleviate this, queries 2, 6, 9, and
14 are limited to returning the first 100 results.

Query Performance: We generated the following datasets: 10,
100, 1000, 200, 5000, 10000, and 15000 universities. The number
of triples varies from 1.3M for 10 universities, to 2.1 billion tu-
ples for 15000 universities. The tests are run using LUBM queries:
1, 2, 3, 4, 5, 6, 7, 8, 9, 14. Queries 10-13 are not currently sup-
ported by Rya. The test runs are performed with the performance
enhancement, use of the batch scanner, turned on and off. The other
performance enhancements, gathering statistics, etc, are necessary;
otherwise, many of the benchmarked queries do not return in rea-
sonable time. Query 2 and 9 do not include measurements with the
performance turned off because these queries will not return in a
reasonable amount of time without all the performance enhance-
ments.

Figure 1 to Figure 10 plot the performance for each query, with
and without the use of the Batch Scanner, as the size of the data
increases. The information is summarized in Tables 6 and 7 which
show the number of queries per second processed by Rya without
and respectively with the use of the Batch Scanner.

Figures 1,3,4,5,6,7,8, and 10, show that for all queries with the
exception of Queries 2 and 9, the performance does not degrade
much even as the number of triples increases thousands of times.
Since the triples are indexed, and the data is distributed, even if the
data gets larger, the query times do not vary much because each
query only interacts with the nodes where the required data resides.
The peaks in the graphs when the Batch Scanner is used are most
likely attributed to the dataset getting large enough that the data is
being distributed well across multiple nodes.

In general, queries benefit from the use of the Batch Scanner.
Figure 6 and Figure 10 show that queries 6 and 14 do not benefit

much from the use of the Batch Scanner. In fact, for query 6, the
performance is worse when the Batch Scanner is used. The reason
is that the Batch Scanned is more useful when there are more joins
in the queries, and these queries have no joins. In this case, the
overhead of using the Batch Scanner can decrease the performance.

Table 7 shows that Rya performs very well for most queries,
with 10s to 100s queries per second even for billion triples stored.
Queries 2 and 9 run much slower than the rest of the queries. The
reason is the triangular relationship that is being queried for. Query
2 asks for all graduate students that are members of a department
that is a sub organization of the university they obtained their un-
dergraduate degree from (the students that continue). In Rya, these
triangular relationships are answered in a brute force manner in
which the query engine iterates through every graduate student and
department to find the ones that have a common university.

Q/#Univ 10 100 1K 2K 5K 10K 15K
Q1 61.41 51.8 67.64 86.26 86.33 92.7 66.3
Q3 14.42 26.78 26.28 21.72 24.32 18.61 20.67
Q4 3.08 10.6 3.35 4.7 6.06 5.72 2.36
Q5 31.83 2.46 2.3 1.87 1.89 1.55 1.05
Q6 34.17 1.2 1.98 2.46 2.31 2.35 2.12
Q7 4.16 10.31 6.08 9.77 9.01 8.17 4.31
Q8 0.11 0.22 0.09 0.07 0.07 0.08 0.05
Q14 4.21 2.02 1.68 2.37 1.91 0.53 1.55

Table 6: LUBM Queries 1-14 - No Batch Scanner (Queries Per
Second)

#Univ 10 100 1K 2K 5K 10K 15K
Q1 121.8 191.61 114.98 194.86 162.17 135.02 135.85
Q2 0.37 0.02 0.003 0.01 0.01 0.01 0.005
Q3 115.38 146.34 110.66 78.15 126.51 112.22 128.18
Q4 38.95 41.93 43.5 54.98 52.04 44.17 20.06
Q5 48.58 24.72 25.8 42.42 40.61 38.0 30.35
Q6 2.81 0.76 0.38 2.52 1.01 0.61 0.9
Q7 51.22 57.46 45.1 72.05 60.12 64.9 43.14
Q8 7.44 4.05 3.17 1.18 1.17 1.19 0.96
Q9 0.25 0.16 0.07 0.18 0.01 0.06 0.013
Q14 2.2 2.25 0.55 2.58 2.31 1.1 1.39

Table 7: LUBM Queries 1-14 - With Batch Scanner (Queries
Per Second)

Load Time: Figure 11 shows that the load time increases lin-
early with the size of the data, as expected. Rya’s load process
utilizes the Bulk Import Map Reduce job provided by Accumulo to
speed up the ingest. The ingest process is parallelized across the
servers, utilizing all the servers as much as possible.

