IMANEITIZETHMIO KPHTHX
UNIVERSITY OF CRETE

HY-559
Infrastructure Technologies for Large-
Scale Service-Oriented Systems

Kostas Magoutis
magoutis@csd.uoc.gr
http://www.csd.uoc.gr/~hy559

Geo-replicated storage

Image courtesy of: L. Wyatt et al. Don't Settle for Eventual Consistency, CACM'14

Geo-replicated storage

CAP theorem, cannot simultaneously achieve
- Consistency

- Availability

- Partition tolerance

Choose any two
(e.g., CA/CP -> Linearizability)

Real-world services opt for
- Availability

- Partition tolerance ??? 5y 7

geo replication

Desirable properties in geo-replicated services

o ALPS
— Availability
— Low latency

— Partition tolerance
— Scalability

e Linearizability (strong consistency) is not partition-tolerant

e One way to achieve ALPS: Eventual consistency

— Writes to one data center (DC) eventually appear at other DCs

— If all DCs receive the same set of writes, they will have the
same values for all data

e This can lead to problems

HY-559 University of Crete

Linearizability

A collection of operations is linearizable if each operation appears to occur instantaneously
and exactly once at some point-in-time between its invocation and its completion

L w(o) . (1) W(0) History of concurrent clients performing
A's history A: p——e—: —eo— | — reads and writes on a single object
i | |: . :l E"' ()
B’s history 1 S | —o—
A S B Sequential history

W(0)
D ® W(0)
5

hW(1)
_ R — |l ? W(1)
Another view: | E—— R(1)
1
W(0) ¢ W(0)
— |

R
Qﬂ ¢ R(0)
0

Satisfies sequential specification

Sources: C. Lee et al, Implementing Linearizability at Large Scale and Low Latency, SOSP’15,
M. Herlihy, J. Wing, Linearizability: A Correctness Condition for Concurrent Objects. ACM Trans. Program. Lang. Syst. 12 (July 1990), 463—492.

An example with replicated data

Data type: 4-location byte-valued read/write snapshot register

A multi-location read-write memory has
« a set of locations (or addresses)
 operations such as
« read(a)
« write(a, w)
 snapshot()
« snapshot() returns a set of values, one for each location

location value

0

1
2 0
3 0
4

Note:
» Writes indeed applied in the

Linearizable execution e e ona! repicasin

« Mechanism for achieving
Implementation rules: order between writes is not
. . shown here
» each read or snapshot is done on one replica
« each write is done on both replicas
« different writes are done in the same order at the replicas

« a write doesn’t return to the client until acked
read(1)
|

a legal history 5

write(1,5)

vy
|

[

| 4
|

!

h

0

L

write(2,7) TS
\ > 37 read(2)
/

(write(1, 5), “OK”) ¢ >
(read(1), 5) L
(re ad(2), O) snapshot() 13
[]

(write(2,7), “OK™) o5 _.> <

(snapshot(), O —0,1+—5,2—7,3+—0) 27,30
(write(3, 2), “OK”)

M write(3,2)

A

/

the order of operations as they occur in the sequence must not contradict any order
mformation visible to an observer of the system execution.

—
P
<
-

« . . - L . B. Charron-Bost, F. Pedone, and A. Schiper (Eds.): Replication, LNCS 5939, pp. 1-17, 2010,
From “Consistency Models for Replicated Data”, A. D. Fekete, Krithi Mamamritham @ Springer-Verlag Berlin Heidelberg 2010

Sequential consistency

Two replicas at sites X and Y, clients located at T and U
a legal history

\ ite(1,5
(erte(l, 5)’ “OK”) %j W1l e()

(read(1), 5) read(l T

(read(2), 0) S D>‘

(write(2, 7), “OK*) read(2)
(snapshot(), (0 — 0,1+ 5,2 — 7,3 1 0) =

(write(3, 2), “OK”) \

] write(3,2)
""" snapshﬁto[]:/%
0—0,1+—35,

Implementation rules: 27,30
« each read or snapshot is done on one replica

« each write is done on both replicas

« different writes are done in the same order at the replicas
« a write returns to the client as soon as messages sentlout

write(2, 7y [

Not linearizable!!

