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Abstract. Linked Stream Data has emerged as an effort to represent
dynamic, time-dependent data streams following the principles of Linked
Data. Given the increasing number of available stream data sources like
sensors and social network services, Linked Stream Data allows an easy
and seamless integration, not only among heterogenous stream data, but
also between streams and Linked Data collections, enabling a new range
of real-time applications.

This tutorial gives an overview about Linked Stream Data process-
ing. It describes the basic requirements for the processing, highlighting
the challenges that are faced, such as managing the temporal aspects
and memory overflow. It presents the different architectures for Linked
Stream Data processing engines, their advantages and disadvantages.
The tutorial also reviews the state of the art Linked Stream Data pro-
cessing systems, and provide a comparison among them regarding the
design choices and overall performance. A short discussion of the current
challenges in open problems is given at the end.

Keywords: Linked Stream Data, Data Stream Management Systems,
Linked Data, Sensors, query processing.

1 Introduction

We are witnessing a paradigm shift, where real-time, time-dependent data is
becoming ubiquitous. Sensor devices were never so popular. For example, mo-
bile phones (accelerometer, compass, GPS, camera, etc.), weather observation
stations (temperature, humidity, etc.), patient monitoring systems (heart rate,
blood pressure, etc.), location tracking systems (GPS, RFID, etc.), buildings
management systems (energy consumption, environmental conditions, etc.), and
cars (engine monitoring, driver monitoring, etc.) are continuously producing an
enormous amount of information in the form of data streams. Also on the Web,
services like Twitter, Facebook and blogs, deliver streams of (typically unstruc-
tured) real-time data on various topics.

Integrating these new information sources—not only among themselves, but
also with other existing sources—would enable a vast range of new, real-time
applications in the areas of smart cities, green IT, e-health, to name a few.
However, due to the heterogeneous nature of such diverse streams, harvesting
the data is still a difficult and labor-intensive task, which currently requires a
lot of “hand-crafting.”
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Recently, there have been efforts to lift stream data to a semantic level, e.g., by
the W3C Semantic Sensor Network Incubator Group1 and [25,103,126]. The goal
is to make stream data available according to the Linked Data principles [22]—a
concept that is known as Linked Stream Data [99]. As Linked Data facilitates the
data integration process among heterogenous collections, Linked Stream Data
has the same goal with respect to data streams. Moreover, it also bridges the
gap between stream and more static data sources.

Besides the existing work on Linked Data, Linked Stream Data also benefits
from the research in the area of Data Streams Management Systems (DSMS).
However, particular aspects of Linked Stream Data prevents existing work in
these two areas to be directly applied. One distinguishing aspect of streams that
the Linked Data principles do not consider is their temporal nature. Usually,
Linked Data is considered to change infrequently. Data is first crawled and stored
in a centralised repository before further processing. Updates on a dataset are
usually limited to a small fraction of the dataset and occur infrequently, or
the whole dataset is replaced by a new version entirely. Query processing in
Linked Data databases, as in traditional relational databases, is pull based and
one-time, i.e., the data is read from the disk, the query is executed against it
once, and the output is a set of results for that point in time. In contrast, in
Linked Stream Data, new data items are produced continuously, the data is
often valid only during a time window, and it is continually pushed to the query
processor. Queries are continuous, i.e., they are registered once and then are
evaluated continuously over time against the changing dataset. The results of a
continuous query are updated as new data appears. Therefore, current Linked
Data query processing engines are not suitable for handling Linked Stream Data.
It is interesting to notice that in recent years, there has been work that points out
the dynamics of Linked Data collections [115,107]. Although at a much slower
pace compared to streams, it has been observed that centralised approaches will
not be suitable if freshness of the results is important, i.e., the query results
are consistent with the actual “live” data under certain guarantees, and thus
an element of “live” query execution will be needed [107]. Though this differs
from stream data, some of properties and techniques for Linked Stream Data
processing may also be applicable to this area.

Data Streams Management Systems, on the other hand, are designed to han-
dle and scale with fast changing, temporal data, such as Linked Stream Data.
However Linked Stream Data is usually represented as an extension of RDF—
the most popular standard for Linked Data representation. This contrasts with
the relational storage model used in DSMS. It has been shown that in order
to efficiently process RDF data using the relational model, the data needs to
be heavily replicated [125,91]. Replication fast changing RDF streams is pro-
hibitive, therefore DSMS can’t be directly used for storage and processing of
Linked Stream Data.

In this tutorial we will give an overview on Linked Stream Data process-
ing. We will highlight the basic requirements, the different solutions and the

1 http://www.w3.org/2005/Incubator/ssn/

http://www.w3.org/2005/Incubator/ssn/


Linked Stream Data Processing 247

advantages and disadvantages from each approach. We will also review existing
Linked Stream Data processing system, and provide a comparison among them,
regarding the design choices and overall performance.

We will start by introducing a running example that will be used throughout
the tutorial (Section 1.1). The example highlights the potential benefits in inte-
grating stream data with other sources, and it also shows what are the challenges
faced when designing a Linked Stream Data Processing system. And we men-
tioned earlier, Linked Stream Data is closely related to Linked Data and stream
processing. We assume that the attendees of this tutorial are familiar with the
research in Linked Data, and in Section 2 we will focus providing a background
on the fundamentals of stream processing that also applies to Linked Stream
Data. We will show what are the basic models and techniques, how continu-
ous semantics are represented, the diverse operators and processing optimisa-
tion techniques, and how issues like time management and memory overflow are
handled. In the Linked Stream Data processing (Section 3), we first show the
formalisation to represent the data and the continuous queries and the query op-
erators needed. We then moved into the architecture and system design of Linked
Stream Data processing engines, showing the different possible approaches and
design choices. We highlight the state of the art systems in Linked Stream Data
processing, and show how each of them implement the different architectures.
We also provide a performance comparison in terms of query processing times
and scalability. The end of this tutorial is dedicated to a short discussion of the
current challenges in open problems (Section 4).

1.1 Running Example

Inspired by the experiments of Live Social Semantics [4,109], we use the follow-
ing running example through the rest of the tutorial. The scenario focuses on the
data integration problem between data streams given by a tracking system and
static data sets. Similar to several real deployments in Live Social Semantics,
the tracking system is used for gathering the relationship between real-world
identifiers and physical spaces of conference attendees. These tracking data can
then be correlated with non-stream datasets, like online information about the
attendees (social network, online profiles, publication record, etc). The benefits
of correlating these two sources of information are manifold. For instance, con-
ference rooms could be automatically assigned to the talks, based on the talk’s
topic and the number of people that might be interested in attending it (based
on their profile). Conference attendees could be notified about fellow co-authors
in the same location. A service that suggest which talks to attend, based on
profile, citation record, and distance between talks locations can be designed.
These are just a few examples.

For the tracking service in our example, attendees of a conference wear RFID
tags that constantly stream the location in a building, i.e which room/sec-
tion/area they currently are. Each reading streamed from the RFID tags to
RFID readers has two properties, the tagid and the signal strength.
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The static datasets include data about the conference attendees and metadata
about the conference building. Each attendee has a profile containing his personal
information and the tagid given to him. The profile has also data links to the
attendee’s publication records in DBLP. The data about the conference building
includes information such as location name, description, layout, and connection
between location/rooms.

The data from streams and static datasets of this example can not be modelled
by a relational data model because the data items involved are hosted in different
storages. Because they do not have predefined schema and identification scheme,
the integration across data sources is not easily done. Therefore, traditional
DSMS can not be directly used. Thanks to the Linked Data model, heterogeneous
data items can be presented as a unified data model with public vocabularies and
global identifiers, i.e, URIs. To enable the seamless data integration between data
stream and static data represented in Linked Data model, a stream processing
that can integrate Linked Stream Data and Linked Data has to be provided.

2 Basic Concepts and Techniques for Stream Processing

2.1 Data Stream Models

A data stream is an unbounded, continuously arriving sequence of timestamped
stream elements. The stream elements may arrive in some orders [114] or out
of order with explicit timestamps [80]. The stream elements are continuously
pushed by external stream sources, and their arrival might be unpredictable. As
a result, the system processing data streams has no control over the order of
the stream elements and the streaming rate. Therefore, it is only able to access
stream elements sequentially in the order in which they arrive.

The most popular data model used for stream data is the relational
model [8,30,2]. In the relational model, stream elements are relational tuples
with a fixed schema. Stream elements can be modelled in an object-based model
to classify the stream contents according to a type hierarchy. For example,
Tribica [108] proposes hierarchical data types for representing Internet proto-
col layers for its network monitoring system. Another example of modelling data
sources by objects is the COUGAR system for managing sensor data [24]. In
COUGAR, each type of sensor is modelled as an abstract data type, whose inter-
face consists of the supported signal processing methods. This model is also used
in complex event processing (CEP) engines such as SASE [129,3], ZStream [88]
and ESPER2. CEP is closely related to stream processing, but its focus is more on
making sense of events by deriving high-level knowledge, or complex events from
lower level events [43], rather than modelling and processing time-dependent in-
formation . On top of that, many dynamic applications are built upon large
network infrastructures, such as social networks, communication networks, bio-
logical networks and the Web. Such applications create data that can be nat-
urally modelled as graph streams, in which edges of the underlying graph are

2 http://esper.codehaus.org/
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received and updated sequentially in a form of a stream [16,47,36,133,20]. How-
ever, most of the work in Linked Stream Data reused operators and notations
relevant to relation model, this paper will focus on the relational model. The
terms tuple and stream element might be used alternatively in the following
sections.

2.2 Continuous Semantics

A continuous query is issued once and run continuously, incrementally produc-
ing new results over time. Its inputs are one or more append-only data streams
and zero or more relations. The continuous semantics of a query Q is defined
by the result it returns each time instant t, denoted as Q(t). Q is monotonic if
Q(t)⊆Q(t′), ∀t≤t′. [8] formalised the semantics of monotonic queries and pro-
posed how to continuously evaluate them. For the non-monotonic queries, their
semantics and execution mechanisms are addressed in [60,73,77,53].

