
Kostas Magoutis

magoutis@csd.uoc.gr 

http://www.csd.uoc.gr/~hy559

HY-559 
Infrastructure Technologies for Large-

Scale Service-Oriented Systems



Garage innovator

• Creates new Web applications that may rocket to 
popular success

– Success typically comes in the form of “flash crowds”

• Requires load-balanced system to support growth

• Does not have access to large upfront investment



Contemporary utility computing

• Low overhead during lean times

• Highly scalable

• Quickly scalable



Storage delivery networks

• Amazon S3, Nirvanix platforms

• Similar to Content Delivery Networks (CDNs)

• Large clusters of tightly coupled machines

• Handle data replication, distributed consensus, load 
distribution behind a static-content interface



Compute Clouds

• Before Cloud computing (~2006):

– Bandwidth to colocation facilities billed on per-use basis

– Virtual private servers billed monthly

• Current utility computing providers offer VM 
instances billed per hour



Other building blocks

• Missing piece: relational databases

• DNS outsourcing

– Avoids DNS becoming single point of failure



7

requesting host
host.client.com

server1.yourstartup.com

root DNS server

local DNS server
dns.client.com

1

2
3

4

5

6

authoritative DNS server
dns.yourstartup.com

7
8

TLD DNS server

DNS example



8

DNS: caching and updating records

• Once any name server learns mapping, it caches it

– Cache entries timeout after some time (TTL)

– TLD servers cached in local name servers

• Thus root name servers are not visited often

• update/notify mechanisms under design by IETF

– RFC 2136

– http://www.ietf.org/html.charters/dnsind-charter.html



9

DNS records

• Type=NS

– name is domain (e.g. 
foo.com)

– value is hostname of 
authoritative name server 
for this domain

RR format: (name, value, type, TTL)

 Type=A
❖ name is hostname
❖ value is IP address

 Type=CNAME
❖ name is alias for some 

“canonical” (real) name
www.ibm.com is really
servereast.backup2.ibm.com

❖ value is canonical name

 Type=MX
❖ value is name of mail server 

associated with name



Inserting records into DNS

• Example: just created startup “Network Utopia”

• Register name networkuptopia.com at a registrar 
(e.g., Network Solutions)

– Need to provide registrar with names and IP addresses of 
your authoritative name server (primary and secondary)

– Registrar inserts two RRs into the com TLD server:

• (networkutopia.com, dns1.networkutopia.com, NS)

• (dns1.networkutopia.com, 212.212.212.1, A)



Inserting records into DNS (2)

• Put in authoritative server Type A record for 
www.networkuptopia.com

• Put Type MX record for networkutopia.com



Scaling architectures

• Using the bare SDN

• DNS load-balanced cluster

• HTTP redirection

• L4 or L7 load balancing

• Hybrid approaches



Cookie, IPclient

Server 

cluster 1

Load 

balancing 

Tier 2

Server 

cluster 2

Server 

cluster k

Load 

balancing 

Tier 1: DNS

AWS S3
AWS EC2

DNS servers 

(authoritative)IP1

IPn

…

DNS lookup

DNS RR 
(to be cached with TTL)

1

2

3

4

crashes

new VMs

IP1

Analysis of design space

• Application scope

• Scale limitations

• Client affinity

• Scale up/down time

• Response to failures



Application scope

• Bare SDN suitable for static content only

• HTTP redirector works with HTTP

• L7 load balancers constrained by application protocol

• DNS and L4 load balancers work across applications



Scale limitation

• SDNs are designed to be scalable

• HTTP redirection involved only in session setup

• L4/L7 load balancer limited by forwarder’s ability to 
handle entire traffic

• DNS load balancing has virtually no scalability limit



Client affinity

• SDN fulfills client request regardless of where it 
arrives

• HTTP redirection provides strong client affinity

– Use client session identifier

• L4 balancers cannot provide affinity

• L7 balancers can provide affinity

• DNS clients cannot be relied upon to provide affinity



Scale up and down time

• Bare SDN designed for instantaneous scale up/down

• HTTP redirectors and L4/L7 balancers have identical 
behavior

– Scale down time is trickier, need to consider worst-case 
session length

• DNS is most problematic



Effects of front-end failure

• SDN has multiple redundant hot-spare load balancers

• L4 and L7 balancers are highly susceptive

– A solution is to split traffic across m balancers, use 
redundant hot spares (DNS load-balanced)