6.3 Performance Comparison with Other Sys-
tems

We compare the performance of our system with two other sys-
tems: SHARD [15], a horizontally scalable RDF triple store that
uses Hadoop Distributed File System for storage, and Graph Par-
titioning, the system proposed by Huang et al [7], which uses a
graph-based vertex partitioning scheme to assign data to nodes in
a cluster. SHARD code is open-source and we used the default
configurations for the code. For Graph Partitioning, the code re-
ceived from the authors was ”very messy” (quote from the email



Fig 1. LUBM Query 1 Fig 2. LUBM Query 2 Fig 3. LUBM Query 3

Fig 4. LUBM Query 4 Fig 5. LUBM Query 5 Fig 6. LUBM Query 6

received from one of the authors) and we could not run it on our ma-
chines. Therefore we used for comparison the numbers for the ”2-
hop guarantee” obtained from the authors for the results reported in
the VLDB 2011 article [7]. The numbers reported were for experi-
ments run on 20 machines, which leads to better performance than
using just 10 machines as in our experiments. However, our goal
is to have a rough comparison of our relatively simple system with
a more sophisticated system. The data set used was LUBM with
2000 universities, approximately 260 million triples.

Table 8 shows the load time for SHARD, Graph Partitioning, and
Rya. Rya is the fastest, since the load process is parallelized and
not much data pre-processing is needed to load the three tables.

System Load Time
SHARD 10h
Graph Partitioning 4h10min
Rya 3h1min

Table 8: LUBM 2000 Data Loading Time

Figure 12 shows the performance results for the LUBM queries
supported by all systems under consideration. The performance
metric reported is execution time (in seconds) for each query.

For all queries, the performance of Rya and Graph Partitioning
is between one and three orders of magnitude better than the per-
formance of SHARD (note the logarithmic scale). The reason for
the relatively poor performance of SHARD is that SHARD stores
all data in plain files in HDFS, and processing each query involves
scanning the entire data set, possibly multiple times if the query
contains multiple clauses. Due to the large size of the data, even
a parallel scan that uses Hadoop’s native Map-Reduce framework

Figure 12: LUBM Execution Time

takes a long time. Rya benefits from the native indexing of tables
in Accumulo, and our own three index tables storage solution, so
full scans of the data are not performed. Graph Partitioning uses
efficient single-node RDF stores which operate in parallel for most
of the processing, so unnecessary full data scans are avoided.

Rya is 5-20 times faster than Graph Partitioning for 7 out of the
10 benchmark queries (queries 1, 3, 4, 5, 6, 7, 14). This shows that
our indexing scheme and query evaluation methods are competi-
tive, even compared with more complex methods that take advan-
tage of state-of-the-art single-node RDF stores.

For queries 2, 8, and 9, the performance of the Graph Partition-
ing is better. As explained in Section 6.2, queries 2 and 9 search
for triangular relationships, and our approach is rather brute-force
in this case; a lot of network traffic is involved in processing the
queries and transferring intermediate results. The Graph Partition-
ing method, with the 2-hop guarantee, is particularly suited for this



Fig 7. LUBM Query 7 Fig 8. LUBM Query 8 Fig 9. LUBM Query 9

type of queries, as all the data needed is available at one node.
Much of the time needed to execute query 8 in Rya involves return-
ing the rather large result set (about 6000 tuples). In Graph Par-
titioning, the query processing is either done in Hadoop, in which
case the results are left in the HDFS, or at the single-node RDF
stores, in which case the results are left on the local disk.