Intuitively, a continuous query provides answers at any point in time, taking
into account all the data that has arrived so far. This data is commonly in the
form of relations used as inputs of relational algebras. Therefore, two types of
continuous query algebras based on relational counterparts have been proposed.
The first one is the stream-to-stream algebra that was employed in defining se-
mantics of Streaming SPARQL[23]. In a stream-to-stream algebra, each operator
consumes one or more streams (and zero or more relations) and incrementally
produces an output stream [35,74].

The second type is the mixed algebra [8,48]. Mixed algebra includes three sets
of operators: stream-to-relation operators which produce a relation from a stream
(e.g., sliding windows), relation-to-relation operators which produce a relation
from one or more input relations (i.e., the standard relational algebraic opera-
tors), and relation-to-stream operators which produce a stream from a relation.
Conceptually, at every time tick, an operator converts its input to relations,
computes any new results, and converts the results back a stream that can be
consumed by the next operator. Since the converted relations change over time,
a natural way of switching back to a stream is to report the difference between
the current result and the result computed one time tick ago. This is similar
to computing a set of changes (insertions and/or deletions) required to update
a materialised view. The mixed algebra is used in formalising semantics of C-
SPARQL [17], SPARQLstream [27] and CQELS [94]. There also logical algebras
for CEP[44,26] inspired by relational algebra and logic programming. However,
CEP algebras have not been used in current Linked Stream Data processing
systems, therefore they are out of the scope of this tutorial.

Stream-to-Stream Operator. A Stream-to-Stream operator continuously
calls one-time queries in native SQL over physical or logical streams to produces
results to a derived stream. These operators are specified by common SQL con-
structions such as SELECT, FROM, WHERE and GROUP BY. In [74], the
window specification is defined by extending the FROM clause. Other logical
standard operators are defined similar to relational algebras.
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Stream-to-Relation Operator. A stream-to-relation operator takes a stream
S as input and produces a relation R as output with the same schema as S.
For example, CQL [8] introduced three operators: time-based, tuple-based, and
partitioned windows.

1. Time-based sliding windows. A time-based sliding window on a stream S
takes a time-interval T as a parameter and is specified by following the
reference to S with [Range T]. Intuitively, a time-based window defines its
output relation over time by sliding an interval of size T time units capturing
the latest portion of an ordered stream. More formally, the output relation
R of “S [Range T ]” is defined as:

R(t) = {s | 〈s, t′〉 ∈ S ∧ (t′≤t) ∧ (t′≥max{t− T + 1, 0})} (1)

When T = 0, R(t) consists of tuples obtained from elements with timestamp
t, denoted with syntax “S [NOW]”. And when T = ∞, R(t) consists of
tuples obtained from elements with timestamps up to t, given with the SQL-
99 syntax “S [Range Unbounded]”.

Example 1. “RFIDstream [Range 60 seconds]” represents a time-based slid-
ing window of 60 seconds over a stream of RFID readings. At any time instant
t, R(t) will contains a bag of RFID readings from previous 60 seconds.

2. Tuple-based windows. A tuple-based sliding window on a stream S takes a
positive integer N as a parameter and is specified by following the reference
to S in the query with [Rows N]. At any given point in time, the window
contains the last N tuples of S. More formally, let s1, s2, . . . , denote the
tuples of S in increasing order of their timestamps, breaking ties arbitrarily.
The output relation R of “S [Rows N]” is defined as:

R(t) = {si | max{1, n(t)−N + 1} ≤ i ≤n(t)} (2)

where n(t) denotes the size of S at time t, i.e., the number of elements of S
with timestamps ≤t .

Example 2. Similar to example 1, “RFIDstream [ROWS 1]” returns the last
RFID reading from the stream at any time instant.

3. Partitioned windows. A partitioned sliding window is applied to a stream S
with two parameters: a positive number N for number of rows and a subset
of attributes of S, {A1,...,Ak}. The CQL syntax for partitioned windows is
[Partition S By A1,...,Ak Rows N]. Similar to SQL Group By, this window
operator logically partitions stream S into sub-streams based on equality of
attributes A1,...,Ak. The parameter N is used to compute the tuple-based
windows from those sub-streams.

Example 3. “RFIDstream [Partition By tagid ROWS 1]” partitions the
RFIDstream into a collection of sub-streams based on tagid and gets the
latest readings from each sub-stream. This query can be used to find where
the last locations of all the RFID tags were detected.
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The windows might have a slide parameter for specifying the granularity at
which window slides. The formal definition can be found in [8]. Additionally, fixed
windows and value-based windows were proposed in [108] and [100], respectively.

Relation-to-Relation Operator. The relation-to-relation operators are intro-
duced to employ relational operators. Therefore, they have the same semantics
as the counterparts. However, CQL introduces the instantaneous relations that
are relations computable at a specific time instant t, e.g. outputs from stream-
to-relation operators.

Example 4. From relations output from the sliding window in example 1, the
projection(SELECT) and duplicate elimination (Distinct) operators can be ap-
plied as showed in the query below :

SELECT Distinct tagid
FROM RFIDstream [RANGE 60 seconds]

Relation-to-Stream Operator. A Relation-to-stream operator produces a
stream from a relation. A relation-to-stream operator takes a relation R as input
and produces a stream S as output with the same schema as R. For instance, CQL
introduced three relation-to-stream operators: Istream, Dstream, and Rstream.

1. Istream (for “insert stream”) applied to a relation R contains a stream ele-
ment 〈s, t〉 whenever the tuple s is in R(t )−R(t − 1). Assuming R(−1) =∅
for notational simplicity, it is defined as follow:

Istream(R) =
⋃

t≥0

(R(t)−R(t− 1))× {t}) (3)

Example 5. Consider the following CQL query for creating a new stream by
filtering another stream:

SELECT Istream(*)
FROM RFIDstream [RANGE Unbounded]
WHERE signalstrength>=85

This query continuously applies the Unbounded window to the RFIDstream,
then filter all the RFID readings that have signal strength values equal or
greater than 85.

2. Dstream (for “delete stream”) applied to relation R contains a stream ele-
ment 〈s, t〉 whenever the tuple s is in R(t-1)−R(t). Formally:

Dstream(R) =
⋃

t>0

(R(t− 1)−R(t))× {t}) (4)



252 D. Le-Phuoc, J.X. Parreira, and M. Hauswirth

Example 6. Bellow is a query to detect when a person leaves the building/-
conference by tracking the RFID tag of that person. The sliding windows
keep all the readings in last 60 seconds, and the Dstream operator will report
the tagid that was not detected in last 60 seconds but had been detected
before.

SELECT Dstream(tagid)
FROM RFIDstream [60 seconds]

3. Rstream (for “relation stream”) applied to relation R contains a stream
element 〈s, t〉 whenever the tuple s is in R at time t . Formally:

Rstream(R) =
⋃

t≥0

(R(t)× {t} (5)

Example 7. The query in Example 5 can be written with Rstream as
following:

SELECT Rstream(*)
FROM RFIDstream [NOW]
WHERE signalstrength>=85

2.3 Time Management

The described semantics for continuous queries in a data stream system typi-
cally assumes timestamps on data stream elements, thus, a consistent semantics
for multiple streams and updatable relations relies on timestamps. To achieve
semantic correctness, the DSMS query processor usually needs to process tuples
in increasing timestamp order. That is, the query processor should never receive
a stream element with a lower timestamp than any previously received ones. Ac-
cording to [106], there are two common type of timestamps: system timestamp
and application timestamp.

The system timestamp is issued to stream elements when entering to the
DSMS using the DSMS’s system time. The application timestamp is given by the
data sources before sending the stream elements to the DSMS. As an example of
application timestamps, consider monitoring sensor readings to correlate changes
in temperature and pressure. Each tuple consists of a sensor reading and an
application timestamp affixed by the sensor, denoting the time at which that
reading was taken. In general there may not be any relationship between the time
at which the reading is taken (the application timestamp) and the time at which
the corresponding stream tuple reaches the DSMS (the system timestamp).

The recommended architecture for time management is shown in Figure 1
[106]. Since stream tuples may not arrive at the DSMS in increasing timestamp
order, there is an input manager that buffers tuples until they can be moved to
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Fig. 1. Recommended architecture for time management

the query processor in a proper order. The decision when a tuple can be moved
to the query processor is based on heartbeats. A heartbeat for a set of streams
S1, S2, . . . , Sn at wall-clock time c is defined as the maximum application
timestamp t such that all tuples arriving on S1, S2, . . . , Sn after time c must
have timestamp > t .

Along with the solution for generating heartbeats of [106], there are also other
solutions to deal with time management in some other data stream management
projects like Aurora [2], Niagara [34], TelegraphCQ [30], and Gigascope [35]. The
operators of Aurora have a slack parameter to deal with out-of-order streams.
Essentially, the slack parameter instructs its operator to wait a certain period
of time before closing each window. In Niagara, the proposed solution is based
on punctuations [114]. Punctuations define arbitrary predicates over streams.
Thus, heartbeats can be thought of special types of punctuations. A more detail
comparison of heartbeat solution with others can be found in [106].
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2.4 Implementation of Operators over Streams

For continuously executing operators over streams, there are two execution
strategies: eager re-evaluation and periodic re-evaluation [52]. The eager re-
evaluation generates new results every time new stream element arrives. How-
ever, it might be infeasible in situations where streams have high arrival rate.
The periodic evaluation is to execute the query periodically [9,32]. In this case,
sliding windows may be advanced and queries re-evaluated periodically with a
specified frequency [2,34,76,79,83,104,30,131]. A disadvantage of periodic query
evaluation is that results may be stale if the frequency of re-executions is lower
than the frequency of the update. One way to stream new results after each new
item arrives is to bound the error caused by delayed expiration of tuples in the
oldest sub-window. However, long delays might be unacceptable in streaming
applications that must react quickly to unusual patterns in data.

