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Abstract

Tree patterns are fundamental to querying tree�structured data like XML� Because of the
heterogeneity of XML data� it is often more appropriate to permit approximate query matching
and return ranked answers� in the spirit of Information Retrieval� than to return exact matches�
In this paper� we study the problem of approximate XML query matching� based on tree pattern
relaxations� and devise e�cient algorithms to evaluate relaxed tree patterns�

We consider weighted tree patterns� where exact and relaxed weights� associated with nodes
and edges of the pattern� are used to compute the scores of query answers� We are interested
in two problems� �i� �nding answers whose scores are at least as large as a given threshold� and
�ii� �nding the top�k answers� We design data pruning algorithms where intermediate query
results are �ltered dynamically during the evaluation process� Finally� we show experimentally
that our approach outperforms rewriting�based and post�pruning strategies� We develop several
optimizations that exploit scores of intermediate results to improve query evaluation e�ciency�

� Introduction

With the advent of XML� querying tree�structured data has been a subject of interest lately in
the database research community �e�g� ��� ��� 		
�� Due to the heterogeneous nature of XML data�
exact matching of queries is often inadequate� We believe that approximate matching of tree queries
and returning a ranked list of results� in the same spirit as Information Retrieval �IR� approaches�
is more appropriate� A concrete example is that of querying the DBLP database ��	
� Users might
ask for books that have as subelements an isbn� a url� a cdrom and an electronic edition ee� Some
of these are optional subelements �as speci�ed in the DBLP schema� and very few books may have
values speci�ed for all these subelements� Thus� returning books that have values for some of these
elements �say isbn� url and ee� would be of use� In fact� users might themselves specify that they
are interested in the k most relevant answers in which case answers should be returned ranked by
their similarity to the exact query�

In IR �	�
� search techniques process keyword�based queries by �i� associating weights to query
keywords �e�g� based on inverse document frequency�� �ii� computing scores of documents based
on the occurrence of query keywords in them and� �iii� returning answer documents ranked on
their scores� IR techniques for processing keywords are certainly useful when matching tree pattern
queries approximately against XML documents� However� they are not su
cient and incorporating
techniques for the approximate matching of the document tree structure is more appropriate for
XML documents�

In order to compute approximate matches to a tree pattern query� this query must be relaxed�
Tree pattern relaxation can be achieved in several ways� For example� node types in the query
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can be generalized using a type hierarchy �e�g�� look for any document instead of only books��
Also� child relationships can be transformed into descendant ones �e�g�� look for a descendant isbn
subelement of the book instead of just as a child of book�� Users can specify the maximal number of
approximate answers they are expecting or a threshold that constitutes a lower bound for relevant
query answers� These criteria can be used to prune irrelevant query matches� In this paper� we
focus on the design of e
cient techniques to perform these approximate matchings on tree pattern
queries�

Given a tree pattern� the key problem is how to evaluate all relaxed versions of the query
e�ciently and guarantee that only relevant answers �those that are in the top�k list or those whose
score is at least as large as a given threshold� are returned� One possible way of evaluating a relaxed
query is to rewrite it into all its relaxed versions and apply multi�query evaluation techniques
exploiting common subexpressions� However� given the number of possible relaxations� rewriting�
based approaches quickly become impractical� Using techniques inspired by IR is a more promising
approach� All possible query relaxations can be encoded in a single query evaluation plan which
is evaluated and only relevant answers are selected� A post�pruning evaluation strategy could be
used but it is sub�optimal because it requires to compute all answers �rst� then perform pruning�
Hence� we developed algorithms that eliminate irrelevant answers �as soon as possible� in the query
evaluation process� More speci�cally� our technical contributions are as follows�

� We design an e
cient data pruning algorithm Thres that takes a weighted query and a
threshold and computes a set of answers whose score is at least as large as this threshold�

� Thres applies all possible relaxations to a query and then eliminates answers that have been
relaxed �too much� based on the threshold� We propose an adaptive optimization to Thres�
called OptiThres� that uses scores of intermediate results to detect dynamically which relax�
ations should be undone� while a query is being evaluated� to ensure better e
ciency�

� We design Top�K� an algorithm based on the same idea as Thres to select the top�k answers
to a query� Top�K takes a weighted query and a number k and returns a ranked list of the k
answers with the highest score�

� Finally� we run a set of experiments to compare the performance of our algorithms� The
experiments show the evaluation time and data size trends of each algorithm� They validate
the superiority of our algorithms when compared to post�pruning and rewriting�based ones�
They also study the overhead of relaxing a query compared to �nding exact matches only�
Finally� they validate the various optimizations that we propose�

In the sequel� we �rst present the related work in Section 	� The following section �Section ��
contains the background of this study �data model and queries�� It also gives the semantics of our
work and de�nes the problems we are tackling� Section � describes query evaluation plans and how
relaxations are encoded in a query plan� Then� in Section �� we describe Thres and OptiThres�
Top�K is given in Section �� Finally� Section � presents a set of experimental results� The terms
�query pattern�� �tree query� and �tree pattern� will be used interchangeably in this paper�

� Related Work

Our work focuses on approximate answering of tree pattern queries� which is closely related to
approximate keyword matching in Information Retrieval �IR� systems �	�
� There has been sig�
ni�cant research in IR on indexing techniques and query evaluation heuristics that improve the

	



query response time while maintaining a constant level of relevance to the initial query �e�g��
see ��� ��� 	�� ��� �	� ��
�� In fact� our strategy of using data pruning for obtaining answers to re�
laxed tree patterns was inspired by the work done in IR� However� our evaluation and optimization
techniques di�er considerably from the IR work� because of our emphasis on tree�structured XML
documents�

In order to understand our contributions� we classify the related work into the following four
categories�

Language Proposals for Approximate Matching� There exist many language proposals for
approximate query matching� These proposals can be classi�ed into two main categories� content�
based approaches and approaches based on hierarchical structure� In the �rst category� we �nd
text search and extensions to it for querying position of text �using predicates such as near� in
documents �e�g� ���� ��� 	�� 	�� 	�� ��
�� In the second category� we �nd �	�
�

In �	�
� the author proposes a pattern matching language called approXQL� an extension to
XQL �	�
� In ���
� the authors describe XIRQL� an extension to XQL �	�
 that integrates IR
features� XIRQL�s features are weighting and ranking� relevance�oriented search �where only the
requested content is speci�ed and not the type of elements to be retrieved� and datatypes with
vague predicates �e�g�� search for measurements that were taken at about �� feet�� In ���
� the
authors develop XXL� a language inspired by XML�QL ���
 that extends it for ranked retrieval�
This extension consists of similarity conditions expressed using a binary operator that expresses
the similarity between a value of a node of the XML data tree and a constant or an element variable
given by a query� This operator can also be used for approximate matching of element and attribute
names�

In this paper� we do not propose any query language extension and the works described above
can be seen as complementary to ours�

Speci�cation and Semantics� A query can be relaxed in several ways� In ���
� the authors
describe querying XML documents in a mediated environment� The query language is similar to
our tree patterns� The authors are interested in relaxing queries whose result is empty� They
propose three kinds of relaxations� unfolding a node �replicating a node by creating a separate
path to one of its children�� deleting a node and propagating a condition at a node to its parent
node� Unfortunately� this work does not consider any weighting and does not discuss evaluation
techniques for relaxed queries� Another interesting work is the one presented in �	�
 where the
author considers three relaxations of an XQL �	�
 query� deleting nodes� inserting intermediate
nodes and renaming nodes� By allowing only stylized sequences of deleting nodes �in a bottom�up
fashion�� �	�
 avoids the combinatorial e�ects of permitting arbitrary combinations of deletions�

Recently� Kanza and Sagiv �	�
 proposed two di�erent semantics� �exible and semi�exible�
for evaluating graph queries against a simpli�ed version of the Object Exchange Model �OEM��
Intuitively� under these semantics� query paths are mapped to database paths� so long as the
database path includes all the labels of the query path� the inclusion need not be contiguous or
in the same order� this is quite di�erent from our notion of tree pattern relaxation� They identify
cases where query evaluation is polynomial in the size of the query� the database and the result
�i�e�� combined complexity�� However� they do not consider scoring and ranking of query answers�

In IR� there are three ways of controlling the set of relaxations that are applied to a query�
threshold� top�k and boolean �e�g�� �	�
 and ���
� approaches� Most often� query terms are assigned
weights based on some variant of the tf�idf method �	�
 and probability independence between
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elementary conditions is assumed� We do not focus on the computation of the weights of query
terms and we can use existing methods for weight estimation�

Approximate Query Matching� There exist two kinds of algorithms for approximate matching
in the literature� post�pruning and rewriting�based algorithms� The complexity of post�pruning
strategies depends on the size of query answers and a lot of e�ort can be spent in evaluating the
total set of query answers even if only a small portion of it is relevant� Rewriting�based approaches
can generate a very large number of rewritten queries� For example� in �	�
� the rewritten query
can be quadratic in the size of the original query� In our work� we experimentally show that our
approach outperforms post�pruning and rewriting�based ones�

Top�k Query Processing� Relevant work on top�k query processing can roughly be divided
in two groups� evaluation strategies for multiattribute queries over multimedia repositories� and
evaluation strategies for queries over relational databases�

To process top�k queries involving multiple attributes� Fagin proposed the FA algorithm ���
�
which was developed as part of IBM Almaden�s Garlic project� This algorithm can evaluate top�k
queries that involve several independent �multimedia subsystems�� each producing scores that are
combined using arbitrary monotonic aggregation functions� Fagin showed that this technique is
optimal in a probabilistic sense� Fagin et al� ���
 improved on this result and introduced instance�
optimal algorithms for the case when all sources provide either both sorted and random access�
or only sorted access� Many variations of Fagin�s original algorithm exist in the literature �see�
e�g�� �	�� 	�� �
�� for optimizing the execution of top�k queries over multimedia repositories� In
particular� G�untzer et al� �	�
 reduce the number of random accesses through the introduction
of more stop�conditions and exploitation of data distribution� and Chaudhuri and Gravano ��

propose a cost�based approach for query optimization� based on translating a given top�k query
into a selection query that returns a superset of the actual top�k tuples�

Over relational databases� Carey and Kossman ��� �
 present techniques to optimize top�k queries
when the scoring is done through a traditional SQL order�by clause� If the scoring function involves
multiple attributes� then this technique generally requires an initial scan of the complete relation
during query processing� Donjerkovic and Ramakrishnan ���
 propose a probabilistic approach to
top�k query optimization� focusing on relations that might be the result of complex queries involving
joins� for example� and where the ranking condition involves a single attribute� Finally� Chaudhuri
and Gravano ���
 exploit multidimensional histograms to process top�k queries by mapping them
into traditional selection queries�

� Problem Overview

��� Background� Data Model and Queries

We consider a data model where information is represented as a forest of trees� Each node in the
tree has an associated type� Types can be organized in a simple inheritance hierarchy� A simple
example instance is given in Figure ��a��

To abstract from existing query languages for XML �e�g� ��� ��� 		
�� we express queries as tree
patterns where nodes are types and edges are parent�child and ancestor�descendant relationships�
These patterns are used to retrieve relevant portions of the data� Tree patterns do not capture all
aspects of XML query languages such as ordering and restructuring� However� they form a key

�



A tree instance
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�a� An Instance and a Query Example

( 3, 0 )

( 6, 0 ) ( 4, 0 )

