
HY-559 
Infrastructure Technologies for Large-

Scale Service-Oriented Systems

Kostas Magoutis

magoutis@csd.uoc.gr 

http://www.csd.uoc.gr/~hy559



Geo-replicated storage

Image courtesy of: L. Wyatt et al. Don’t Settle for Eventual Consistency, CACM’14



Geo-replicated storage

HY-452 University of Crete

CAP theorem, cannot simultaneously achieve
- Consistency
- Availability
- Partition tolerance

Real-world services opt for
- Availability
- Partition tolerance

Choose any two
(e.g., CA/CP -> Linearizability)



Desirable properties in geo-replicated services

• ALPS

– Availability

– Low latency

– Partition tolerance

– Scalability

• Linearizability (strong consistency) is not partition-tolerant

• One way to achieve ALPS: Eventual consistency

– Writes to one data center (DC) eventually appear at other DCs

– If all DCs receive the same set of writes, they will have the 
same values for all data

• This can lead to problems

HY-559 University of Crete



Linearizability

Sources: C. Lee et al, Implementing Linearizability at Large Scale and Low Latency, SOSP’15,
M. Herlihy, J. Wing, Linearizability: A Correctness Condition for Concurrent Objects. ACM Trans. Program. Lang. Syst. 12 (July 1990), 463–492.

A collection of operations is linearizable if each operation appears to occur instantaneously 
and exactly once at some point-in-time between its invocation and its completion

SA B

W(0)

R

1

W(0)

W(1)

R

0

A’s history

B’s history

Sequential history

W(0)

W(1)

R(1)

W(0)

R(0)

History of concurrent clients performing 
reads and writes on a single object

Another view:

Satisfies sequential specification



An example with replicated data

Data type: 4-location byte-valued read/write snapshot register

location value

1

2

3

4

0

0

0

0

A multi-location read-write memory has
• a set of locations (or addresses)
• operations such as 

• read(a)
• write(a, w)
• snapshot()

• snapshot() returns a set of values, one for each location



Linearizable execution

From “Consistency Models for Replicated Data”, A. D. Fekete, Krithi Mamamritham

Implementation rules:
• each read or snapshot is done on one replica
• each write is done on both replicas
• different writes are done in the same order at the replicas
• a write doesn’t return to the client until acked

Note:
• Writes indeed applied in the 

same order on all replicas in 
this example

• Mechanism for achieving 
order between writes is not
shown here



Sequential consistency

From “Consistency Models for Replicated Data”, A. D. Fekete, Krithi Mamamritham

Implementation rules:
• each read or snapshot is done on one replica
• each write is done on both replicas
• different writes are done in the same order at the replicas
• a write returns to the client as soon as messages sent out

Two replicas at sites X and Y, clients located at T and U

a legal history

Not linearizable!!



Weak consistency

Implementation rules:
• each read or snapshot is done on one replica
• each write is done on both replicas
• different writes are done in the same order at the replicas
• a write returns to the client as soon as messages sent out

Cannot find a legal history that would satisfy either linearizability or SC conditions



Desirable properties in geo-replicated services

• ALPS

– Availability

– Low latency

– Partition tolerance

– Scalability

• Linearizability (strong consistency) is not partition-tolerant

• One way to achieve ALPS: Eventual consistency

– Writes to one data center (DC) eventually appear at other DCs

– If all DCs receive the same set of writes, they will have the 
same values for all data

• This can lead to problems

HY-559 University of Crete



Problem 1: Comment reordering

HY-559 University of Crete



Problem 2: Double money withdrawal

HY-559 University of Crete



General architecture of modern web services

Images courtesy of: L. Wyatt et al. Don’t Settle for Eventual: Scalable Causal Consistency for Wide-Area Storage with COPS, SOSP’11



Example of causal relationships



Example

site 1

(m:1) means “key m, version 1”

(k:1)(m:1) (k:1)(m:1) (k:1)(m:1)

read m

write k (k:2)

(m:1)

site 2 site 3

(k:2)

depends on (m:1)

write (k:2)
depends on (m:1)

(k:2)

write (k:2)

read k

? wait for (m:2)

write k (k:3)

write (k:3)
depends on (m:2)

write (k:3)
depends on (m:2)

write m (m:2)

write (m:2)

depends on (k:2)

write (m:2)

depends on (k:2)

read m
(m:2)



COPS architecture



Causality and dependency

HY-559 University of Crete



Problem 1 fixed

HY-559 University of Crete



How to handle concurrent writes?

• Causally-unrelated writes require additional support

– Hard to maintain global invariants (e.g., balance > 0)

• These are rare, and can be handled with

– Later reconciliation

– Last-writer-wins

HY-559 University of Crete