The continuous query evaluation needs to handle two types of events: arrivals
of new stream elements and expirations of old stream elements [49]. The actions
taken upon arrival and expiration vary across operators [60,121]. A new stream
element may generate new results (e.g., join) or remove previously generated
results (e.g., negation). Furthermore, an expired stream element may cause a
removal of one or more items from the result (e.g., aggregation) or an addition
of new items to the result (e.g., duplicate elimination and negation). Moreover,
operators that must explicitly react to expired elements (by producing new re-
sults or invalidating existing results) have to perform state purging eagerly (e.g.,
duplicate elimination, aggregation, and negation), whereas others may do so
eagerly or lazily (e.g., join).

The new stream element arrivals are obviously triggered by stream sources.
However, there should be mechanisms to signal the events of expirations. There
two techniques to signal the expirations, negative tuple [8,49,54] and direct
timestamp [8,49]. In the negative tuple technique, every window in the query
is equipped with an operator to explicitly generate a negative tuple for every
expiration on the arrivals of new stream elements. For queries without nega-
tion operations, the direct expiration timestamps on each tuple can be used to
initiate the expirations.

The re-evaluation of the stateless operators is straightforward because the new
stream elements can be processed on-the-fly. For instance, Figure 2(a) shows how
the selection operation over stream S1 works [54]. The duplicate-preserving pro-
jection and union operators are also examples of stateless operators. On contrary
to stateless operators, a stateful operator needs to probe the previous processing
states in every re-evaluation. Maintaining processing states is done differently
on each operators. In following, we will discuss how to deal with stateful opera-
tors such as window join, aggregation, duplication elimination and non-motonic
operators.

Window Join Operators. In a sliding window join, newly arrived tuples on
one of the inputs probe the state of the other inputs. Additionally, expired tuples
are removed from the state [52,61,62,71,124]. Expiration can be done periodically,
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Fig. 2. Operator implementations : selection (a), window join (b), duplication elimi-
nation (c), aggregation (d), and negation (e)

provided that old tuples can be identified and skipped during processing. Figure
2(b) is an example of a non-blocking pipeline join [127,59,41,85,120,61,89,19,111].
It stores the input streams (S1 and S2), possibly in the form of hash tables, and
for each arrival on one of the inputs, the state of the other input is probed to
generate new results. Joins of more than two streams and joins of streams with
static relations are straightforward extensions. In the former, for each arrival on
one input, the states of the other inputs are probed [120]. In the latter, new
arrivals on the stream trigger the probing of the relation.

Aggregation Operators. Aggregation over a sliding window updates its result
when new tuples arrive and when old tuples expire. In many cases, the entire
window needs to be stored in order to account for expired tuples, though selected
tuples may sometimes be removed early if their expiration is guaranteed not to
influence the result. For example, when computing MAX, tuples with value v
need not be stored if there is another tuple in the window with value greater
than v and a younger timestamp (see, e.g., [82,110] for additional examples of
reducing memory usage in the context of skyline queries and [90] in the context
of top-k queries). Additionally, in order to enable incremental computation, the
aggregation operator stores the current answer (for distributive and algebraic
aggregates) or frequency counters of the distinct values present in the window
(for holistic aggregates). For instance, computing COUNT entails storing the
current count, incrementing it when a new tuple arrives, and decrementing it
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when a tuple expires. Note that, in contrast to the join operator, expirations
must be dealt with immediately so that an up-to-date aggregate value can be
returned right away. Non-blocking aggregation [64,122,77] is shown in Figure
2(d). When a new tuple arrives, a new result is appended to the output stream
if the aggregate value has changed. The new result is understood to replace
previously reported results. GROUP BY may be thought of as a general case
of aggregation, where a newly arrived tuple may produce new output if the
aggregate value for its group has changed.

The time and space requirements of the aggregation operator depend upon
the type of function being computed [57]. An aggregate f is distributive if, for
two disjoint multi-sets X and Y, f(X∪Y ) = f(X)∪f(Y ). Distributive aggre-
gates, such as COUNT, SUM, MAX and MIN, may be computed incrementally
using constant space and time (per tuple). For instance, SUM is evaluated by
storing the current sum and continually adding to it the values of new tuples as
they arrive. Moreover, f is algebraic if it can be computed using the values of
two or more distributive aggregates using constant space and time (e.g., AVG
is algebraic because AV G = SUM/COUNT ). Algebraic aggregates are also in-
crementally computable using constant space and time. On the other hand, f is
holistic if, for two multi-sets X and Y , computing f(X ∪ Y ) requires space pro-
portional to the size of X∪Y . Examples of holistic aggregates include TOP-k,
QUANTILE, and COUNT DISTINCT. For instance, multiplicities of each dis-
tinct value seen so far may have to be maintained in order to identify the k most
frequent item types at any point in time. This requires Ω(n) space, where n is
the number of stream tuples seen so far—consider a stream with n − 1 unique
values and one of the values occurring twice.

Duplicate Elimination Operators. Duplicate elimination, illustrated in
Figure 2(c), maintains a list of distinct values already seen and filters out dupli-
cates from the output stream. As shown, when a new tuple with value b arrives,
the operator probes its output list, and drops the new tuple because a tuple with
value b has already been seen before and appended to the output stream.

Duplicate elimination over a sliding window may also produce new output
when an input tuple expires. This occurs if a tuple with value v was produced
on the output stream and later expires from its window, yet there are other tuples
with value v still present in the window [60]. Alternatively, duplicate elimination
may produce a single result tuple with a particular value v and retain it on
the output stream so long as there is at least one tuple with value v present
in the window [8,53]. In both cases, expirations must be handled eagerly so that
the correct result is maintained at all times.

Non-monotonic Operators. As non-monotonic query patterns like negation
are parts of SPARQL 1.1, the non-monotonic operators over streams are desir-
able. Indeed, these operators are possible if previously reported results can be
removed when they no longer satisfy the query. This can be done by appending
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corresponding negative tuples to the output stream [60,8]. Negation of two sliding
windows, S1− S2, may produce negative tuples (e.g., arrival of a S2-tuple with
value v causes the deletion of a previously reported result with value v), but may
also produce new results upon expiration of tuples from S2 (e.g., if a tuple with
value v expires from S2, then a S1-tuple with value v may need to be appended
to the output stream [60]). An example is shown in Figure 2(e), where a tuple
with value d was appended to the output because generated on the output stream
upon subsequent arrival of an S2-tuple with value d.

2.5 Handling Memory Overflow

To handle memory overflow, the secondary storage must be used in the query
operators. The XJoin operator [116] was introduced to address the memory
overflow in binary window joins by spilling some partitions of inputs to disk.
XJoin extends the Symmetric Hash Join (SHJ) [66,128] to use less memory by
allowing parts of hash tables to be moved to a secondary storage. The MJoin
operator [120] generalised the XJoin operator to deal with multiway stream
joins. MJoin maximises the output rate of the multi-join operator by efficiently
coordinating the spilling processes instead of spilling the inputs to disk randomly
without considering the values in their join attributes.

If the second storage is used for storing the sliding window, then an index
might be used to improve the performance. However, the index introduces the
cost of maintenance especially in the context of frequent updates. In order to
reduce the index maintenance costs, it is desirable to avoid bringing the entire
window into memory during every update. This can be done by partitioning the
data to localise updates (i.e., insertions of newly arrived data and deletion of
tuples that have expired from the window) to a small number of disk pages. For
example, if an index over a sliding window is partitioned chronologically [45,104],
then only the youngest partition incurs insertions, while only the oldest partition
needs to be checked for expirations (the remaining partitions in the “middle”
are not accessed). A similar idea of grouping objects by expiration time appears
in [85] in the context of clustering large file systems, where every file has an
associated lifetime. However, the disadvantage of chronological clustering is that
records with the same search key may be scattered across a very large number of
disk pages, causing index probes to incur prohibitively many disk I/Os. One way
to reduce index access costs is to store a reduced (summarised) version of the
data that fit on fewer disk pages [31], but this does not necessarily improve index
update times. In order to balance the access and update times, a wave index
has been proposed that chronologically divides a sliding window into n equal
partitions, each of which is separately indexed and clustered by search key for
efficient data retrieval [104]. However, the access time of this approach is slower
because multiple sub-indices are probed to obtained the answer. To accelerate
the access time [55] proposed the doubly partitioned indices to simultaneously
partition the index on insertion an expiration times.
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2.6 Optimisation

The continuous query is usually issued in a declarative language like CQL, then
it is translated to a logical query plan. In some DSMSs like Aurora, the logi-
cal query plan can be composed by the user. The query optimisation might be
applied at logical level by rewriting the plan to improve efficiency, called alge-
braic optimisation. The common rewriting rules such as reordering selection be-
fore joins and evaluating inexpensive predicates before complex ones were used
in [15,51]. Particularly for continuous queries, [8] proposed rules on window-
based operators such as commutative rules on time-based and count-based win-
dows.

The logical query plan needs to be scheduled to be executed in the execution
engine with a physical plan composed of concrete physical operators. As the
data arrives to the engine continuously, the DSMS scheduler can use different
equivalent physical plans to execute a logical query plan during the life time of
the query. Traditional DBMSs use selectivity information and available indices to
choose efficient physical plans (e.g., those which require the fewest disk accesses).
However, this cost metric does not apply to (possibly approximate) continuous
queries, where processing cost per-unit-time is more appropriate [71]. Alterna-
tively, if the stream arrival rates and output rates of query operators are known,
then it may be possible to optimise for the highest output rate or to find a plan
that takes the least time to output a given number of tuples [117,119,111]. Fi-
nally, quality-of-service metrics such as response time may also be used in DSMS
query optimisation [2,18,97,98].

