
Service Fabric: A Distributed Platform for
Building Microservices in the Cloud

Gopal Kakivaya*, Lu Xun*, Richard Hasha*, Shegufta Bakht Ahsan#, Todd Pfleiger*, Rishi Sinha*, Anurag Gupta*, Mihail Tarta*, Mark
Fussell*, Vipul Modi*, Mansoor Mohsin*, Ray Kong*, Anmol Ahuja*, Oana Platon*, Alex Wun*, Matthew Snider*, Chacko Daniel*, Dan

Mastrian*, Yang Li*, Aprameya Rao*, Vaishnav Kidambi*, Randy Wang*, Abhishek Ram*, Sumukh Shivaprakash*, Rajeet Nair*, Alan
Warwick*, Bharat S. Narasimman*, Meng Lin*, Jeffrey Chen*, Abhay Balkrishna Mhatre*, Preetha Subbarayalu*, Mert Coskun*,

Indranil Gupta#

: University of Illinois at Urbana Champaign | * : Microsoft Azure

Presenter: Shegufta Bakht Ahsan DPRG@UIUC: http://dprg.cs.uiuc.edu
Service Fabric: aka.ms/servicefabric

EuroSys 2018, April 23rd-26th | Porto, Portugal

These slides were adapted for teaching purposes, the original set is available at https://shegufta.com/publications/

http://dprg.cs.uiuc.edu/
http://aka.ms/servicefabric

Object ID -> Shard -> Node

2

ObjID Oi

Assoc. Oi, type, Oj

Shard
ID

Shard
ID

Static assignment, at creation time

Consistent hashing

Shard
ID

ServiceFabric (SF) Federation Subsystem

➢Nodes are organized in a virtual ring (SF-Ring):
• Consists of 2m points (e.g., m=128 bits)

• Key -> owned by the closest node

• Neighborhood set: { ‘n’ successors, ‘n’ predecessors }

➢Ensures:
• Consistent Membership and Failure Detection

• Consistent Routing

• Leader Election

3

0

8

2030

40

22
2628

10

15

12

25

18

Routing is Bidirectional and Symmetric (SF-Routing)

➢ith clockwise/anticlockwise routing table entry is the node whose ID is
closest to the key (n +/- 2i)mod(2m)

➢SF-Routing:
• Provides more routing options

• Routes message faster

➢In latest design, SF-Routing is used for
• Discovery routing when a node starts up

• After Discovery, nodes communicate directly

4

Consistent Routing
➢At any given time all messages sent to key ‘K’ will be received by a unique

Node. If that node crashes, a new node will take the responsibility
• Leader Election: For entire system use K=0

➢Each Node owns a routing token:
• A portion of the ring whose keys it is responsible for

➢SF-Ring ensures following consistency properties:
• Always Safe: there is no overlap among tokens owned by nodes

• Eventually Live: Eventually every token range will be claimed by a node

➢Efficiently Handle: Node Join, Leave and Fail

5

Consistent Routing
➢At any given time all messages sent to key ‘K’ will be received by a

unique Node. If that node crashes, a new node will take the responsibility
• Leader Election: For entire system use K=0

➢Each Node owns a routing token:
• A portion of the ring whose keys it is responsible for

➢SF-Ring ensures following consistency properties:
• Always Safe: there is no overlap among tokens owned by nodes (ensured by

strong membership and failure detection)

• Eventually Live: Eventually every token range will be claimed by a node

➢Efficiently Handle: Node Join, Leave and Fail
6

➢ SF Ring
• Is being used in production for more than 15 years
• Working successfully, hence have not had to change it

➢ Invented concurrent with Chord and Pastry

➢ Chord/Pastry do not support Strong Consistency

➢Design Principles:
1. Membership -> Strongly Consistent

• For each node, all its monitors agree on its up/down status
2. Decouples Failure Detection from Failure Decision (using Arbitrator)