• HTTP redirectors same as above, except that there is 
no impact on existing sessions

• DNS load balancing affected by failure when

– Using single DNS server (no replication)

– Short TTLs so as to handle scale-up/down and backend 
node failure



Effects of back-end failure

• “Back-end” are servers that are running service code

• SDN managed by service provider (~1% writes fail)

• HTTP redirector and L4/L7 balancer

– Newly arriving sessions see no degradation at all

– Existing sessions see only transient failures

• DNS load balancing suffers worst performance



Summary



EC2-integrated HTTP redirector

• Monitors load on each running service instance

– Servers send periodic heartbeats with load statistics

– Redirector uses heartbeats to evaluate server liveness

• Resizes server farm in response to client load

– When total free CPU capacity on servers with short run 
queues are less than 50%, start new server

– When more than 150%, terminate server with stale sessions

• Routes new sessions probabilistically to lightly loaded 
servers



HTTP redirect experiment



DNS server failover behavior



Other microbenchmarks

• Web client DNS failover behavior

– Clients experience delays from 3 to 190 seconds

• Badly-behaved resolvers

• Maximum size of DNS replies

• Client affinity observations



MapCruncher

• Interactive map generated by client (AJAX) code

• Service instance responds to HTTP GET bringing an 
image off of stable storage

• Initially used 25GB of images on a single server’s disk

• Flash crowd service peaked at 100 files / sec

• Moving to Amazon S3 solved I/O bottleneck



Asirra

• CAPTCHA Web service

• Asirra session consists of

– Client retrieves challenge

– Submits user response for scoring

– Produce service ticket to present to webmaster

– Webmaster independently verifies service ticket

• Deployed in EC2

– 100GB of images (S3)

– Metadata (MySQL) reduced into simple database loaded on 
each server’s local disk



Asirra (2)

• Session state kept locally within each server

– S3 option considered inadequate (write performance)

• Client affinity becomes important

– DNS load balancing does not guarantee affinity

• Servers forward session to its home

– Rate of affinity failures about 10%

• Flash crowd

– 75,000 challenges plus 30,000 DoS requests over 24 hours



Asirra lessons learned

• Poor client-to-server affinity due to DNS load 
balancing was not a big problem

• EC2 lost IP reservation after failure (fixed)

• Denial of service attack easily dealt with with Cloud 
resources

– Further lesson: No need to optimize code before on-going 
popularity materializes



Inkblot

• Website to generate images as password reminders

– Must store dynamically created information (images) durably

• Coded simply but inefficiently in Python

• Store both persistent and ephemeral state in S3

• Initial cluster consistent of two servers, load balanced 
through DNS

– Updating DNS required interacting with human operator



Cookie, IPclient

Server 

cluster 1

Load 

balancing 

Tier 2

Server 

cluster 2

Server 

cluster k

Load 

balancing 

Tier 1: DNS

AWS S3
AWS EC2

DNS servers 

(authoritative)IP1

IPn

…

DNS lookup

DNS RR 
(to be cached with TTL)

1

2

3

4

crashes

new VMs

IP1



Inkblot (2)

• Flash crowd resulted into run-queue length of 137

– Should be below 1

• Added 12 more servers, DNS update, within half hour

• New server saw load immediately, original servers 
recovered in about 20 minutes

• 14 servers averaged run queue lengths b/w 0.5-0.9

• After peak, removed 10 servers from DNS, waited an 
extra day for rogue DNS caches to empty