Optimisation by rescheduling physical query plans are similar to those used
in relational databases, e.g., re-ordering a sequence of binary joins in order to
minimise a particular cost metric. There has been some work in join ordering
for data streams in the context of the rate-based model [119,120]. Furthermore,
adaptive re-ordering of pipelined stream filters is studied in [13] and adaptive
materialisation of intermediate join results is considered in [14]. Note the preva-
lence of the notion of adaptivity in query rescheduling; operators may need to be
re-ordered on-the-fly in response to changes in system conditions. In particular,
the cost of a query plan may change for three reasons: change in the processing
time of an operator, change in the selectivity of a predicate, and change in the
arrival rate of a stream [10].

Initial efforts on adaptive query plans include mid-query re-optimisation [70]
and query scrambling, where the objective was to pre-empt any operators that
become blocked and schedule other operators instead [5,118]. To further increase
adaptivity, instead of maintaining a rigid tree-structured query plan, the Eddies
approach [10] performs scheduling of each tuple separately by routing it through
the operators that make up the query plan. Thereby, the operators of the query
plan are dynamically re-ordered to adapt to the current system conditions. This
is driven by tuple routing policies that attempt to find which operators are
fast and selective, and those operators are executed first. This approach was
applied to continuous queries in [32,87] and was evaluated in [38]. The extended
version for multi-way joins can be found in [113,95]. On top of that, it was also
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extended to consider semantics information such as attribute correlations during
routing [21]). For distributed settings [112], the queue length is considered as a
third factor for tuple routing strategies.

To achieve the adaptivity, the processing engine has to deal with some over-
heads. First overhead is having to reroute each tuple separately. The next over-
head is migrating internal states stored in some operators from current query
plan to new query plan that has new arrangement of operators. The issue of state
migration across query plans were studied in [39,134]. More details on adaptive
query processing may be found in [56,12,40].

When there are multiple continuous queries registered, memory and comput-
ing can be shared to optimise the overall processing. For selection queries, a pos-
sible multi-query optimisation is to index the query predicates and store auxiliary
information in each tuple that identify which queries it satisfies [28,130,32,76,81].
When a new tuple arrives for processing, its attribute values are extracted and
matched against the query index to see which queries are satisfied by this tu-
ple. Data and queries may be thought of as duals, in some cases reducing query
processing to a multi-way join of the query predicate index and the data tables
[49, 168]. Indexing range predicates is discussed in [130,81], whereas a predicate
index on multiple attributes is presented in [78,81].

Besides, memory usage may be reduced by sharing internal data structures
that store operators’ states [37,42,132]. Additionally, in the context of complex
queries containing stateful operators such as joins, computation may be shared
by building a common query plan [34]. For example, queries belonging to the
same group may share a plan, which produces the union of the results needed by
the individual queries. A final selection is then applied to the shared result set
and new answers are routed to the appropriate queries. An interesting tradeoff
appears between doing similar work multiple times and doing too much unnec-
essary work; techniques that balance this tradeoff are presented in [33,75,123].
For example, suppose that the workload includes several queries referencing a
join of the same windows, but having a different selection predicate. If a shared
query plan performs the join first and then routes the output to the appropri-
ate queries, then too much work is being done because some of the joined tuples
may not satisfy any selection predicate (unnecessary tuples are being generated).
On the other hand, if each query performs its selection first and then joins the
surviving tuples, then the join operator cannot be shared and the same tuples
will be probed many times. Finally, sharing a single join operator among queries
referencing different window sizes is discussed in [62].

2.7 Scheduling

After the query optimiser chooses a physical query plan, the query engine starts
to execute it. Different from pull-based operator of DBMS, DSMS operators
consume data pushed into the plan by the sources. At any point during an
execution, there may be many tuples in the input and inter-operator queues.
Queues allow sources to push data into the query plan and operators to retrieve



260 D. Le-Phuoc, J.X. Parreira, and M. Hauswirth

data as needed [2,10,8,87,86]; see [67] for a discussion on calculating queue sizes
of streaming relational operators using classical queueing theory.

Each operator consumes data from its input queue(s) to return outputs to
upper queues. The DSMS scheduler must determine which data item in which
queue to process next. A round-robin strategy can be used to execute each
operator in round-robin until it has processed all the data items in its queue(s).
Another simple technique, first-in-first-out, is to process one data item at a
time in order of arrival, such that each item is processed to completion by all
the operators in the plan. This execution strategy ensures good respond time,
however, scheduling one tuple at a time may incur too much overhead.

Another scheduling strategy is to allocate a time slice to each operator, dur-
ing which the operator extracts tuples from its input queue(s), processes them
in timestamp order, and deposits output tuples into the next operator’s input
queue. The time slice may be fixed or dynamically calculated based upon the size
of an operator’s input queue and/or processing speed. A possible improvement
could be to schedule one or more tuples to be processed by multiple operators at
once. In general, there are several possible conflicting criteria involved in choosing
a scheduling strategy, among them queue sizes in the presence of bursty stream
arrival patterns [11], average or maximum latency of output tuples [29,68,92]
and average or maximum delay in reporting the answer relative to the arrival
of new data [102]. Additionally, [119,29,101] proposed strategies for scheduling
operators to achieve low latency by producing highest output rates.

3 Linked Stream Data Processing

3.1 Linked Stream Data

The success of Linked Data in terms of flexibility and data interoperability has
uncountable efforts in both transforming existing data and generating new one,
following the Linked Data principles [22], in many different areas. The field of
ubiquitous computing was not an exception: with so many heterogeneous sensor
data sources, data integration is currently a difficult and labor-intensive tasks,
and because of that applications involving sensor sources are still limited to
specific domains. Applying the Linked Data principles here would enable a vast
range of new, real-time applications in the areas of smart cities, green IT, e-
health, to name a few.

There is one aspect common to this research area which is not covered in
the original concept of Linked Data, which is data usually is output in the
form of streams. With the increasing demand for real-time applications, stream
data is also becoming popular in sources other than sensors. In the Web for
instance, services delivering real-time information, like Facebook or Twitter, are
increasingly popular.

Linked Stream Data [99] was introduced in order to bridge this gap be-
tween stream and Linked Data, and to facilitate data integration among stream
sources and also between streams and other static sources. It follows the stan-
dards of Linked Data, and it is usually represented as an extension of RDF—the
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most popular standard for Linked Data representation. Assigning URIs to RDF
streams not only allows to access the RDF streams as materialised data but also
enables the query processor to treat the RDF streams as RDF nodes, such that
other SPARQL query patterns can be directly applied.

The extensions made to the standard RDF account for handling the temporal
aspects of stream data. For that, new data models and query language have been
proposed, which we will discuss next. Designing and implementing a Linked
Stream Data processor has many challenges, some close to the challenges in
data stream processing highlighted in Section 2, and some particultar to Linked
Stream Data. We provide an extensive and comparative analysis of the current
state of the art in Linked Stream Data processing, their different design choices
and solutions to address the different issues. We also present a discussion about
the remaining open problems.

3.2 Formalisation

This section will show how to formalise the data model for RDF streams and
RDF datasets in continuous context. From the formal data model, the semantics
of the query operators will be defined.

Data Model. The Linked Stream Data is modelled by extending the definitions
of RDF nodes and RDF triples [93]. Let I, B, and L be RDF nodes which are
pair-wise disjoint infinite sets of Information Resource Identifiers (IRIs), blank
nodes and literals, and IL = I ∪ L, IB = I ∪ B and IBL = I ∪ B ∪ L be the
respective unions. A triple (s, p, o) ∈ IB × I × IBL is an RDF triple.

Stream elements of Linked Stream Data are represented as RDF triples with
temporal annotations. A temporal annotation of an RDF triple can be an interval-
based [84] or point-based [58] label. An interval-based label is a pair of times-
tamps which commonly are natural numbers representing for logical time. The
pair of timestamps, [start, end], is used to specify the interval that the RDF
triple is valid. For instance, 〈:John :at :office,[7,9]〉 represents that John was at
the office from 7 to 9. The point-based label is a single natural number repre-
senting the time point that the triple was recorded or received. In the previous
example, the triple〈:John :at :office〉 might be continuously recorded by a track-
ing system, so three temporal triples are generated 〈:John :at :office,7 〉, 〈:John
:at :office,8 〉, 〈:John :at :office,9 〉.

The point-based label looks redundant and less efficient in comparison to
interval-based one. Furthermore, the interval-based label is more expressive than
point-based one because the later is a special case of the former, i.e., when
start = end. Streaming SPARQL[23] uses interval-based labels for representing
its physical data stream items and EP-SPARQL[6] uses them for representing
triple-based events. However, point-based label is more practical for streaming
data sources because triples are generated unexpectedly and instantaneously.
For example, a tracking system detecting people at an office can easily generate
a triple with a timestamp whenever it receives the reading from the sensors.
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Otherwise, the system has to buffer the readings and do some further processing
in order to generate the interval that the triple is valid. Moreover, the instan-
taneity is vital for some applications that need to process the data as soon as
it arrives in the system. For instance, an application that notifies where John
is should be triggered at the time point 7 other than waiting until time 9 to
report that he was in the office from 7 to 9. Point-based label is supported in
C-SPARQL[17], SPARQLstream[27] and CQELS [94] . Without lost of general-
ity, we will use point-based label for defining stream elements for Linked Stream
Data, called RDF stream.

An RDF stream S is a bag of elements 〈(s, p, o) : [t]〉, where (s, p, o) is an
RDF triple and t is a timestamp. S≤t denotes the bag of elements in S with
timestamps ≤ t, i.e.,

S≤t = {〈(s, p, o) : [t′]〉 ∈ S | t′ ≤ t} (6)

To enable the integration of stream data with non-stream data, the concept of
an RDF dataset has to be included in the data model. As applications on stream
data can be run for days, months or years, the changes of RDF dataset during
the query lifetime need to be modelled. Similar to instantaneous relation of CQL,
we extend the definition of a static RDF dataset to instantaneous RDF dataset
as following.

