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The Social Graph
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Dynamically Rendering the Graph
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TAO

Dynamically Rendering the Graph
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• 1 billion queries/second
• many petabytes of data



facebook data centers



What Are TAO’s Goals/Challenges?

▪ Efficiency at scale



Dynamic Resolution of Data Dependencies
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What Are TAO’s Goals/Challenges?

▪ Efficiency at scale

▪ Low read latency

▪ Timeliness of writes

▪ High Read Availability



Graph in Memcache
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▪ Identified by unique 64-bit IDs

▪ Typed, with a schema for fields

▪ Identified by <id1, type, id2>

▪ Bidirectional associations are two 

edges, same or different type

Objects = Nodes

id: 308 =>

type: USER

name: “Alice”

id: 2003 =>

type: COMMENT

str: “how was it …

id: 1807 =>

type: POST

str: “At the summ…

Associations = Edges



Inverse associations

▪ Bidirectional relationships have separate 

a→b and b→a edges

▪ inv_type(LIKES) = LIKED_BY

▪ inv_type(FRIEND_OF) = FRIEND_OF

▪ Forward and inverse types linked only 

during write

▪ TAO assoc_add will update both

▪ Not atomic, but failures are logged and 

repaired
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▪ <id1, type, *>

▪ Descending order by time

▪ Query sublist by position or time

▪ Query size of entire list

Association Lists

id: 2003 => type: COMMENT

str: “how was it, was it w…

id: 1807 =>

type: POST

str: “At the summ…

<1807,COMMENT,2003>

time: 1,371,707,355

id: 8332 => type: COMMENT

str: “The rock is flawless, …

id: 4141 => type: COMMENT

str: “Been wanting to do …

newer

older

<1807,COMMENT,8332>

time: 1,371,708,678

<1807,COMMENT,4141>

time: 1,371,709,009



Objects and Associations API

Reads – 99.8%

▪ Point queries

▪ obj_get 28.9%

▪ assoc_get 15.7%

▪ Range queries

▪ assoc_range 40.9%

▪ assoc_time_range 2.8%

▪ Count queries

▪ assoc_count 11.7%

Writes – 0.2%

▪ Create, update, delete for objects

▪ obj_add 16.5%

▪ obj_update 20.7%

▪ obj_del 2.0%

▪ Set and delete for associations

▪ assoc_add 52.5%

▪ assoc_del 8.3%



What Are TAO’s Goals/Challenges?

▪ Efficiency at scale

▪ Low read latency

▪ Timeliness of writes

▪ High Read Availability



TAO

Independent Scaling by Separating Roles

Cache
• Objects
• Assoc lists
• Assoc counts

Database

Web servers • Stateless

• Sharded by id
• Servers –> bytes

• Sharded by id
• Servers –> read qps
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Object ID -> Shard -> Cache node

17

ObjID Oi

Assoc. Oi, type, Oj

Shard ID

Shard ID

Static assignment, at creation time

Consistent hashing

Shard ID



Sharding in Tao
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MySQL

Cache

MySQL MySQL MySQL MySQL MySQL MySQL MySQL

Asynchronous replication

Region 1 Region 2

Cache CacheCache Cache

Shard sk

Cache Cache Cache CacheCache

Shard sk

ObjID Oi

Assoc. Oi, type, Oj

Shard sk

ObjID Oi Assoc. Oi, type, Oj

Master for sk

Shard sk

ObjID Oi Assoc. Oi, type, Oj

Slave for sk



Subdividing the Data Center

Cache

Database

Web servers
• Inefficient failure detection
• Many switch traversals

• Many open sockets
• Lots of hot spots



Network design

Source: http://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Campus/HA_campus_DG/hacampusdg.html



Subdividing the Data Center

Cache

Database

Web servers

• Thundering herds

• Distributed write 
control logic



Follower and Leader Caches
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What Are TAO’s Goals/Challenges?

▪ Efficiency at scale

▪ Low read latency

▪ Timeliness of writes

▪ High Read Availability



Write-through Caching – Association Lists

Follower cache

Database

Web servers

X,…
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Asynchronous DB Replication

Follower cache

Database

Web servers

Master data center Replica data center

Leader cacheInval and refill 
embedded in SQL

Writes forwarded 
to master

Delivery after DB 
replication done



What Are TAO’s Goals/Challenges?

▪ Efficiency at scale

▪ Low read latency

▪ Timeliness of writes

▪ High Read Availability



Improving Availability: Read Failover

Follower cache

Database

Web servers

Master data center Replica data center

Leader cache



TAO Summary

• Separate cache and DB

• Graph-specific caching

• Subdivide data centers

Efficiency at scale

Read latency

• Write-through cache

• Asynchronous replication
Write timeliness

• Alternate data sourcesRead availability
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Single-server Peak Observed Capacity
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Write latency



More In the Paper

▪ The role of association time in optimizing cache hit rates

▪ Optimized graph-specific data structures

▪ Write failover

▪ Failure recovery

▪ Workload characterization
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