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Object ID -> Shard -> Node

2

ObjID Oi

Assoc. Oi, type, Oj

Shard 
ID

Shard 
ID

Static assignment, at creation time

Consistent hashing

Shard 
ID



ServiceFabric (SF) Federation Subsystem

➢Nodes are organized in a virtual ring (SF-Ring):
• Consists of 2m points (e.g., m=128 bits)

• Key -> owned by the closest node

• Neighborhood set: { ‘n’ successors, ‘n’ predecessors }

➢Ensures:
• Consistent Membership and Failure Detection

• Consistent Routing

• Leader Election
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Routing is Bidirectional and Symmetric (SF-Routing)

➢ith clockwise/anticlockwise routing table entry is the node whose ID is 
closest to the key (n +/- 2i)mod(2m)

➢SF-Routing:
• Provides more routing options

• Routes message faster

➢In latest design, SF-Routing is used for
• Discovery routing when a node starts up

• After Discovery, nodes communicate directly
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Consistent Routing
➢At any given time all messages sent to key ‘K’ will be received by a unique

Node. If that node crashes, a new node will take the responsibility
• Leader Election: For entire system use K=0

➢Each Node owns a routing token:
• A portion of the ring whose keys it is responsible for

➢SF-Ring ensures following consistency properties:
• Always Safe: there is no overlap among tokens owned by nodes

• Eventually Live: Eventually every token range will be claimed by a node

➢Efficiently Handle: Node Join, Leave and Fail
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➢ SF Ring
• Is being used in production for more than 15 years
• Working successfully, hence have not had to change it

➢ Invented concurrent with Chord and Pastry

➢ Chord/Pastry do not support Strong Consistency



➢Design Principles:
1. Membership  -> Strongly Consistent

• For each node, all its monitors agree on its up/down status
2. Decouples Failure Detection from Failure Decision (using Arbitrator)

➢Lease Based Monitoring:
• Node A sends Lease Request to Node B
• If Node A receives ACK, lease establishes

➢Symmetric Monitoring (SM)
• Node A and Node B monitor each other

➢Node X (Decoupling Detection-Decision):
• Maintains SM with all neighbors
• If at-least one Lease fails (Detection)

• ask for Arbitration (Decision)

Consistent Membership and Failure Detection
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Arbitrator

Arbitrator – Decouple Detection From Decision

➢Fail to renew lease (lease timeout Tm) (Detection)
• Ask for arbitration immediately (Decision)

• IF don’t receive any reply within Tm, leave!

• ELSE follow arbitrators decision !

Node 
A

Node
B

[2] Hey, I think B is dead  !

[3] Yes it is!

[4] Hey, I think A is dead !

[5] It’s too late! You have to leave

Arbitration Log
Log 1: Time T : Node B 

declared dead
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In Production: Multiple Arbitrators, 
Quorum Based approach

[1] Symmetric Monitoring Failed 

Recently-failed list
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Routing is Bidirectional and Symmetric (SF-Routing)
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Consistent Routing
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Node. If that node crashes, a new node will take the responsibility
• Leader Election: For entire system use K=0
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• Always Safe: there is no overlap among tokens owned by nodes
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➢ SF Ring
• Is being used in production for more than 15 years
• Working successfully, hence have not had to change it

➢ Invented concurrent with Chord and Pastry

➢ Chord/Pastry do not support Strong Consistency



Service Fabric and Its Goals

➢Support for Strong Consistency:
• Ground Up

• Higher layer focuses on “their” relevant notion of consistency (ACID at 
Reliable Collections)

➢Fault Tolerance

➢Support for Stateful Microservices:
• Microservices can have their own state
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Service Fabric Major Subsystems
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Reliable Collection (Queue, Dictionary): [Highly Available] & [Fault Tolerant] & [Persisted] & 

[Transactional]

Leader Election
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Reliable Failure Detector Routing Token

Federation Subsystem

Reliable Primary Selection Consistent Replica Set

Replicated State Machines

Reliability 
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Reliability Subsystem

➢Provides:
• Replication

• High Availability

• Load Balancing
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Reliable Collection (Queue, Dictionary)
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➢Reliable Collections:
• Fault Tolerant

• Highly Available

• Persisted, Replicated

• Transactional

➢Leverages lower layer guarantees (Failure Detection, Leader election, 
load balance etc.)

➢Used in Stateful Microservices



Evaluation – SF Arbitrator vs. Fully Distributed Scheme

Single Neighbors NeighborsNon-Neighbors Non-Neighbors

Scalable Failure Detector 
(SWIM): Not Strong

1 2 2 4 45 6

Node 1
+

4 neighbors = 5

Node 1, 2
+

4 neighbors = 6

10 8

20Strong Failure Detector (Virtual 
Synchrony): Not Scalable

Arbitrator based FD:
1. Scalable
2. Strong Failure Detection
3. Prevents Cascading Failure
4. Does not depend on #neighbors
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If a node fails to maintain lease, it will gracefully leave the system
It is the fully distributed way of maintaining strong consistency

Total neighbors

Cascading Failure

SF arbitrator 
approach