An RDF dataset at timestamp t, denoted by G(t), is a set of RDF triples valid
at time t, called instantaneous RDF dataset. An RDF dataset is a sequence
G = [G(t)], t ∈ N, ordered by t. When it holds that G(t) = G(t+1) for all t ≥ 0,
we call G a static RDF dataset and denote Gs = G(t).

Query Operators. The primitive operation on RDF stream and instantaneous
RDF dataset is pattern matching which is extended from the triple pattern of
SPARQL semantics [93]. Each output of a pattern matching operator consists
of a mapping which is defined as partial functions. Let V be an infinite set of
variables disjoint from IBL, a partial function μ from V to IBL denoted as

μ : V 
−→ IBL. (7)

The domain of μ, dom(μ), is the subset of V where μ is defined. Two mappings
μ1 and μ2 are compatible, denoted as μ1

∼= μ2 if :

μ1
∼= μ2 ⇐⇒ ∀x ∈ dom(μ1) ∩ dom(μ2) ⇒ μ1(x) = μ2(x) (8)

For a given triple pattern τ , the triple obtained by replacing variables within τ
according to μ is denoted as μ(τ).

Three primitive operators on RDF dataset and RDF stream, namely, triple
matching pattern operator, window matching operator and sequential operator,
are introduced in current Linked Stream Data processing systems. Similar to
SPARQL, the triple matching pattern operator on an instantaneous RDF dataset
at timestamp t is defined as

[[P, t]]G = {μ | dom(μ) = var(P ) ∧ μ(P ) ∈ G(t)} (9)

where P ∈ (I ∪ V )× (I ∪ V )× (IL ∪ V ).
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A window matching operator [[P, t]]ωS over an RDF stream S is then defined
by extending the operator above as follows:

[[P, t]]ωS = {μ | dom(μ) = var(P ) ∧ 〈μ(P ) : [t′]〉 ∈ S ∧ t′ ∈ ω(t)} (10)

where ω(t) : N → 2N is a function mapping a timestamp to a (possibly infinite) set
of timestamps. This gives the flexibility to choose between the different window
modes introduced in Section 2.2. For example, a time-based sliding window of
size T defined in Equation 1 can be expressed as ωRANGE (t) = {t′ | t′ ≤ t∧ t′ ≥
max(0, t−T )}, and a window that extracts only events happening at the current
time corresponds to ωNOW (t) = {t}.

A triple-based event matching pattern like the sequential operator SEQ of
EP-SPARQL, denoted as ⇒t, can be defined by using above operator notations
as following :

[[P1⇒tP2]]
ω
S = {μ1 ∪ μ2 | μ1 ∈ [[P1, t]]

ω
S ∧ μ2 ∈ [[P2, t]]

ω
S ∧ μ1

∼= μ2

∧〈μ1(P ) : [t′1]〉 ∈ S ∧ 〈μ2(P ) : [t′2]〉 ∈ S ∧ t′1 ≤t′2} (11)

Other temporal relations introduced in [129,3,7,6] can be formalised similarly to
the sequential operator.

As an output of primitive operators are a mapping set. The join, union, dif-
ference and left outer-join operators over mapping sets Ω1 and Ω2 are defined
as following:

Ω1 �� Ω2 = {μ1 ∪ μ2 | μ1 ∈ Ω1 ∧ μ2 ∈ Ω2 ∧ μ1
∼= μ2} (12)

Ω1 ∪Ω2 = {μ | μ1 ∈ Ω1 ∨ μ2 ∈ Ω2} (13)

Ω1 \Ω2 = {μ ∈ Ω1 | ¬∃μ′ ∈ Ω2, μ
′ ∼= μ} (14)

Ω1 �� Ω2 = (Ω1 �� Ω2) ∪ (Ω1 \Ω2) (15)

3.3 Query Languages

To define a descriptive query language, firstly, the basic query patterns need
to be introduced to express the primitive operators, i.e, triple matching, win-
dow matching, and sequential operators. Then the composition of basic query
patterns can be expressed by AND, OPT, UNION and FILTER patterns of
SPARQL. These patterns are corresponding to operators in the Equations (12)-
(15).

In [17], an aggregation pattern is denoted as A(va, fa, pa, Ga), where va is
the name of the new variable, fa is the name of the aggregation function to be
evaluated, pa is the parameter of fa, and Ga is the set of the grouping vari-
ables. The evaluation of [[A]] is defined by a mapping μa : V 
→IBL, where
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dom(μa) = va∪Ga; also ||μa|| = ||Ga||+ ||va|| = ||Ga||+1 where ||μ|| is the car-
dinality of dom(μ). This extension fully conforms to the notion of compatibility
between mappings. Indeed, μa /∈dom(P ) and, therefore, calling μp the mapping
that evaluate [[P]] and μp

∼= μa.
The result of the evaluation produces a table of bindings, having one column

for each variable v∈dom(μ). μ(i) can be referred as a specific row in this table,
and to a specified column is given by μ[v]. The i − th binding of v is therefore
μ(i)[v].

The values to be bound to a variable va are computed as ∀i ∈
[1, ||μ||], μ(i))[va] = fa(pa, μ[Ga]), where f(pa, [Ga]) is the evaluation of the func-
tion fa ∈ (SUM,COUNT, AV G,MAX,MIN) with parameters pa over the
groups of values in μ[Ga]. The set of groups of values in μ[Ga] is made of all the
distinct tuples μ(i)[Ga] i.e., the subset of the mapping μ[Ga] without duplicate
rows.

From above query patterns, let P1, P2 and P be basic query patterns or com-
posite ones. A declarative query can be composed recursively using the following
rules:

1. [[P1 AND P2]] = [[P1]] �� [[P2]]
2. [[P1 OPT P2]] = [[P1]] �� [[P2]]
3. [[P1 UNION P2]] = [[P1]] ∪ [[P2]]
4. [[P FILTER R]] = {μ ∈ [[P ]]|μ � R}, where μ � R if μ satisfies condition R.
5. [[P AGG A]] = [[P ]] �� [[A]]

The above query pattern construction enable the extension of the SPARQL
grammar for continuous query. Streaming SPARQL extended SPARQL 1.0 gram-
mar3 by adding the DatastreamClause and a clause for window as showed in
following EBNF grammar rules :

SelectQuery ::= ‘SELECT’ (‘DISTINCT’ | ‘REDUCED’‘)?’(Var | ‘*’)(DatasetClause∗ |
DatastreamClause∗)WhereClause SolutionModifier

DatastreamClause ::= ‘FROM’ (DefaultStreamClause | NamedStreamClause)

DefaultStreamClause ::= ‘STREAM’ SourceSelector Window

NamedStreamClause ::= ‘NAMED’ ‘STREAM’ SourceSelector Window

GroupGraphPattern ::= { TriplesBlock? ((GraphPatternNotTriples | Filter )‘.’?

TriplesBlock? )*(Window)?)}
Window ::= (SlidingDeltaWindow | SlidingTupleWindow | FixedWindow)

SlidingDeltaWindow := ‘WINDOW’ ‘RANGE’ ValSpec ‘SLIDE’ ValSpec?

FixedWindow := ‘WINDOW’ ‘RANGE’ ValSpec ‘FIXED’

SlidingTupleWindow ::= ‘WINDOW’ ‘ELEMS’ INTEGER

ValSpec ::= INTEGER | Timeunit?

Timeunit := (‘MS’ | ‘S’ | ‘MINUTE’ | ‘HOUR’ | ‘DAY’ | ‘WEEK’)

Similarly, the C-SPARQL language is extended from SPARQL 1.1’s grammar4

by adding FromStrClause and a clause for windows as following:

3 http://www.w3.org/TR/rdf-sparql-query/#grammar
4 http://www.w3.org/TR/sparql11-query/#grammar

http://www.w3.org/TR/rdf-sparql-query/#grammar
http://www.w3.org/TR/sparql11-query/#grammar
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FromStrClause → ‘FROM’ [‘NAMED’] ‘STREAM’ StreamIRI ‘[RANGE’ Window ’]’
Window → LogicalWindow | PhysicalWindow

LogicalWindow → Number TimeUnit WindowOverlap

TimeUnit → ‘d’ | ‘h’ | ‘m’ | ‘s’ | ‘ms’

WindowOverlap → ‘STEP ′ Number TimeUnit | ‘TUMBLING’

Also extending SPARQL 1.1’s grammar, CQELS language is built by adding a
query pattern to apply window operators on RDF Streams into the
GraphPatternNotTriples clause.

GraphPatternNotTriples ::= GroupOrUnionGraphPattern | OptionalGraphPattern

| MinusGraphPattern | GraphGraphPattern
| StreamGraphPattern | ServiceGraphPattern | Filter | Bind

Assuming that each stream is identified by an IRI as identification, the
StreamGraphPattern clause is then defined as follows.

StreamGraphPattern ::= ‘STREAM’ ‘[’ Window ‘]’ VarOrIRIref ‘{’TriplesTemplate‘}’
Window ::= Range | Triple | ‘NOW’ | ‘ALL’

Range ::= ‘RANGE’ Duration (‘SLIDE’ Duration | ‘TUMBLING’)?

Triple ::= ‘TRIPLES’ INTEGER

Duration ::= (INTEGER ‘d’ | ‘h’ | ‘m’ | ‘s’ | ‘ms’ | ‘ns’)+

where VarOrIRIRef and TripleTemplate are clauses for the variable/IRI and
triple template of SPARQL 1.1, respectively. Range corresponds to a time-based
window while Triple corresponds to a triple-based window. The keyword SLIDE
is used for specifying the sliding parameter of a time-based window, whose time
interval is specified by Duration. In special cases, the [NOW] window is used
to indicate that only the triples at the current timestamp are kept and [ALL]
window is used to indicate that all the triples will be kept in the window.

