ey >
HEN\E2| TANEMIZTHMIO KPHTHE
B30 /5| UNIVERSITY OF CRETE

HY-559
Infrastructure Technologies for Large-
Scale Service-Oriented Systems

Kostas Magoutis
magoutis@csd.uoc.gr
http://www.csd.uoc.gr/~hy559

ZooKeeper: Wait-free coordination for
Internet-scale systems

(\

Client | | Client | | Client | | Client | | Client | | Client | |Client | | Client

Replicated state machine
— Single leader, multiple followers
Clients connect to service over a session (FIFO)
— Service can check client health via heartbeats, deliver notifications to client
Updates are ordered through leader
— ZooKeeper atomic broadcast, majority based
Reads proceed from any (closest) replica

Overview

Client | | Client | | Client | | Client | | Client | | Client | | Client | | Client

e Guarantees e Notifications (watches)
— Writes are linearizable — Client request them on updates
— FIFO client ordering of all operations — They do not block write requests

— Clients notified, then read updated value
e Reads can be stale

e One-time triggers

Hierarchical namespace

/app2

lapp1/p_1 lappl/p_ 2 /app1/p_3

/Znode types

e Regular

e Ephemeral

lapp2

e Sequential

lapp1/p_1 lappl1/p_2 [lapp1/p_3

Write
Request

Z0ooKeeper atomic broadcast (writes only)

g

-

Request

Processor -7)

ZooKeeper Service

Replicated
Database

txn

Atomic
Broadcast

__S—) Response

Read

Request
flogs
Quorum Peer SN
(QP) /logO flogn
PN PN
Leader | 10" bi b0 by
znodes P
g SN
g | // Commit \‘\\h
flogs | £) - flogs
- ...\\ | Kh"‘“m-. AN
Nog0 llogn Follower Follower flog0 flogn
VAN A N P
§ ; " mma e N
b0 b b0 b b0 bi O b
Commit Commit
_J _

Wait-free client API

create (path, data, flags): Creates a znode
with path name path, stores datal[] in it, and
returns the name of the new znode. flags en-
ables a client to select the type of znode: regular,
ephemeral, and set the sequential flag;

delete (path, version): Decletes the znode
path if that znode is at the expected version;

exists (path, watch): Returns true if the znode
with path name path exists, and returns false oth-
erwise. The watch flag enables a client to set a
watch on the znode;

getData (path, watch): Returns the data and
meta-data, such as version information, associated
with the znode. The wat ch flag works in the same
way as it does for exists (), except that Zoo-
Keeper does not set the watch if the znode does not
exist;

setData (path, data, version): Writes
data[] to znode path if the version number is
the current version of the znode;

getChildren (path, watch): Returns the set of
names of the children of a znode;

sync (path): Waits for all updates pending at the start
of the operation to propagate to the server that the
client is connected to. The path is currently ignored.

Configuration management

Configuration info stored in a znode named config

Starting processes read config with watch flag set
- getData (path=../app/config, watch = true)

If updated ...
- setData (path=../app/config, newConfig, ..)

... processes receive notification, read config again

They need to set watch flag again

Group membership

Designate a znode (workers) to represent the group

When a member starts, creates ephemeral znode under
workers, either with unique name or sequential ID

- create (path=../workers/wl, data, EPHEMERAL)
Processes may put info (IP, port, etc.) in child znode
If processes crashes, child znode is automatically removed

Obtain group info
- getChildren (path=../workers, watch=true)

Set watch flag to monitor changes

Simple locks

Lock files
— Each lock is represented by a znode L

To acquire a lock, create ephemeral znode L
— If it succeeds, you hold the lock

If lock already held, set a watch flag
— Holder can release it by deleting L

If you are notified that L was released, try to acquire
— Herd effect, only exclusive locking

Locks without Herd Effect

Lock

1 n = create(l + “/lock-", EPHEMERAL|SEQUENTIAL)
2 C = getChildren(l, false)

31if n is lowest znode in C, exit

4 p = znode 1n C ordered jJust before n

5 1if exists(p, true) wait for watch event
6 goto 2

Unlock
1 delete (n)

Shared locks

Write Lock

1 n = create(l + “/write-", EPHEMERAL|SEQUENTIAL)
2 C = getChildren(l, false)

3 if n is lowest znode in C, exit

4 p = znode in C ordered Jjust before n

5 if exists(p, true) wait for event

6 goto 2

Read Lock

n = create(l + “/read-", EPHEMERAL|SEQUENTIAL)
C = getChildren(l, false)

1f no write znodes lower than n in C, exit

p = write znode in C ordered just before n

if exists(p, true) wait for event

goto 3

oY U B W N