➢Lease Based Monitoring:
• Node A sends Lease Request to Node B
• If Node A receives ACK, lease establishes

➢Symmetric Monitoring (SM)
• Node A and Node B monitor each other

➢Node X (Decoupling Detection-Decision):
• Maintains SM with all neighbors
• If at-least one Lease fails (Detection)

• ask for Arbitration (Decision)

Consistent Membership and Failure Detection

7

Monitor Lease Status

1 OK

… …

2n OK

Node
20

Node
15

(Monitor
1)

Node
25

(Monitor
2n)

0

8

2030

40

22
2628

10

15

12

25

18

Arbitrator

Arbitrator – Decouple Detection From Decision

➢Fail to renew lease (lease timeout Tm) (Detection)
• Ask for arbitration immediately (Decision)

• IF don’t receive any reply within Tm, leave!

• ELSE follow arbitrators decision !

Node
A

Node
B

[2] Hey, I think B is dead !

[3] Yes it is!

[4] Hey, I think A is dead !

[5] It’s too late! You have to leave

Arbitration Log
Log 1: Time T : Node B

declared dead

8

In Production: Multiple Arbitrators,
Quorum Based approach

[1] Symmetric Monitoring Failed

Recently-failed list

9

Y
ZX

LRack
LRack

Each node Y and its monitors (X, Z) maintain Y’s lease

Tm

LRack
LRack

Tm

Y’s lease

Tm

Y’s lease

LR for Y
LR for Y

Y’s lease

LR for Y LR for Y

Tm

Y’s lease

Tm

Y’s lease

Tm

Y’s lease

10

Y Z
X

LRackLRack

fail(Y)?

accept(fail(X))

Y’s own lease

No lease

X’s own lease

LR for X

d
isco

n
n

ected

Arbitrator

fail(X)?

“Too late X - you
are dead”

LR for Y LR for Y

X and Y’s LR’s are almost simultaneous and both fail: only one of them is kicked out, situation is resolved fast

No lease

Although its lease expired,
Y remains in the ring

X is dead

- Cannot be a monitor
- Must stop serving,

responsibilities will
be taken over

11

Y Z
X

LRack
LRack

Tm

“Wait To &
reclaim Y’s token”

fail(Y)?

accept(fail(Y))

Y’s lease

No lease

X’s lease

LR for X

LRack

LRack
Y is dead – do
not respond

Arbitrator

fail(X)?

“Too late Y - you
are dead”

LR for Y LR for Y

LR for Y LR for Y

Y’s lease is renewed, then Y suffers temporary disconnection: Y can be kicked out, may only find out in (up to) Tm time

Y is dead

- Cannot be a monitor
- Should stop serving,

responsibilities will be taken over

Tlaxity

Routing is Bidirectional and Symmetric (SF-Routing)

➢ith clockwise/anticlockwise routing table entry is the node whose ID is
closest to the key (n +/- 2i)mod(2m)

➢SF-Routing:
• Provides more routing options

• Routes message faster

➢In latest design, SF-Routing is used for
• Discovery routing when a node starts up

• After Discovery, nodes communicate directly

12

Consistent Routing
➢At any given time all messages sent to key ‘K’ will be received by a unique

Node. If that node crashes, a new node will take the responsibility
• Leader Election: For entire system use K=0

➢Each Node owns a routing token:
• A portion of the ring whose keys it is responsible for

➢SF-Ring ensures following consistency properties:
• Always Safe: there is no overlap among tokens owned by nodes

• Eventually Live: Eventually every token range will be claimed by a node

➢Efficiently Handle: Node Join, Leave and Fail

13

Consistent Routing
➢At any given time all messages sent to key ‘K’ will be received by a

unique Node. If that node crashes, a new node will take the responsibility
• Leader Election: For entire system use K=0

➢Each Node owns a routing token:
• A portion of the ring whose keys it is responsible for