The following example describes 5 queries involving linked stream data, then,
we show how to express these queries in above query languages.

Example 8. To enhance the conference experience in our running scenario, each
participant would have access to the following services, which can all be modelled
as continuous queries:

(Q1) Inform a participant about the name and description of the location he
just entered.

(Q2) Notify two people when they can reach each other from two different and
directly connected (from now on called nearby) locations.

(Q3) Notify an author of his co-authors who have been in his current location
during the last 5 seconds.

(Q4) Notify an author of the editors of a paper of his and that have been in a
nearby location in the last 15 seconds.

(Q5) Count the number of co-authors appearing in nearby locations in the last
30 seconds, grouped by location.

The grammars of Streaming SPARQL and C-SPARQL are similar, the URI of
the stream is defined after keywords “FROM STREAM” and the triple patterns



266 D. Le-Phuoc, J.X. Parreira, and M. Hauswirth

are placed in the WHERE clause. Consider the query Q1, and assume that
URI of the RFID stream is http://deri.org/streams/rfid. An RDF dataset
has to specified to integrate the metadata of the building. For example, the
named graph http://deri.org/floorplan/ can be used as the RDF dataset
to correlate with the RFID stream. Because, in Streaming SPARQL [23], using
RDF dataset is not clearly described. In C-SPARQL, query Q1 is expressed as
followings.5

SELECT ?locName ?locDesc
FROM STREAM <http://deri.org/streams /rfid > [NOW]
FROM NAMED <http://deri.org/floorplan/>
WHERE {

?person lv:detectedat ?loc. ?loc lv:name ?locName . ?loc lv:desc ?locDesc
?person foaf:name ‘‘$Name$ ’’.

}

Query Q1:C-SPARQL

In CQELS, the streams are specified after the keywords “STREAM”Streaming
to declare the STREAM clause inside a WHERE clause. Thereby, the query Q1
is expressed in CQELS as followings:

SELECT ?locName ?locDesc
FROM NAMED <http://deri.org/floorplan/>
WHERE {

STREAM <http://deri.org/streams /rfid > [NOW] {? person lv:detectedat ?loc}
GRAPH <http://deri.org/floorplan/>

{?loc lv:name ?locName . ?loc lv:desc ?locDesc }
?person foaf:name ‘‘$Name$ ’’.

}

Query Q1-CQELS

CONSTRUCT {?person1 lv:reachable ?person2 }
FROM NAMED <http://deri.org/floorplan/>
WHERE {

STREAM <http://deri.org/streams /rfid > [NOW] {? person1 lv:detectedat ?loc1}
STREAM <http://deri.org/streams //rfid > [RANGE 3s]

{? person2 lv:detectedat ?loc2}
GRAPH <http://deri.org/floorplan/> {?loc1 lv:connected ?loc2}

}

Query Q2-CQELS

Queries Q2, Q3, Q4, and Q5 need to declare two different windows on the
RFID stream, then join these windows with other data. However, grammars of
Streaming SPARQL and C-SPARQL only allow to specify one window on one
stream URI, therefore, these four queries can not be expressed directly in single
queries in Streaming SPARQL and C-SPARQL languages. In C-SPARQL, it is
possible to get around this issue by creating two separate logical streams from
the same stream. These new streams will then be used to apply two windows
needed in those 4 queries. On the other hand, the STREAM clause of CQELS
allows expressing Q2-Q4 as single queries as below.

5 For the sake of space we omit the PREFIX declarations of lv, dc, foaf, dcterms and
swrc.

http://deri.org/streams/rfid
http://deri.org/floorplan/
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SELECT ?coAuthName
FROM NAMED <http://deri.org/floorplan/>
WHERE {

STREAM <http://deri.org/streams /rfid > [TRIPLES 1]
{?auth lv:detectedat ?loc}

STREAM <http://deri.org/streams /rfid > [RANGE 5s]
{? coAuth lv:detectedat ?loc}

{ ?paper dc:creator ?auth. ?paper dc:creator ?coAuth.
?auth foaf:name ‘‘$Name$ ’’. ?coAuth foaf:name ?coAuthorName}

FILTER (?auth != ?coAuth)
}

Query Q3-CQELS

SELECT ?editorName
WHERE {

STREAM <http://deri.org/streams /rfid > [TRIPLES 1]
{?auth lv:detectedat ?loc1}

STREAM <http://deri.org/streams /rfid > [RANGE 15s]
{? editor lv:detectedat ?loc2}

GRAPH <http://deri.org/floorplan/> {?loc1 lv:connected ?loc2}
?paper dc:creator ?auth. ?paper dcterms :partOf ?proceeding.
?proceeding swrc:editor ?editor. ?editor foaf:name ?editorName.
?auth foaf:name ‘‘$Name$ ’’

}

Query Q4-CQELS

SELECT ?loc2 ?locName count(distinct ?coAuth) as ?noCoAuths
FROM NAMED <http://deri.org/floorplan/>
WHERE {

STREAM <http://deri.org/streams /rfid > [TRIPLES 1]
{?auth lv:detectedat ?loc1}

STREAM <http://deri.org/streams /rfid > [RANGE 30s]
{? coAuth lv:detectedat ?loc2}

GRAPH <http://deri.org/floorplan/>
{?loc2 lv:name ?locName . loc2 lv:connected ?loc1}

{
?paper dc:creator ?auth. ?paper dc:creator ?coAuth .?auth foaf:name ‘‘$Name$ ’’

}
FILTER (?auth != ?coAuth)

}
GROUP BY ?loc2 ?locName

Query Q5-CQELS

To support runtime discovery for multiple streams that share the same triple
patterns, CQELS supports expressing stream URIs as variable. For instance,
the triples that match the pattern 〈?person lv:detectedat ?loc〉 can be found
in different streams generated by RFID readers, Wifi-based tracking systems,
GPSs, etc. For instance, to query all the streams nearby a location (filtered by
triple pattern 〈?streamURI lv:nearby : DERI Building〉 in metadata) that
can give such triples, the following query expressed in CQELS can be used.
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SELECT ?name ?locName
FROM NAMED <http://deri.org/floorplan/>
WHERE {

STREAM ?streamURI [NOW] {?person lv:detectedat ?loc}
GRAPH <http://deri.org/floorplan/>
{ ?streamURI lv:nearby :DERI_Building. ?loc lv:name ?locName .
?person foaf:name ?name. }

CQELS query with variable on stream’s URI

In some queries, the built-in functions on timestamps on stream elements are
needed. Among the aforementioned query language, C-SPARQL [17] and EP-
SPARQL [6] enable expressing queries with functions to manipulate the times-
tamps. The timestamp of a stream element can be retrieved and bound to a
variable using a built-in timestamp function. The timestamp function has two
arguments. The first is the name of a variable, introduced in the WHERE clause
and bound by pattern matching with an RDF triple of that stream. The sec-
ond (optional) is the URI of a stream, that can be obtained through SPARQL
GRAPH clause. The function returns the timestamp of the RDF stream element
producing the binding. If the variable is not bound, the function is undefined,
and any comparison involving its evaluation has a non-determined behaviour.
If the variable gets bound multiple times, the function returns the most recent
timestamp value relative to the query evaluation time. Following is a example
of EP-SPARQL using function getDurration() to filter triples that have times-
tamps in the duration of 30 minutes.

CONSTRUCT {?person2 lv:comesAfter ?person1 }
{
SELECT ?person1 ?person2
WHERE {
{? person1 lv:detectedat ?loc}
SEQ
{? person2 lv:detectedat ?loc}
}

FILTER (getDURATION()<"P30m"^^xsd:duration )

EP-SPARQL query with built-in time function

3.4 System Design and Architecture

The architecture design of current available systems that support continuous
query processing over RDF data streams and RDF data can be classified into
two categories. The first one is a “whitebox” architecture as depicted in Figure 3.
From the semantics formalised in Section 3.2, this architecture needs to imple-
ment the physical operators such as sliding windows, join, and triple pattern
matching. Such operators can be implemented using techniques and algorithms
described in Section 2.4. To consume data, these operators use access methods
which may employ data structures such as B-Tree+, hashtable, or triple-based
indexes for fast random data access to RDF datasets or RDF streams. To execute
a declarative query in SPARQL-like language, the optimiser has to translate the
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it to a logical query plan, then find an optimal execution plan based on the cor-
responding operator implementations. The execution plan is then executed by
the Executor. As the continuous query is executed continuously, the Optimiser
can re-optimise it to find a new execution plan to adapt to the changes in the
data and computing environment.
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Fig. 3. The whitebox architecture

In the whitebox architecture, the query engine needs to implement all the
components of a DSMS. To avoiding implementing most of those components,
an alternative is the “blackbox” architecture shown in Figure 4. The blackbox
architecture recommends to use other systems as sub-components. Such sub-
components are used to delegate the sub-processings needed. Commonly, the
chosen systems for sub-components have a whitebox architecture but they can
be interfaced as blackboxes with different query languages and different input
data formats. Hence, the systems designed using blackbox approach need a Query
Rewriter, an Orchestrator and a Data Transformer. The Query rewriter is used
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Table 1. Current systems that implement the blackbox architecture

Data transformation Query rewriter Underlying systems

C-SPARQL RDF↔Relation C-SPARQL→SPARQL&CQL SPARQL engine&
STREAM or ESPER

SPARQLstream Relation→RDF SPARQLstream →SNEEql SNEE engine

EP-SPARQL RDF→logic facts EP-SPARQL→logic rules Prolog engines

to rewrite SPARQL-like query languages to a query and sub-queries that un-
derlying systems can understand. The Orchestrator is used to orchestrate the
execution process by externalising the processing to sub-systems with the rewrit-
ten sub-queries. In some cases, the Orchestrator also includes some components
for correlating and aggregating partial results returned from blackbox systems
if they support. The Data Transformer is responsible for converting input data
to the compatible formats of the Access methods used in sub-components. The
Data Transformer also has to transform the output from the underlying systems
to the format that the Orchestrator needs. Table 1 gives a summary of some
properties of the systems using the blackbox architecture.