( 5, 0 )
( 6, 0 )

Collection Editor

( 4 , 3 )

Book
( 7 , 1 )

( 2 , 1 )

( 8 , 5 )

AddressName

�b� A Weighted query Ex�
ample

Figure �� Examples of an Instance and a Query

component of these query languages by focusing on their structural aspect� Figure ��a� shows a con�
crete query example that looks for books that have a �child� editor� a �child� name� a �descendant�
address and belong to a �child� collection� A single edge represents a parent�child relationship� A
double edge is an ancestor�descendant relationship�

��� Relaxations

The main reason for approximate XML query matching is the heterogeneity of XML data which
can make query formulation tedious� Users need to know well the content as well as the structure
of the data to formulate queries which is not easy in the presence of optional elements in the data�
Furthermore� users can themselves specify that� in addition to exact query matches� they expect
�similar� answers to be returned �e�g�� the �like� feature of amazon�com or the �advanced search�
of google�com��

In order to explore the set of approximate matches of a query� we must be able to relax this
query and guarantee that the set of answers that will be returned is a superset of the set of exact
query matches�

One major di�erence between relaxing keyword�based searches and relaxing tree pattern queries
is the use of structural predicates in tree queries �parent�child and ancestor�descendant relation�
ships�� One can think of several ways of relaxing a tree query� For example� if we are looking for
books that appeared in a collection and that have an editor� we might want to return all books
with an editor �including those that did not appear in a collection�� To do so� we can make the
element node Collection and the edge between this node and the Book node optional� Other
kinds of relaxations modify conditions on nodes� For example� we could generalize the type Book

to Document� In this paper� we made the choice of studying a few simple relaxations� For example�
relaxations that increase the size of the original query by unfolding nodes are not studied�
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��� Semantics

De�nition ��� �Weighted Query� A weighted query is a tree pattern where each node and edge
is assigned up to two weights� an exact weight and �optionally� a relaxed weight� At a given node
or edge� the exact weight is larger than the relaxed weight�

Figure ��b� shows an example of a weighted query corresponding to the tree query of Figure ��a��
We allow users to specify exact and relaxed weights at nodes and edges to provide maximal �exi�
bility� However� in many cases� users have no particular preference� They might want to express
that no one node �or edge� is more important than another in which case all nodes and�or all edges
will have the same exact weight and the same relaxed weight�

Given a tree pattern query and an instance tree� we have the following de�nitions�

De�nition ��� �Node Embedding� A node embedding is a binding of a node in the query tree
to a node in the instance tree such that the instance node is an instance of the type of the query
node�

De�nition ��� �Edge Embedding� An embedding of a child edge in the query is a binding of
the edge to an edge in the instance tree where each endpoint of this edge is a node embedding� An
embedding of a descendant edge in the query is a binding of the edge to a path in the instance tree
where each endpoint of this edge is a node embedding�

In other terms� a descendant edge in the tree query is mapped to a path in the instance tree�
There can be several embeddings for a given query edge� By de�nition� each edge has a edge
embedding which is empty �does not exist��

De�nition ��	 �Query Embedding� A query embedding is an embedding of each node in the
query�

As an example� consider the query given in Figure ��b� and suppose we are interested in the
subquery containing Book� Editor and the edge between them� Suppose that the query node
Book has two node embeddings b� and b� and Editor has one node embedding e�� If there is an
edge embedding between b� and e�� then b� and e� along with the corresponding edge embedding
correspond to a query embedding� If there does not exist an editor for book b�� then there does
not exist a query embedding that contains b��

De�nition ��
 �Exact Match� Exact matches of a given query are all query embeddings�

De�nition ��� �Node Generalization� We say that a node is generalized in a tree query when
one of its super�types �in a type hierarchy� is used in the query instead of its type� A generalized
node is also called a relaxed node�

De�nition ��� �Edge Relaxation� We say that a child edge is relaxed in a tree query when it
is transformed to a descendant edge� Descendant edges cannot be relaxed�

De�nition ��
 �Optional Leaf Node� We say that a leaf node is optional in a tree query when
the node and the edge to its parent are removed from the tree query�

This operation can be composed to make a whole subtree optional� However� in order to avoid
empty queries� we forbid to make the root node optional�
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De�nition ��� �Subtree Promotion� We say that a subtree is promoted when the edge between
this the root of this subtree and its parent is removed and a descendant edge is created between this
subtree and the parent node of its parent�

De�nition ���� �Relaxed Query� A relaxed query is a query obtained by applying any compo�
sition of the four relaxations to it� �i� generalize a node� �ii� relax an edge� �iii� make a leaf node
optional and� �iv� promote a subtree�

The set of queries obtained by composing zero or more relaxations is the set of all possible
relaxed queries of a given query� We call this set R� By de�nition� the initial query is also included
in R�

De�nition ���� �Approximate Match� An approximate match is an answer that is an exact
match to a relaxed query�

By de�nition� an exact match is also an approximate match� Therefore� the set of all approx�
imate matches to a query is obtained by computing the union of all exact matches of the relaxed
queries in R�

In order to produce a ranked list of query matches� the score of each match must be computed�

De�nition ���� �Score of an Exact Node Match� The score of an exact node match is the
exact weight associated to the node to which it is matched in the weighted query�

De�nition ���� �Score of a Relaxed Node Match� The score of a relaxed node match is no
higher than the exact weight associated to the node to which it is matched in the weighted query
and no smaller than its relaxed weight�

There are di�erent ways of computing the score of a relaxed node match� One could decide that
if the most speci�c type of the node match is that of the corresponding node in the weighted query�
then its score will be the exact weight of that node and if the most speci�c type of the match is a
super�type of the original type� then its score is the relaxed weight of the original node� A more
accurate way of computing the score of a relaxed node match is by using a function that depends
on �how far�� in the type hierarchy� the most speci�c type of a match is from the original type� An
example is given below in a similar situation when computing the score of a relaxed edge match�

De�nition ���	 �Score of an Exact Edge Match� The score of an exact edge match is the
exact weight associated to the edge to which it is matched in the weighted query�

De�nition ���
 �Score of a Relaxed Edge Match� The score of a relaxed edge match� be�
tween a node n� and its descendant node n�� is no higher than the exact weight of the edge between
n� and n� and no smaller than its relaxed weight�

There are di�erent ways of computing the score of a relaxed edge match� One could decide that
no matter how �far� node n� is from its ancestor node n� in the instance document� the score of
the edge relating them will be the relaxed weight of the edge� In a more precise formulation� the
�distance� between the two node matches could be taken into account in computing the score of
the relaxed edge� A linear function in the distance or a logarithmic function could be used� The
only constraint on that function is that it has to be monotonic� In other words� the further n�

is from n�� the smaller the score of the edge relating them should be� As an example� consider a
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query that looks for all instances where a Book has an Editor as a child� Suppose that we decide
we can relax the child edge between Book and Editor into a descendant edge� Answers that are
books with an editor as a descendant should have a lower score than those with an editor as a child
�exact matches��

Assume the exact weight of the child edge between Book and Editor is ew and the relaxed weight
is rw� Let wdi� � ew�rw� and invldi� � 	
�level�Editor��level�Book��� The score assigned to
the edge between Book and Editor in an answer is computed using the formula� ew�wdi�� �	�
invldi��� For answers where Book and Editor appear in a parent�child relationship� invldi� is
always � and the score of the match would be ew �the exact edge weight�� Only when the level
di�erence is in�nite� would the score be rw� For a 	�level di�erence� invldi��	
�� and the score
is �ew��wdi�
����

The same formula could be used to compute the score of a relaxed node match where the level
di�erence measures how close to the original node type is the type of an actual match�

Our approach of evaluating relaxed tree patterns does not depend on the existence of a function
to compute the scores� In fact� as a default� we can adopt the simplest solution of using exact
weights for exact matches and relaxed weights for any relaxed match� If a function is given� it will
be used�

De�nition ���� �Score of a Match Against a �Relaxed� Query� The score of a match against
a query is the sum of the scores of all exact and relaxed nodes and edges in the match�

As an example� the score of exact matches of the query given in Figure ��b� is equal to the
sum of the exact weights of its nodes and edges which is ��� If Book is generalized to Document�
the score of exact matches �books� remains the same� However� the score of answers that match
documents and not books is the sum of the relaxed weight of Book and the exact weights of the
other nodes and edges in the weighted query ����������

Node that if a node is made optional �e�g� Address�� the score of exact matches of a query
can be �� for those answers in which the editor has an address or �	 for those answers where the
editor�s address does not exist� When making a node optional� there is a score�loss equal �����
which corresponds to the fact that both the Address node and the edge between this node and its
parent in the query do not have a value in some query matches�

A relaxed query might match the same answer multiple times with di�erent scores� If we
consider again the example in Figure ��b� and if we suppose that Book is generalized to Document�
the same book will be matched twice� when Book is considered and when Document is considered�
In this case� the same answer will have a di�erent score� In general� a match can be returned more
than once with di�erent score� Therefore� we de�ne the score of an approximate match as follows�

De�nition ���� �Score of an Approximate Match� The score of an approximate match is the
maximum score among all scores computed for it�

Another example of the same query match appearing several times in the set of all query matches
is the case where a subtree is promoted� Consider again the same example as before and suppose
that the node Name is promoted to become a descendant node of Book� For the same book� editor
and name there will be two approximate matches� the one in which the name is a child of editor and
the one in which the name is a descendant of book� The two query embeddings have di�erent scores
and taking the one with the highest score �the one in which name is a child of editor� eliminates the
other answer� E�ectively� the set of approximate matches to a query has to be pruned to compute
the correct set of query matches�
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Figure 	� Relaxations

De�nition ���
 �Threshold Problem� Given a query Q and a threshold t� the problem of �nd�
ing the set of approximate matches of Q whose scores are � t is the threshold problem�

De�nition ���� �Top�K Problem� Given a query Q and an integer k� the problem of �nding a
set of k approximate matches of Q whose scores are greater than or equal to the kth highest query
answer score is the top�k problem�

� Query Evaluation Plan and Relaxations Encoding

��� Query Evaluation Plan

Several query evaluation strategies have been proposed for XML �e�g� �		� ��
�� They typically rely
on a combination of index retrieval and join algorithms using speci�c structural predicates� For
our study� we will use the join algorithm of ���
 and two speci�c predicates c�n�� n�� to check for
the parent�child relationship and d�n�� n�� to check for the ancestor�descendant one�

Figure 	 shows a translation of the tree query of Figure ��a� into a left�deep join evaluation
plan with the appropriate predicates� It is important to note that the relaxation techniques that we
developed rely on the use of join plans to evaluate tree queries� However� they are not limited to a
particular join evaluation algorithm� Further� we are not concerned with cost�based optimizations
such as �nding the best evaluation plan or join ordering� These issues are complementary to our
relaxation techniques�

According to the query plan in Figure 	� an answer to a query is a tuple containing a value
�possibly empty� for every leaf node in the query evaluation plan�
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��� Encoding Relaxations in a Query Plan

We show how relaxations are encoded in the query evaluation plan� We also give examples to explain
how answer scores vary with a varying number of relaxations� Figure 	 shows some relaxations of
the query in Figure ��a�� and how to translate each of them to its corresponding expression in the
evaluation plan� The modi�cations to the initial evaluation plan are highlighted with bold dashed
lines� Predicates that are irrelevant to our discussion are omitted�

Generalizing nodes� In order to encode a node type generalization in a query plan� the predicate
on the node type is replaced by a predicate on its super�type� We show in Figure 	 how Book can
be replaced by Document�

Relaxing the structural predicate between nodes� In order to capture the relaxation of a
child edge to a descendant edge� we transform predicates of the form c���� ��� where �� and �� are
two node types� into a predicate of the form �c���� ��� OR �� � c���� ��� AND d���� ����� This new
predicate �rst checks if a child relationship exists between the two nodes and then� if this condition
is not satis�ed� it checks if a descendant relationship exists between the two nodes� As an example�
we relax the edge between Editor and Name and show the modi�ed join condition in Figure 	� In
the following �gures� the predicate �c���� ��� OR �� � c���� ��� AND d���� ���� is simpli�ed to �c���� ���
OR d���� ����� where OR has an ordered interpretation �check c���� ��� �rst� d���� ��� next��

Making a leaf node optional� This operation causes the join that relates the leaf node to
its parent node in the query evaluation plan to become an outer join� More precisely� it is a left
outer join because we consider left�deep evaluation plans� An example of this operation is given in
Figure 	 where Address is made optional� The outer join guarantees that even books whose editor
does not have an address will be returned�

Promoting a subtree� This operation causes the subtree to become a descendant of the parent
of its current parent� In the query evaluation plan� the predicate between the parent of the subtree
and the root of this subtree is modi�ed� Consider the example in Figure 	� Promoting Name causes
the transformation of the predicate that relates Name to its parent node Editor to be modi�ed� If the
predicate between the root of the promoted subtree �here Name� and its parent �here Editor� is of the
form� c
Editor�Name�� it becomes� �c�Editor�Name� OR �� ��c
Editor�Name�� d�Book�Name���
This new predicate checks for a descendant relationship between Book and Name� In the following
�gures� the predicate �c���� ��� OR �� � c���� ��� AND d���� ���� is simpli�ed to �c���� ��� OR d���� �����
where OR has an ordered interpretation �check c���� ��� �rst� d���� ��� next��

Combining Relaxations� Figure ��a� shows an example of combining all possible relaxations
in the same query� Each node is generalized if a type hierarchy exists �in our example only Book

becomes Document�� Therefore� all predicates where Book was involved now have Document as an
argument� All child edges are relaxed except the one between Editor and Address �since it was
already a descendant edge�� All nodes� except the root� are made optional and all subtrees are
promoted� Note that by composing relaxations� Editor becomes a leaf node at some point and can
thus be made optional �see the outer join between Document and Editor�� Therefore� in order to
make a non�leaf node optional� all its subtrees must have been promoted�

��



� Threshold Approach

The goal of the threshold approach is to take a weighted tree query and a threshold and generate� in
a decreasing order of answer scores� a ranked list of answers whose scores are at least as large as the
threshold� There is a whole body of work in IR which aims to evaluate answers to keyword�based
searches and compute scores that measure the relevance of an answer to a set of keywords �	�
�
A naive algorithm one could think of in the case of tree queries� is to translate a query into an
evaluation plan� encode all possible relaxations� evaluate answers to the relaxed query along with
the score of each answer and �nally� keep only answers whose scores are at least as large as the
threshold� We show that this post�pruning approach is suboptimal since it is not necessary to
�rst build the set of answers and only then prune irrelevant ones� In order to evaluate relaxed
queries more e
ciently� we need to detect� as soon as possible in the query evaluation process�
which intermediate answers will never meet the threshold� To do so� we designed the algorithm
Thres� Thres operates on a join plan� Before describing this algorithm� we explain how answer
scores are computed at each step of the join plan�

Editor

CollectionDocument

Address

((NOT exists (c (Editor, Address))

Name

c (Document, Editor)
OR
((NOT  exists (c (Document, Editor))
   AND  d (Document, Editor))

c (Document, Collection)
OR

   AND  d (Document, Collection))
((NOT  exists (c (Document, Collection))

c (Editor, Name)
OR
((NOT  exists (c (Editor, Name))
   AND  d (Editor, Name))
OR

   AND  d (Document, Name))
((NOT  exists (c (Editor, Name))

d (Editor, Address)
OR

   AND  d (Document, Address))

�a� Relaxations

Collection

d (Document, Collection)
OR
c (Document, Collection)

OR
c (Document, Editor)

Editor

( 7 ) Address

d (Document, Editor)

OR
d (Editor, Address)

Document

( 21 )
Name

d (Document, Name)

OR

OR

c (Editor, Name)

d (Document, Address)

d (Editor, Name)

( 40 )

( 39 )

( 38 ) ( 39 )

( 41 )

( 30 )

( 0 )

�b� A Thres Example

Figure �� Relaxations and Thres

��� Computing Answer Scores

The following query is general enough to show most cases that might occur in an evaluation plan�
Q � Document � c�Document�Collection� OR d�Document�Collection�Collection�

��



Suppose that the node Document is in fact� a relaxation of an initial node Book� Evaluating
Document results in two kinds of answers� ��� answers whose type is the exact node type Book

and �	� answers whose type is the relaxed node type Document but not Book� Answers in the �rst
category are assigned the exact weight of this node� Answers in the second category are assigned
a smaller weight�

Given two intermediate answers doc �of type Document� with score s�� and coll �of type Collection�
with score s��� the result of joining them can be one of three kinds�

� doc answers that do not join with any coll answer� These answers are assigned s� as a score�

� doc answers that join with coll answers via the predicate c�Document�Collection��

� Finally� doc answers that do not join with coll answers via c�Document�Collection� but that
join with coll answers via the predicate d�Document�Collection��

Answers that result from a join �via the child or the descendant predicate� are assigned the
score� s� � s� � s�Document� Collection� where s�Document� Collection� is the weight of the
edge between doc and coll which depends on the level di�erence between the actual instances of
Document and Collection �see Section ��� for more details��

��� Thres Algorithm

Consider the example in Figure ��b�� The query pattern is �rst translated into a join evaluation
plan and all possible relaxations are encoded�

De�nition 
�� �Maximal Weight� Maximal Weight� maxW� is de�ned as the maximal weight by
which intermediate answers in a query plan are expected to grow�

maxW is the total weight of what remains to be computed at a given step of the evaluation plan�
When no intermediate query answer is computed� maxW is the sum of all the exact weights of nodes
and edges in the query tree� In this case� maxW is also the maximal score a query match can have�
maxW can be computed at each node of a query evaluation plan� For example� in Figure ��b�� maxW
of the Document node is �	� This number is obtained by computing the sum of the exact weights
of the nodes and edges of the subtree rooted at Document �excluding the exact weight of Document
itself�� By de�nition� maxW of the last join� the one which is the root of the evaluation plan� is 

since answers to the query are totally computed at the root node�

Thres is summarized in Figure �� Initially� it computes maxW at each node of the evaluation
plan� The query is evaluated in a bottom�up fashion� At each node� there is a set of intermediate
query results along with their scores� If the sum of the score of an answer and maxW at the node
does not meet the threshold� this intermediate result is eliminated� Note that Figure � shows a
nested loop evaluation but this is only for the purpose of understanding� The algorithms we use
for joins and left�outer joins are based on the MPMGJN algorithm of ���
�

��� Adaptive Query Optimization

The optimizations we are focusing on in this section rely on a simple cost model according to which
the larger is the size of the output of a join operation� for a given join algorithm� the higher is the
cost of this join� Based on this assumption� we can draw a simple cost lattice in which a left outer
join is always more expensive than a join �since it potentially produces more answers� and a join
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evaluateSubtree�Node n�

if �n is leaf� results�evaluateLeaf�n��

for �r in results�

if �r��score�n��maxW � threshold� results�results�r�

return results�

list� � evaluateSubtree�n��left��

list	 � evaluateSubtree�n��right��

for �r� in list��

for �r	 in list	�

if �checkPredicate�r�
r	
n��predicate�� s � computeScore�r�
r	
n��predicate��

if �s�n��maxW �� threshold� append�r�
r	
s
n��results��

return results�

Figure �� Thres Algorithm

�or outer join� with a descendant predicate is more expensive than a join �or outer join� with a
child predicate �because children are also descendants�� Relevant answers are those whose scores
are at least as large as a given threshold� Since a threshold is always between the minimal score and
the maximal score of an answer� irrelevant answers are those obtained by �relaxing the query too
much�� Therefore� we want to optimize a query plan by detecting unnecessary relaxations �those
that will always generate irrelevant answers� and undo them� This detection can be done statically
or adaptively� The static detection is obvious� For example� it can be applied to decide whether a
node can be made optional or not� If the sum of the exact weights of all nodes and edges in the
query� except that of the node itself and that of the edge relating it to its parent� is smaller than
the threshold� then this node should not be made optional� In the following� we will focus on the
description of our adaptive optimization� OptiThres�


���� OptiThres Algorithm

The idea behind OptiThres� an improved version of Thres� is that we can predict� during query
evaluation� if a relaxation produces additional matches that will meet the threshold� We know
that relaxing a query causes some results to have a lower score� By keeping enough information in
the query evaluation process� we can dynamically decide whether applying a relaxation generates
answers that will never meet the threshold in which case� we undo this relaxation in the query�
OptiThres cannot be done statically since it depends on the scores of intermediate answers�

The algorithm OptiThres is given in Figure �� Only the parts that are additions to Thres are
speci�ed� When necessary� we indicate which part of Thres is missing�

Let us take a simple example� Consider the query pattern in Figure �� This query looks for all
Proceedings that have a Publisher and a Month� Exact and relaxed weights are associated with
each node and edge in the query� Proceeding is relaxed to Document� Publisher is relaxed to
Person and the child edges are relaxed to descendant ones� Person is made optional� The threshold
is set to ��� Statically� we cannot make any decision about forbidding relaxations�

While Thres relies on maxW at each node� OptiThres computes three weights at each join node
of the query evaluation plan �e�g� at the �rst join ���� 	� �� are computed�� The �rst weight�
relaxNode� is used to decide whether the right child of the join node �that will be joined with the
left child of the join node� should remain relaxed �assuming it was relaxed�� relaxNode is obtained
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evaluateSubtree�Node n�

if �n is leaf� results�evaluateLeaf�n��

�� maxLeft is now set to the maximal score of the results in n ��

if �maxLeft�relaxNode � threshold� unrelax�n��right��

�� Thres part that prunes leaf nodes is dropped


return�results��

list� � evaluateSubtree�n��left��

list	 � evaluateSubtree�n��right��

�� both maxLeft and maxRight are set ��

if �maxLeft�relaxJoin � threshold� unrelax�n��join��

if �maxLeft�maxRight�relaxPred � threshold� unrelax�n��join��predicate��

�� Thres part that prunes join results

return results�

Figure �� OptiThres Algorithm

by computing the sum of the exact weights of all nodes and edges that remain to be computed
and the highest relaxed weight of the right child of the join node� In this example� we assume that
we are using the same relaxed weight for all approximate matches that are not exact matches �no
function is used�� Therefore� a person who is a publisher will be assigned score �
 and a person who
is not a publisher will be assigned �� Therefore� relaxNode is equal to 
�������� where � is the
highest relaxed weight a person can have� The second weight� relaxJoin� is used to decide whether
the current join should remain an outer join or should be replaced by an inner join� It is obtained
by computing the sum of the exact weights of all the remaining nodes and edges except the right
child of the join itself 
����� Finally� the third weight� relaxPred� is used in case the join has
been modi�ed �from an outer join to a join� and will help decide if the predicate at this join should
remain relaxed� It is obtained by computing the sum of the exact weights of all remaining nodes
and edges and the highest relaxed weight of the predicate� In the same manner as for relaxNode�
we assume that the highest relaxed weight of the predicate is � which corresponds to the relaxed
weight of the edge between Proceeding and Publisher� relaxPred is then 
������� The decision
of whether to undo a predicate relaxation �turn it back to a child predicate� is done only if one
has decided to turn a join operation from an outer join to a join� Intuitively� this means that if
we are willing to �lose� a whole subtree by keeping an outer join� we do not need to check for the
predicate relaxation�

Let us look in more details at the example in Figure � with a threshold set to ��� Document

is evaluated �rst� Assume that the maximal score in the list of answers that we get is � which
means there are no Proceedings in our database� At the next join� relaxNode is equal to ���
relaxJoin is 	 and relaxPred is �� The sum relaxNode����� is smaller than the threshold� In
this case� we decide not to relax Publisher to Person and the query is modi�ed consequently� We
now evaluate Publisher� The maximal score of the result list is �
� We compute relaxJoin����

and decide that we need to turn the outer join into a join since the threshold is �� and we cannot
�a�ord losing Publisher�� We now check whether we should keep the descendant predicate� We
use relaxPred� ���
�relaxPred��� which is higher than the threshold� Therefore� we keep the
descendant predicate at the join� During the join evaluation� Thres can be applied to prune the
join result� Once this is done� suppose that the maximal score of its output is �
�������� At this
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d (Document, Person)
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c (Document, Month)
OR
d (Document, Month)
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PublisherDocument

Actual evaluation due to OptiThres

Figure �� A Simple OptiThres Example

point� we do not consider whether we should undo any relaxation at the leaf node Month since it
has not been generalized �relaxNode at the second join is not speci�ed�� We then evaluate Month

and get answers with a score of �� We use the current relaxJoin value 
 to decide whether we
should turn the outer join to a join� E�ectively� ���
��� does meet the threshold which means
that we can keep the outer join as it is� Therefore� we do not use relaxPred at this point� We now
compute the join and apply Thres� The expression that we have e�ectively computed is given in
Figure � and the dynamically modi�ed parts in the query are highlighted�


���� Properties of the Adaptive Optimization Algorithm

Complexity � Since OptiThres makes use of the maximal score of answers at each step of the
evaluation process and some precomputed numbers at each node in the evaluation tree� the
complexity added to the joins depends only on the size of the query evaluation plan� It does
not depend on the data� Hence� OptiThres is linear in the size of the tree pattern�

Comparison with Thres� It must be noted that even if OptiThres can have a potentially high
e
ciency bene�t over Thres� it is used only to decide whether some relaxations should be
undone and is not enough for detecting which answers should be pruned� Thres remains
necessary�

However� since the only decision that Thres makes on leaf nodes of the evaluation plan is
whether they should be generalized or not� if OptiThres is applied on these nodes� Thres does
not need to be applied on them� The only leaf node of the evaluation plan where OptiThres
cannot be used to decide whether it should be generalized or not is the root of the query tree
since it is the �rst node that is evaluated� However� this decision is made statically�

At each step of the query evaluation process� Thres and OptiThres will produce the same
output size� The di�erence between these two algorithms lies in the size of the non�pruned
output� While Thres pruning might work on a larger set of outputs� OptiThresmight decide�
in advance that a relaxation should not be applied and thus produce a smaller non�pruned
set�

Locality Property � OptiThres has an important locality property that guarantees its low �lin�
ear� complexity� No global decision about �undoing� relaxations is necessary� At each join
node� there is enough information to decide to undo relaxations local to this node �not gen�
eralizing the right child of the join� turning an outer join to a join or turning a descendant
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evaluateSubtree�Node n�

if �n is leaf� results�evaluateLeaf�n��

for �r in results�

if �r��score�n��maxW � prunScore� results�results�r�

return results�

list� � evaluateSubtree�n��left��

list	 � evaluateSubtree�n��right��

for �r� in list��

for �r	 in list	�

if �checkPredicate�r�
r	
n��predicate�� s � computeScore�r�
r	
n��predicate��

if �s�n��maxW �� prunScore� append�r�
r	
s
n��results��

prunScore � determinePrunScore�hash��

return results�

Figure �� Top�K Algorithm

predicate to a child one�� Making these decisions at nodes other than the current one �in
a non�local fashion� will not result in a better choice� In other words� applying OptiThres

locally at each node is at least as good as applying it globally since a global optimization
would rely on more conservative estimates�

� Top�K Approach

Top�K works in the same spirit as Thres� The algorithm is given in Figure �� The only di�erence
with Thres is that instead of having a �xed threshold� it relies on a dynamically computed one�
prunScore which has the value of the score of the kth answer at each step� prunScore is used
at each step of the query evaluation process �at each left�outer join operation� to prune answers
that will never participate in the �nal result� The idea behind this algorithm is simple� At each
step� intermediate answers are ranked by their score and the score of the kth answer� prunScore�
is used as the �current threshold� and is considered for pruning purposes� At a given step �a
given left�outer join node�� the score of an intermediate answer� augmented with maxW at this node
represents the highest score this answer will have� If this highest score is smaller than prunScore

at this node� it means that this intermediate answer will never be in the top�k ones and can be
eliminated at this step� Note that this reasoning is possible because all the join operations used in
our query evaluation plan are left outer joins that guarantee that the current set of answers will
always be selected�

Top�K can be seen as a variant of Thres where the threshold value is not known in advance
and changes dynamically at each join evaluation� We will see experimentally that if the threshold
corresponding to query answers is estimated in advance� Thres can be used to retrieve all answers
whose scores are at least as large as that threshold and thus� all top�k answers�
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Figure �� Queries Used in the Experiments