➢SF-Ring ensures following consistency properties:
• Always Safe: there is no overlap among tokens owned by nodes (ensured by

strong membership and failure detection)

• Eventually Live: Eventually every token range will be claimed by a node

➢Efficiently Handle: Node Join, Leave and Fail
14

➢ SF Ring
• Is being used in production for more than 15 years
• Working successfully, hence have not had to change it

➢ Invented concurrent with Chord and Pastry

➢ Chord/Pastry do not support Strong Consistency

Service Fabric and Its Goals

➢Support for Strong Consistency:
• Ground Up

• Higher layer focuses on “their” relevant notion of consistency (ACID at
Reliable Collections)

➢Fault Tolerance

➢Support for Stateful Microservices:
• Microservices can have their own state

15

Service Fabric Major Subsystems

16

17

Reliable Collection (Queue, Dictionary): [Highly Available] & [Fault Tolerant] & [Persisted] &

[Transactional]

Leader Election

Routing Consistency

Reliable Failure Detector Routing Token

Federation Subsystem

Reliable Primary Selection Consistent Replica Set

Replicated State Machines

Reliability
SubsystemFailover Management

C
o

n
si

st
en

cy
: H

ig
h

e
r

la
ye

rs
 r

e
u

se
 lo

w
e

r
la

ye
r’

s,
im

p
le

m
e

n
ti

n
g

th
e

ir
 o

w
n

 n
o

ti
o

n
 o

f
co

n
si

st
en

cy

18

Reliable Collection (Queue, Dictionary): [Highly Available] & [Fault Tolerant] & [Persisted] &

[Transactional]

Leader Election

Routing Consistency

Reliable Failure Detector Routing Token

Federation Subsystem

Reliable Primary Selection Consistent Replica Set

Replicated State Machines

Reliability
SubsystemFailover Management

C
o

n
si

st
en

cy
: H

ig
h

e
r

la
ye

rs
 r

e
u

se
 lo

w
e

r
la

ye
r’

s,
im

p
le

m
e

n
ti

n
g

th
e

ir
 o

w
n

 n
o

ti
o

n
 o

f
co

n
si

st
en

cy

Reliability Subsystem

➢Provides:
• Replication

• High Availability

• Load Balancing

19

20

Reliable Collection (Queue, Dictionary): [Highly Available] & [Fault Tolerant] & [Persisted] &

[Transactional]

Leader Election

Routing Consistency

Reliable Failure Detector Routing Token

Federation Subsystem

Reliable Primary Selection Consistent Replica Set

Replicated State Machines

Reliability
SubsystemFailover Management

C
o

n
si

st
en

cy
: H

ig
h

e
r

la
ye

rs
 r

e
u

se
 lo

w
e

r
la

ye
r’

s,
im

p
le

m
e

n
ti

n
g

th
e

ir
 o

w
n

 n
o

ti
o

n
 o

f
co

n
si

st
en

cy

Reliable Collection (Queue, Dictionary)

21

➢Reliable Collections:
• Fault Tolerant

• Highly Available

• Persisted, Replicated

• Transactional

➢Leverages lower layer guarantees (Failure Detection, Leader election,
load balance etc.)

➢Used in Stateful Microservices

Evaluation – SF Arbitrator vs. Fully Distributed Scheme

Single Neighbors NeighborsNon-Neighbors Non-Neighbors

Scalable Failure Detector
(SWIM): Not Strong

1 2 2 4 45 6

Node 1
+

4 neighbors = 5

Node 1, 2
+

4 neighbors = 6

10 8

20Strong Failure Detector (Virtual
Synchrony): Not Scalable

Arbitrator based FD:
1. Scalable
2. Strong Failure Detection
3. Prevents Cascading Failure
4. Does not depend on #neighbors

22

If a node fails to maintain lease, it will gracefully leave the system
It is the fully distributed way of maintaining strong consistency

Total neighbors

Cascading Failure

SF arbitrator
approach