Query rewriter 

Orchestrator 

Data transformation 

S
P

A
R

Q
L-like 

Optimizer 

Operator 
implementations 

Access methods 

Executor 

Query 

C

��124

��12 [[P3, t]]G

[[P1, t]]
ω1
S [[P2, t]]

ω2
S

...

S

n
ow

ra
n
ge

2

Γ 3 Γ 4

Γ 1 Γ 2

Γ

...

Sout

Execution 

Optimizer 

Operator 
implementations

Access methods

Executor 
C

��124

��12 [[P3PP , t]]G

[[P1PP , t]]
ω1
S [[P2PP , t]]

ω2
S

...

S

n
ow

ra
n
ge

2

Γ 3 Γ 4

Γ 1 Γ 2

Γ

...

Sout

Execution

Fig. 4. Components of blackbox systems

By delegating the processing to available systems, building the system with
the blackbox architecture takes less effort than using the whitebox one. However,
such systems do not have full-control over the sub-components and suffers the
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Table 2. System design choices

Architecture Access methods Execution

Streaming SPARQL whitebox Physical RDF streams Stream-to-Stream operators

C-SPARQL blackbox Relations&Views CQL&SPARQL queries

EP-SPARQL blackbox Logic predicates Logic programmes

SPARQLstream blackbox Web services SNEE queries

CQELS whitebox Native data structures Adaptive physical operators

overhead of data transformation. To summarise, Table 2 gives the design choices
of current available systems. In the next section, we describe each of these system
in more details.

3.5 State-of-the-art in Linked Stream Data Processing

There are a few systems that currently support Linked Stream Data Process-
ing. In this section, we provide an extensive and comparative analysis of these
systems, their different design choice and solutions to address the different issues.

Streaming SPARQL. To show that query processing over RDF Streams is
possible, Streaming SPARQL [23] proposed to extend the ARQ6 query compiler
to transform the continuous query to a logical algebra plan. This logical query
plan is then compiled to a physical execution plan composed by physical query
operators. Streaming SPARQL extends SPARQL 1.1 for representing contin-
uous queries on RDF Streams. For implementing physical operators, Stream-
ing SPARQL uses the approaches proposed by [74]. However, to the best of
our knowledge, the implementation of the system is not publicly available. The
Streaming SPARQL suggests to apply algebraic optimisation after translating a
declarative query to a logical query plan.

C-SPARQL. C-SPARQL realises the blackbox architecture with the orches-
tration design as shown in Figure 5. In this architecture, the C-SPARQL engine
uses a SPARQL plugin to connect to a SPARQL query engine to evaluate the
static part of the query, i.e, the sub-queries involving the RDF datasets. For
evaluating parts of the query relevant to streams and aggregates, the engine del-
egates the processing to an existing relational data stream management system.
One limitation of this architecture is that aggregations can only be performed
by the DSMS. A parser parses the C-SPARQL query and hands it over to the
orchestrator. The orchestrator is the central component of C-SPARQL engine
and translates the query in a static and dynamic part. The static queries are
used to extract the static data from the SPARQL engine, while the dynamic
queries is registered in the DSMS. The query initialisation is executed only once

6 http://incubator.apache.org/jena/documentation/query/

http://incubator.apache.org/jena/documentation/query/
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when a C-SPARQL query is registered as the continuous evaluation is handled
subsequently by the DSMS. Therefore, C-SPARQL does not allow updates in
the non-stream data.

C-SPARQL

Parser Relational-to-RDF 
Transcoder

Orchestrator

RDF-to-Relational Transcoder

STREAM
(CQL)

Sesame
(SPARQL)

Fig. 5. Architecture of C-SPARQL

The evaluation process of the C-SPARQL engine is illustrated in Figure 6.
The results returned from the SPARQL engine for the static part of the query
are loaded into materialised relations as inputs for the DSMS. These rela-
tions together with RDF streams will be computed via cascading views cre-
ated in CQL queries driven by the C-SPARQL query. The first views are
sliding window views over RDF Streams. Then they are used to correlated with
the static relations via join views. As C-SPARQL employs algebraic optimisa-
tion, it tries to filter the data as earlier as possible. Hence, it pushes filters,
projections and aggregations by rewriting rules [105]. The order of the evalu-
ation process illustrates how the views are created on top of others. The cur-
rent version of C-SPARQL based on Jena and ESPER can be downloaded at
http://streamreasoning.org/download

EP-SPARQL. EP-SPARQL uses the blackbox approach backed by a logic en-
gine. It translates the processing into logic programs. The execution mechanism
of EP-SPARQL is based on event-driven backward chaining (EDBC) rules, intro-
duced in [7]. EP-SPARQL queries are compiled into EDBC rules, which enable
timely, event-driven, and incremental detection of complex events (i.e., answers
to EP-SPARQL queries). EDBC rules are logic rules, and hence can be mixed
with other background knowledge (domain knowledge that is used for Stream
Reasoning). Therefore, it provides a unified execution mechanism for Event Pro-
cessing and Stream Reasoning which is grounded in Logic Programming (LP).

http://streamreasoning.org/download
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Fig. 6. Evaluation process of C-SPARQL

For encoding, EP-SPARQL uses a simple correspondence between RDF triples
of the form 〈s, p, o〉 and Prolog predicates of the form triple(s′, p′, o′) so that
s′, p′, and o′ correspond to the RDF symbols s, p, and o, respectively. This
means that whenever a triple 〈s, p, o〉 is satisfied, the corresponding predicate
triple(s′, p′, o′) is satisfied too, and vice versa. Consequently, a time-stamped
RDF triple 〈〈s, p, o〉, tα, tω〉 corresponds to a predicate triple(s′, p′, o′, T

′
α, T

′
ω)

where T
′
α and T

′
ω denote timestamps. Timestamps are assigned to triples either



274 D. Le-Phuoc, J.X. Parreira, and M. Hauswirth

by a triple source (e.g., a sensor or an application that generates triple updates)
or by an EP-SPARQL engine. They facilitate time-related processing, and do
not necessarily need to be kept once the stream has been processed (e.g., the
pure RDF part could be persisted in a RDF triple store without timestamps).
From RDF triples and time-stamped RDF encoded as logic predicates, the query
operators like SeqJoin,EqJoin and Filters for EP-SPARQL query language are
rewritten as rule patterns.

To enable the detection of more complex events, EP-SPARQL combines
streams with background knowledge. This knowledge describes the context (do-
main) in which complex events are detected. As such, it enables the detection
of real-time situations that are identified based on explicit data (e.g., events)
as well as on implicit knowledge (derived from the background knowledge). The
background knowledge may be specified as a Prolog knowledge base or as an
RDFS ontology. This enables EP-SPARQL’s execution model to have all rel-
evant parts expressible in a unified (logic rule) formalism, and ultimately to
reason over a unified space. The implementation of EP-SPARQL can be found
at http://code.google.com/p/etalis/

Fig. 7. Architecture of SPARQLstream

SPARQLstream. The SPARQLstream is designed to support the integration
of heterogenous relational stream data sources. The SPARQLstream engine is a
wrapping system that rewrites SPARQLstream query language to a relational
continuous query language, e.g., SNEEql [46]. Its architecture is shown in Fig-
ure 7. In order to transform the SPARQLstream query, expressed in terms of
the ontology, into queries in terms of the data sources, a set of mappings must
be specified. These mappings are expressed in S2O, an extension of the R2O
mapping language, which supports streaming queries and data, most notably
window and stream operators.

http://code.google.com/p/etalis/
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After the continuous query has been generated, the query processing phase
starts, and the evaluator uses distributed query processing techniques [72] to
extract the relevant data from the sources and perform the required query pro-
cessing, e.g. selection, projection, and joins. Note that query execution in sources
such as sensor networks may include in-network query processing, pull or push
based delivery of data between sources, and other data source specific settings.
The result of the query processing is a set of tuples that the data translation pro-
cess transforms into ontology instances. The current version of SPARQLstream

can be found at http://code.google.com/p/semanticstreams/wiki/SPARQL
Stream
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Fig. 8. Adaptive architecture of CQELS

CQELS. CQELS engine realised the whitebox approach with the adaptive ex-
ecution mechanism as shown in Figure 8. The query executor is able to switch
between equivalent physical query plans during the life time of the query. The
adaptability of the query executor enables the query optimiser to re-schedule
the next execution to achieve a better performance according to the changes of
data and computing environment. As considering triples as the first-class data
elements, CQELS engine employs both efficient data structures for sliding win-
dows and triple storages to provide high-throughput native access methods on
RDF dataset and RDF data streams. By adapting the implementations of the

http://code.google.com/p/semanticstreams/wiki/SPARQLStream
http://code.google.com/p/semanticstreams/wiki/SPARQLStream
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Table 3. System comparison by features

Input Query language Extras

Streaming SPARQL RDF stream

C-SPARQL RDF Stream & RDF TF

EP-SPARQL RDF Stream & RDF EVENT,TF Event operators

SPARQLstream Relational stream NEST Ontology-based mapping

CQELS RDF Stream & RDF VoS,NEST Disk spilling

physical operators introduced in Section 2.4, CQELS is equipped with an adap-
tive caching mechanism [14] and indexing schema [63,125,50,130] to accelerate
the processing in physical operators and access methods.