7. RELATED WORK
There have been several approaches to building an RDF triple

index on a Google Bigtable platform. Weiss et al. [18] describe
a Hexastore, six indexes on triples to answer the triple patterns.
We showed that only three indexes are needed to answer all the
triple patterns. Myung et al. [10] describe a SPARQL implemen-
tation on top of Hadoop MapReduce. We showed that MapRe-
duce is not necessary at the query level. Starting MapReduce jobs
in Hadoop adds unnecessary computational time to each query. A
fast SPARQL implementation can be achieved by directly using the
Google Bigtable APIs, similar with our use of the Accumulo API.
Huang et al. [7] describe an efficient graph partitioning algorithm
to separate data across multiple nodes using an arbitrary RDF store
at each node with an overarching Hadoop framework to process
queries at those nodes. The use of Hadoop MapReduce for some
of their queries causes performance lags. We showed in our perfor-
mance evaluation section that our system outperforms the Graph
Partitioning system in many, but not all, cases. Sun et at. [17] de-
scribe a system of adapting HBase, to a Hexastore as described in
[18], similar to our approach in storing data. However, the mech-
anism of storing the individual values (e.g. predicate) as the row
key, may cause significant problems in scaling due to the fact that
HBase has limits on how large a row can be. A predicate such as
”rdf:type” could become a very large row and cause problems with
the HBase. In addition, the usage of Hadoop MapReduce to query
HBase is unnecessary since much of the computation can be done
more efficiently by using the HBase APIs directly.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we present Rya, a scalable RDF store that uses

Accumulo. Based on the storage mechanism implemented in Accu-
mulo, we proposed a three table index for indexing RDF triples. We
implemented this RDF store as a plugin to the OpenRDF Sesame
framework to give us the ability to accept SPARQL queries and
load various RDF formats. We implemented performance enhance-
ments ranging from gathering statistics to using built in Accumulo
functions. We have been able to build an RDF store that does basic
inferencing, scales to billions of triples, and returns most queries in
under a second. For future work, we plan to implement a broader
set of inferencing rules, to include owl:sameAs, owl:inverseOf, etc.

We also plan to implement new join algorithms (such as merge join)
to possibly speed up some of the slow queries.

9. REFERENCES
[1] Accumulo.

http://wiki.apache.org/incubator/accumuloproposal.
[2] AllegroGraph. http://www.franz.com/agraph/allegrograph/.
[3] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, and D. A.

Wallach. Bigtable: A distributed storage system for
structured data. In OSDI, 2006.

[4] Hadoop. http://hadoop.apache.org/.
[5] S. Harris and N. Gibbins. 3store: Efficient bulk rdf storage.

In Workshop on Practical and Scalable Semantic Web
Systems, 2003.

[6] HBase. http://hbase.apache.org/.
[7] J. Huang, D. Abadi, and K. Ren. Scalable sparql querying of

large rdf graphs. In VLDB, 2011.
[8] D. Kolas, I. Emmons, and M. Dean. Efficient linked-list rdf

indexing in parliament. In Scalable Semantic Web, 2009.
[9] LUBM. http://swat.cse.lehigh.edu/projects/lubm/.

[10] J. Myung, J. Yeon, and S.-g. Lee. Sparql basic graph pattern
processing with iterative mapreduce. In 2010 Workshop on
Massive Data Analytics on the Cloud, 2010.

[11] T. Neumann and G. Weikum. Rdf-3x: a risc-style engine for
rdf. In VLDB, 2008.

[12] OpenRDF. http://www.openrdf.org/.
[13] S. Patil, M. Polte, K. Ren, W. Tantisiriroj, L. Xiao, J. Lopez,

G. Gibson, A. Fuchs, and B. Rinaldi. Ycsb++:
Benchmarking and performance debugging advanced
features in scalable table stores. In SOCC, 2011.

[14] RDF. http://www.w3.org/rdf/.
[15] K. Rohloff and R. Schantz. High-performance, massively

scalable distributed systems using the mapreduce software
framework: The shard triple-store. In International
Workshop on Programming Support Innovations for
Emerging Distributed Applications, 2010.

[16] G. Sanjay, G. Howard, and L. Shun-Tak. The google file
system. In SOSP, 2003.

[17] J. Sun and Q. Jin. Scalable rdf store based on hbase and
mapreduce. In Advanced Computer Theory and Engineering,
2010 3rd International Conference.

[18] C. Weiss, P. Karras, and A. Bernstein. Hexastore: sextuple
indexing for semantic web data management. VLDB, 2008.

[19] K. Wilkinson, C. Sayers, H. Kuno, and D. Reynolds.
Efficient rdf storage and retrieval in jena2. In SWDB, 2003.


