
TAO
Facebook’s Distributed Data Store for the 
Social Graph

Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov, Hui Ding, 
Jack Ferris, Anthony Giardullo, Sachin Kulkarni, Harry Li, Mark Marchukov, Dmitri Petrov, 
Lovro Puzar, Yee Jiun Song, Venkat Venkataramani

Presented at USENIX ATC – June 26, 2013



The Social Graph

COMMENT

POST

USER

USER

PHOTO

LOCATION

USER

Carol

USER
USER

USER

EXIF_INFO

GPS_DATA AT

PHOTO

AUTHOR(hypothetical
encoding)



Dynamically Rendering the Graph

COMMENT

POST

USER

USER

PHOTO

LOCATION

USER

Carol

USER
USER

USER

EXIF_INFO

GPS_DATA

APP

iPhoto

AT

PHOTO

AUTHOR

W
eb

 S
er

ve
r 

(P
H

P
)



TAO

Dynamically Rendering the Graph

COMMENT

POST

USER

USER

PHOTO

LOCATION

USER

Carol

USER
USER

USER

EXIF_INFO

GPS_DATA

APP

iPhoto

AT

PHOTO

AUTHOR

W
eb

 S
er

ve
r 

(P
H

P
)

• 1 billion queries/second
• many petabytes of data



facebook data centers



What Are TAO’s Goals/Challenges?

▪ Efficiency at scale



Dynamic Resolution of Data Dependencies

COMMENT

POST

USER

USER

PHOTOLOCATION USER

Carol

APP

iPhoto

U
P

LO
A

D
_

FR
O

M

A
U

TH
O

R

1

2

3



What Are TAO’s Goals/Challenges?

▪ Efficiency at scale

▪ Low read latency

▪ Timeliness of writes

▪ High Read Availability



Graph in Memcache

COMMENT

POST

USER

USER

PHOTO

LOCATION

USER

Carol

USER
USER

USER

EXIF_INFO

GPS_DATA

APP

iPhoto

AT

PHOTO

AUTHOR

W
eb

 S
er

ve
r 

(P
H

P
)

O
b

j&
 A

ss
o

c
A

P
I

memcache
(nodes, edges, edge lists)

mysql



▪ Identified by unique 64-bit IDs

▪ Typed, with a schema for fields

▪ Identified by <id1, type, id2>

▪ Bidirectional associations are two 

edges, same or different type

Objects = Nodes

id: 308 =>

type: USER

name: “Alice”

id: 2003 =>

type: COMMENT

str: “how was it …

id: 1807 =>

type: POST

str: “At the summ…

Associations = Edges



Inverse associations

▪ Bidirectional relationships have separate 

a→b and b→a edges

▪ inv_type(LIKES) = LIKED_BY

▪ inv_type(FRIEND_OF) = FRIEND_OF

▪ Forward and inverse types linked only 

during write

▪ TAO assoc_add will update both

▪ Not atomic, but failures are logged and 

repaired

Nathan

Carol

“On the 
summit”

A
U
T
H
O
R
E
D
_
B
Y

A
U
T
H
O
R



▪ <id1, type, *>

▪ Descending order by time

▪ Query sublist by position or time

▪ Query size of entire list

Association Lists

id: 2003 => type: COMMENT

str: “how was it, was it w…

id: 1807 =>

type: POST

str: “At the summ…

<1807,COMMENT,2003>

time: 1,371,707,355

id: 8332 => type: COMMENT

str: “The rock is flawless, …

id: 4141 => type: COMMENT

str: “Been wanting to do …

newer

older

<1807,COMMENT,8332>

time: 1,371,708,678

<1807,COMMENT,4141>

time: 1,371,709,009



Objects and Associations API

Reads – 99.8%

▪ Point queries

▪ obj_get 28.9%

▪ assoc_get 15.7%

▪ Range queries

▪ assoc_range 40.9%

▪ assoc_time_range 2.8%

▪ Count queries

▪ assoc_count 11.7%

Writes – 0.2%

▪ Create, update, delete for objects

▪ obj_add 16.5%

▪ obj_update 20.7%

▪ obj_del 2.0%

▪ Set and delete for associations

▪ assoc_add 52.5%

▪ assoc_del 8.3%



What Are TAO’s Goals/Challenges?

▪ Efficiency at scale

▪ Low read latency

▪ Timeliness of writes

▪ High Read Availability



TAO

Independent Scaling by Separating Roles

Cache
• Objects
• Assoc lists
• Assoc counts

Database

Web servers • Stateless

• Sharded by id
• Servers –> bytes

• Sharded by id
• Servers –> read qps



TAO

Independent Scaling by Separating Roles

Cache
• Objects
• Assoc lists
• Assoc counts

Database

Web servers • Stateless

• Sharded by id
• Servers –> bytes

• Sharded by id
• Servers –> read qps



Object ID -> Shard -> Cache node

17

ObjID Oi

Assoc. Oi, type, Oj

Shard ID

Shard ID

Static assignment, at creation time

Consistent hashing

Shard ID



Sharding in Tao

18



19

MySQL

Cache

MySQL MySQL MySQL MySQL MySQL MySQL MySQL

Asynchronous replication

Region 1 Region 2

Cache CacheCache Cache

Shard sk

Cache Cache Cache CacheCache

Shard sk

ObjID Oi

Assoc. Oi, type, Oj

Shard sk

ObjID Oi Assoc. Oi, type, Oj

Master for sk

Shard sk

ObjID Oi Assoc. Oi, type, Oj

Slave for sk



Subdividing the Data Center

Cache

Database

Web servers
• Inefficient failure detection
• Many switch traversals

• Many open sockets
• Lots of hot spots



Network design

Source: http://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Campus/HA_campus_DG/hacampusdg.html



Subdividing the Data Center

Cache

Database

Web servers

• Thundering herds

• Distributed write 
control logic



Follower and Leader Caches

Follower cache

Database

Web servers

Leader cache



What Are TAO’s Goals/Challenges?

▪ Efficiency at scale

▪ Low read latency

▪ Timeliness of writes

▪ High Read Availability



Write-through Caching – Association Lists

Follower cache

Database

Web servers

X,…

X,A,B,C

Leader cache X,A,B,C

Y,A,B,C

Y,A,B,C

X –> Y

X –> Y

X –> Y
ok

ok

refill X refill Xok

Y,…

X,A,B,CY,A,B,C

range get



Asynchronous DB Replication

Follower cache

Database

Web servers

Master data center Replica data center

Leader cacheInval and refill 
embedded in SQL

Writes forwarded 
to master

Delivery after DB 
replication done



What Are TAO’s Goals/Challenges?

▪ Efficiency at scale

▪ Low read latency

▪ Timeliness of writes

▪ High Read Availability



Improving Availability: Read Failover

Follower cache

Database

Web servers

Master data center Replica data center

Leader cache



TAO Summary

• Separate cache and DB

• Graph-specific caching

• Subdivide data centers

Efficiency at scale

Read latency

• Write-through cache

• Asynchronous replication
Write timeliness

• Alternate data sourcesRead availability



(c) 2009 Facebook, Inc. or its licensors. "Facebook" is a registered trademark of Facebook, Inc.. All rights reserved. 1.0



Single-server Peak Observed Capacity

0 K

100 K

200 K

300 K

400 K

500 K

600 K

700 K

90% 92% 94% 96% 98%

O
p

e
ra

ti
o

n
s/

se
co

n
d

Hit rate



Write latency



More In the Paper

▪ The role of association time in optimizing cache hit rates

▪ Optimized graph-specific data structures

▪ Write failover

▪ Failure recovery

▪ Workload characterization



35