Similar to other systems, CQELS engine extended SPARQL 1.1 for continuous
query, called CQELS language. However, CQELS language supports updates in
RDF datasets as well as variables for stream identifiers. By expressing variables
in stream identifiers, users can ask queries that continuously discover streams
that can provided matched properties of interest as shown in section 3.3. Unlike
other systems that only support in-memory processing, CQELS supports disk-
based processing when the main memory is not enough to accommodate all data.
By applying the techniques for memory overflow handling from Section 2.5, the
size of the RDF data involved in the CQELS queries is not restricted to the
capacity of the main memory. Details about CQELS’s implementation can be
found at http://code.google.com/p/cqels/

System Comparisons. Table 3 gives a comparison of all the systems accord-
ing to features supported. Unlike the other systems, SPARQLstream takes re-
lational stream as input other than RDF streams. C-SPARQL, EP-SPARQL
and CQELS support correlation of RDF streams and RDF datasets. All systems
extend SPARQL for stream processing, but each of their languages support
some special patterns as shown in the column “query language”. TF stands for
support built-in time functions in the query patterns. EVENT corresponds to
event-based patterns. NEST means that the engine support nested queries. VoS
indicates that the query language allow using variable for the Stream’s URI.
The “Extras” column shows the extra features supported by the corresponding
engines.

To compare the systems’ execution mechanisms, Table 4 categorises the sys-
tems by architecture, re-execution strategy, how the engine schedules the execu-
tion and what type of optimisation is supported. Since Streaming SPARQL and
C-SPARQL schedule the execution at logical level, the optimisation can only be
done at algebraic level and statically. On the contrary, CQELS is able to choose
the alternative execution plans composed from available physical implementa-
tions of operators, thus, the optimiser can adaptively optimise the execution at
physical level. EP-SPARQL and SPARQLstream schedule the execution via a

http://code.google.com/p/cqels/
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Table 4. Comparisons by execution mechanism

Architecture Re-execution Scheduling Optimisation

Streaming SPARQL whitebox periodical Logical plan Algebraic & Static

C-SPARQL blackbox periodical Logical plan Algebraic & Static

EP-SPARQL blackbox eager Logic program Externalised

SPARQLstream blackbox periodical External call Externalised

CQELS whitebox eager Adaptive Physical & Adaptive
physical plans

Table 5. Average query execution time for single queries (in milliseconds)

Q1 Q2 Q3 Q4 Q5

CQELS 0.47 3.90 0.51 0.53 21.83
C-SPARQL 332.46 99.84 331.68 395.18 322.64
ETALIS 0.06 27.47 79.95 469.23 160.83

declarative query or a logic program, so, it completely externalises the optimi-
sation to other systems.

The work in [94] provides the only experimental evaluation comparison avail-
able so far. It compares the average query execution time among C-SPARQL,
ETALIS/EP-SPARQL and CQELS on five queries Q1,Q2,Q3,Q4 and Q5 intro-
duced in section 3.3. For the RFID stream data, the evaluation uses the RFID-
based tracking data streams provided by the Open Beacon community.7 The
data is generated from active RFID tags, the same hardware used in the Live
Social Semantics deployment [4]. For user profiles, the simulated DBLP datasets
generated from SP2Bench [96] are used.

The table 5 shows the evaluation for a single query instance. The figure 9
reports the experiments on varying the size of static RDF dataset. The evalua-
tion for multiple queries instances is showed in figure 10. In overall EP-SPARQL
performed best for a single query pattern and small datasets and CQELS con-
sistently outperformed to others for other cases.

4 Challenges in Linked Stream Data Processing

There are still a number of open challenge regarding Linked Stream Data pro-
cessing. One of them is related to query optimisation. The continuous queries
need to be optimised adaptively to cope with arbitrary changes in the stream
characteristics and system conditions. The systems using the blackbox architec-
ture only support the algebraic optimisation which is done in the query compiling
phase. However, the adaptive optimisation can be applied separately at phys-
ical levels in each underlying sub-systems. This leads to the sub-optimal issue

7 http://www.openbeacon.org/

http://www.openbeacon.org/
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Fig. 9. Average query execution time for varying sizes of simulated DBLP dataset

in optimising the continuous query in blackbox systems. CQELS is currently
the only system applying the optimisation techniques [12,40] of the adaptive
query processing. In this case, the challenge in continuous query optimisation is
similar to the challenge of optimisation in adaptive query processing. However,
despite the several works in adaptive query processing, this area is still in an
early stage [12]. Most of the proposed solutions are heuristic and rather ad-hoc.
It is not straightforward to employ any such general optimisation technique for
continuous queries over the triple-based data model. Furthermore, the continu-
ous queries with the SPARQL-like patterns usually involve several self-joins of
physical relational data structures for RDF triples. This might be too costly to
re-optimise the query plan at running time in terms of search space and statis-
tics maintenance. Besides, the joining properties of continuous queries over RDF
streams might be highly correlated. In this case, estimating cardinalities of join
queries is more difficult and complicate, therefore, maintaining the statistics of
query plans at run-time might cost much more computing resources than the
optimisation process can gain. Furthermore, Linked Stream Data makes the se-
mantic of data understandable for the query processing engine, thus, the query
optimiser can use the meaning of the data for optimising the query execution.
For example, a person cannot be at two different times at two different places
and hence the optimiser can use this knowledge to narrow down the stream
sources and execute a query more efficiently. Nevertheless, to the best of our
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Fig. 10. Average query execution time when running multiple query instances

knowledge, there has not been any work on semantic-based optimisation for
continuous query processing.

Distributing the stream processing across a cluster of machines to deal with
high-speed data streams, big datasets and large amount of registered queries.
There are two broad issues in distributed stream processing over Linked Stream
Data and stream data in general: parallelising and distributing the system itself,
and shifting some computation to the data sources [54]. One way to distribute
the processing is to split the query plan across multiple processing nodes [1].
Another way is to partition the stream and let each node process a subset of
the data to completion [69]. Systems like Borealis [1], StreamBase8 and InfoS-
pheres Streams9 support distributed processing. So far, there has not been any
mature distributed systems for Linked Stream Data processing. However, such
distributed DSMSs can be employed to build Linked Stream Data Processing en-
gine using the blackbox architecture. Besides, there are distributed real-time data
processing platforms such as S410, Storm11 that can be used to scale Linked Data
Stream processing on networked computing environments. For instance, [65] at-
tempts to use S4 for scaling the stream reasoning. To overcome the challenge of

8 http://www.streambase.com/
9 http://www-01.ibm.com/software/data/infosphere/streams/

10 http://incubator.apache.org/s4/
11 https://github.com/nathanmarz/storm

http://www.streambase.com/
http://www-01.ibm.com/software/data/infosphere/streams/
http://incubator.apache.org/s4/
https://github.com/nathanmarz/storm
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scaling Linked Data Stream Processing on distributed computing setting, there
will be interesting efforts and innovations in terms of experimenting, engineering
and optimising to bring distributed Linked Data Stream engine in production.

5 Conclusion

This tutorial gave an overview about Linked Stream Data and how to build the
processing engines on this data model. It described the basic requirements for
the processing, highlighting the challenges that are faced, such as managing the
temporal aspects and memory overflow. It presented the different architectures
for Linked Stream Data processing engines, their advantages and disadvantages.
The tutorial also reviewed the state of the art Linked Stream Data processing
systems, and provided a comparison among them regarding the design choices
and overall performance. It also discussed current challenges in Linked Stream
Data processing that might be interesting in terms of researching and engineering
in years to come.

Acknowledgments. This research has been supported by Science Founda-
tion Ireland under Grant No. SFI/08/CE/I1380 (Lion-II), by the Irish Research
Council for Science, Engineering and Technology (IRCSET), and by the Euro-
pean Commission under contract number FP720117287661 (GAMBAS).

References

1. Abadi, D.J., Ahmad, Y., Balazinska, M., Çetintemel, U., Cherniack, M., Hwang,
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Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC
2007. LNCS, vol. 4825, pp. 211–224. Springer, Heidelberg (2007)

64. Hellerstein, J.M., Haas, P.J., Wang, H.J.: Online aggregation. SIGMOD
Rec. 26(2), 171–182 (1997)

65. Hoeksema, J., Kotoulas, S.: High-performance distributed stream reasoning using
s4. In: Ordring Workshop at ISWC (2011),
http://iswc2011.semanticweb.org/fileadmin/iswc/Papers/Workshops/

OrdRing/paper 8.pdf

http://iswc2011.semanticweb.org/fileadmin/iswc/Papers/Workshops/OrdRing/paper_8.pdf
http://iswc2011.semanticweb.org/fileadmin/iswc/Papers/Workshops/OrdRing/paper_8.pdf


Linked Stream Data Processing 285

66. Hong, W., Stonebraker, M.: Optimization of parallel query execution plans in
xprs. Distrib. Parallel Databases 1(1), 9–32 (1993)

67. Jiang, Q., Chakravarthy, S.: Queueing analysis of relational operators for contin-
uous data streams. In: Proceedings of the Twelfth International Conference on
Information and Knowledge Management, CIKM 2003, pp. 271–278. ACM, New
York (2003)

68. Jiang, Q., Chakravarthy, S., Williams, H., MacKinnon, L.: Scheduling Strategies
for Processing Continuous Queries over Streams, pp. 16–30. Springer, Heidelberg
(2004)

69. Johnson, T., Muthukrishnan, M.S., Shkapenyuk, V., Spatscheck, O.: Query-aware
partitioning for monitoring massive network data streams. In: Proceedings of the
2008 ACM SIGMOD International Conference on Management of Data, SIGMOD
2008, pp. 1135–1146. ACM, New York (2008)

70. Kabra, N., DeWitt, D.J.: Efficient mid-query re-optimization of sub-optimal query
execution plans. SIGMOD Rec. 27(2), 106–117 (1998)

71. Kang, J., Naughton, J.F., Viglas, S.: Evaluating window joins over unbounded
streams. In: Proceedings of the 19th International Conference on Data Engineer-
ing, ICDE 2003, pp. 341–352 (2003)

72. Kossmann, D.: The state of the art in distributed query processing. ACM Comput.
Surv. 32(4), 422–469 (2000)
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