� Experiments

��� Experimental Setup

We use the DBLP XML dataset which is approximately ��MBytes and contain 	��M elements� More
details on the data size are in the table below� The DTD of this dataset as well as the data itself can
be found at http�

dblp�uni�trier�de
db� In order to prune data at each step of query evaluation�
we modi�ed the join algorithm of ���
 so that each input �and output� is materialized in a �le� We
run all our experiments on a HP�UX machine with �	MBytes of memory�

Label No� of elements Label No� of elements

article �	�
	� url �
��	��
cdrom 
����� ee �����

document �
���
� magazine �
publisher 
�
�� person ����	��

We de�ne a type hierarchy where document is a super�type of book� incollection� inproceedings�
proceedings� article� phdthesis� mastersthesis� www and magazine� and person is a super�
type of author� editor and publisher� We use the queries of Figure �� Since the DTD does
not have long paths� we do not use edge relaxation� In all experiments� query time is reported in
seconds and data size in the number of answers�

��� Studying Thres

We use Q� where url� ee� and cdrom are made optional and article is relaxed to document�
We compare the time it takes to perform Thres �with multiple threshold times� and postPrune

�post�pruning� and also the cumulative size of the data that is processed by each algorithm� The
results are given in Figure � where the x�axis represents each step of Q� evaluation� Figure ��a�
shows that the higher the threshold� the earlier irrelevant data is pruned and evaluation time is
reduced because the amount of data that remains in the evaluation process is reduced �as shown
in Figure ��b��� For postPrune� data pruning occurs only at the last step of query evaluation�
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Figure �� Compare Thres and postPrune

��� Bene	t of OptiThres

We compare postPrune� Thres and OptiThres� We use query Q� with a threshold equal to �

because we want to show how OptiThres decides that publisher should not be relaxed to person�
First� magazine is relaxed to document and publisher to person� person is made optional�
Figure �� shows a size and a time comparison� For a fair comparison� the same set of answers
�with the same size� is produced by all our algorithms� OptiThres detects that publisher should
not have been relaxed to person and should not have been made optional �the outer join is turned
back to a join�� This is because magazine is empty and the only instances that are selected when
evaluating magazine are those that are documents� Thus their score is � and do not meet the
threshold if publisher is relaxed� The graphs of Figure ���a� show that both postPrune and
Thres scan all of person which results in processing a higher data size than OptiThres which
scans only publisher� This also results in a higher execution time as shown in Figure ���b�� In
addition� since OptiThres performs a join operation �instead of an outer join�� there are time and
data size savings at the last step of query evaluation�

Finally� since OptiThres prunes data earlier than the other strategies� the amount of data
that it manipulates is smaller and thus its execution time is the smallest� Due to its ability to
undo unnecessary relaxations� OptiThres achieves a signi�cant improvement in query evaluation
performance� In addition� since OptiThres does not depend on the data and is an in�memory
check� it does not generate any additional I�O costs and is very e
cient�

��� Top�K

We study the performance of Top�K and compare it to Thres and postPrune� We run two sets of
experiments using Q� with two di�erent weights� In the �rst case� Q� has the same weights as in
Figure �� In the second case� article has weights 
������ cdrom has weight �� ee has weight �
and month has weight �� With this choice of weights� di�erent combinations of relaxations result in
di�erent scores of matching answers� The purpose of this experiment is to show that running Thres

with a very precise threshold value is always faster than running Top�K with the corresponding k
value�

The graphs in Figure �� illustrate the results of the �rst experiment� We run this experiment
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Figure ��� Compare OptiThres� Thres and postPrune

with two threshold values� With each value� we count the exact number of answers and used that
number as value for k� For example� in the case where the threshold is 	� k is �
�
� In the case
where the threshold is set to 	� Top�K is almost as e
cient as Thres because it detects at the �rst
join operation that all answers where article has been relaxed to document will never be in the
top�k answers and prunes them� However� with a threshold set to �� Top�K is worse because it does
not prune irrelevant data early enough in the evaluation process� In the second experiment where
Q� is considered with a di�erent weight� Top�K always behaves worse than Thres with threshold
values �	 and �
 but starts behaving almost as well as Thres with smaller threshold values� For
space limitation reasons� we do not graphically show the results of this second experiment�
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Figure ��� Compare Top�K OptiThres and postPrune

The conclusion of this experiment is that with a very precise threshold value Thres will always
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be faster than Top�K� However� this requires a very good estimation of the threshold value that
corresponds to a given value of k� How to do so accurately is outside the scope of this paper�

��� Comparison with Rewriting�Based Approaches

We run all our algorithms �except Top�K� on query Q� with a threshold set to � �to select a high
number of answers�� We compare postPrune� OptiThres� MultiQOptim and MultiQ� MultiQ and
MultiQOptim are two rewriting�based approaches� MultiQ is the case where we generate all relaxed
versions of Q� and execute each of them separately� The total time is obtained by computing the
sum of executing each query� MultiQOptim is the case where we share common subexpressions�

postPrune took 		���� seconds� OptiThres took ������� MultiQOptim took �����	 and MultiQ

took �����	� Our results show that the execution time of OptiThres is faster than the other
strategies� OptiThres is considerably faster than rewriting�based approaches� The reason is that
MultiQ performs �� joins� MultiQOptim performs � joins and OptiThres performs � joins�

� Conclusion

In this paper we provided a general framework for relaxing tree queries and combining our relax�
ation algorithms with existing join algorithms to evaluate these kinds of queries� We de�ned query
relaxation for tree patterns and presented e
cient algorithms for the evaluation of relaxed tree pat�
terns� We presented a data pruning strategy inspired by existing IR techniques and experimentally
showed its bene�t over post�pruning and rewriting�based approaches�
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