X Y U

« . . - L . B. Charron-Bost, F. Pedone, and A. Schiper (Eds.): Replication, LNCS 5939, pp. 1-17, 2010,
From “Consistency Models for Replicated Data”, A. D. Fekete, Krithi Mamamritham @ Springer-Verlag Berlin Heidelberg 2010

Weak consistency

Implementation rules:
» each read or snapshot is done on one replica
« each write is done on both replicas

*-

« a write returns to the client as soon as messages sent out

a write(1, 3)
write(2, 7) E% 5 write(3, 2)
snapshot()
snapshot()
|:> 00,135,
0+—0,1+—0, 2—0,3—0
207,32
T X Y U

Cannot find a legal history that would satisfy either linearizability or SC conditions

Desirable properties in geo-replicated services

o ALPS
— Availability
— Low latency

— Partition tolerance
— Scalability

e Linearizability (strong consistency) is not partition-tolerant

e One way to achieve ALPS: Eventual consistency

— Writes to one data center (DC) eventually appear at other DCs

— If all DCs receive the same set of writes, they will have the
same values for all data

e This can lead to problems

HY-559 University of Crete

Problem 1: Comment reordering

HY-559 University of Crete

Problem 2: Double money withdrawal

HY-559 University of Crete

General architecture of modern web services

Datacenter .
S Wide-Area Dat \
N atacenter
Dl € Replication
Cp PR
hl o S
ﬁa
Datacenter /
IR
0 €=>
ﬁ]z?
Clients Data Store Cluster

o —

[~ —>

1R

Images courtesy of: L. Wyatt et al. Don't Settle for Eventual: Scalable Causal Consistency for Wide-Area Storage with COPS, SOSP’11

Example of causal relationships

1. Execution Thread. If a and b/ are two operations in a single
thread of execution, then a ~ b if operation a happens before
operation b.

2. Gets From. If ¢ is a put operation and b is a get operation
that returns the value written by a, then a ~ b.

3. Transitivity. For operations a, b, and ¢, if a ~ b and b ~ c,
then a ~ c.

Client1 put(x,1)— put(y,2) — put(x,3)

|

Client 2 get(y)=2 — put(x,4)
Client 3 get(x)=4 — put(z,9)

(m:1) means “key m, version 1”

Example

(k:1)(m:1) (k:1)(m:1)
readm </(m:1)
write K—> (k:2)
write (K:2) ~write (k:2)
depends on (m:1) depends on (m:1)
T
read k (-(k.Z)
write m—|(M:2)
T~
write (Mm:2) write (m:2)
depends on (k:2) depends on (K:2)
" readme<” | (m:2)
write k—> (k:3)
PN
write (k:3) write (k:3)
depends on (m:2) | depends on (M:2)
~a
site 1 site 2

(k:1)(m:1)

(k:2)

7 wait for (m:2)

site 3

Clients

i
put

get OR
get trans

COPS architecture

A
: dep_check

Data Store Node v

put_after

Client Library Keyl = [<1V,D><2,v,D>] | Repl Queue
Algorithms | C— Key2 = [<2V,D>] D:IEIEI
i Key3 = [<1,V,D>,<3,V,D>] A
T put_after L L
I -
get_by_vers : Key : Vers Value
1
L—>
-

Alice’s Photo Upload

ctx_id = createContext () // Alice logs in
put (Photo, "Portuguese Coast", ctx_id)

put (Album, "add &Photo", ctx_id)
deleteContext (ctx_id) // Alice logs out

Bob’s Photo View

ctx_i1d = createContext () // Bob logs in
"&Photo" « get (Album, ctx_id)

"Portuguese Coast" « get (Photo, ctx_id)
deleteContext (ctx_id) // Bob logs out

Wide-Area
Replication

(a)

Causality and dependency

user oplD operation

Alice Wy write [Alice:town, NYC)

Bob I read (Alice:town)

Bob W3 write [Bob:town, LA)

Alice Iy read(Bob:town)

Carol Wg write [Carollikes, ACM, 8/31/12)
Alice wg write [Alice:likes, ACM, 9/1/12)
Alice rz read(Carallikes, ACM)

Alice wg write [Alice:friends, Carol, 9/2/12)
(c)

o
-

Q
E
= Ws '
4=

(=11}
=]

(b)
Alice Bob Carol
-3)
g r2
-
v
E ™ "
Il
o W
|-
- "
v
-
(d)
oplD Dependencies
Wy -
W3 W1
WS —_
Wg W3Wy
Wg WgWgWaWy

HY-559 University of Crete

Problem 1 fixed

HY-559 University of Crete

How to handle concurrent writes?

e Causally-unrelated writes require additional support
— Hard to maintain global invariants (e.g., balance > 0)

e These are rare, and can be handled with
— Later reconciliation

— Last-writer-wins Cindy takes $1000 Dave takes $1000
| |
C_s1000 ‘D—smoo
[§)
£ r I
~ D_s1000 i€ <1000

balance: —$1000

west coast eastcoast

HY-559 University of Crete

