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Coordination services

e API for

— Storing and querying cluster state
e Live machines, association to services, roles

— Express interest in conditions, notifications

e High availability and data consistency
— Replication
— Order on state updates

e Google Chubby (Paxos), Apache ZooKeeper (ZAB)
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Paxos algorithm

Way to build fault-tolerant distributed systems
— Replicated state machines (RSM)

Consensus via message exchange
— Asynchronous: no timing guarantees
— Network can delay, reorder, lose (but not corrupt) packets

Can guarantee safety
— Replicas will agree on a single value

Need additional assumptions to ensure progress



Informally

Three roles: Proposer, acceptor, learner
Simplest, but fault-intolerant solution: single acceptor
With >1 acceptors, agreement by a majority required

If single value proposed, that value should be chosen
— Thus, an acceptor must accept the first value proposed to it

However, this may lead to fragmented electorate
— Multiple proposals by each proposer should be possible
— Identify each proposal by a unique integer N



Informally

o After consensus, an acceptor cannot change its mind

— A value is chosen when single proposal with that value
accepted by a majority of the acceptors

e Allow multiple proposals to be chosen, but guarantee
that all chosen proposals have the same value




Paxos setup
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Need to try to get a majority to accept
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Informally

e Allow multiple proposals to be chosen, but guarantee
that all chosen proposals have the same value

e If proposal N with value vis chosen, every higher

numbered proposal issued by any proposer should
have value v

e A proposer wanting to issue a proposal numbered NV
must learn the highest-numbered proposal <NV (if
any) that has been or will be accepted by a majority




Informally

e A proposer wanting to issue a proposal numbered NV
must learn the highest-numbered proposal <N (if
any) that has been or will be accepted by a majority
— Easy to learn about values already accepted
— Hard to predict the future

e Control the future by extracting a promise that there
will not be any acceptances of proposals <N




Paxos — phase 1
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Paxos — phase 2
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Paxos — communicate agreement
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Paxos — majority learns outcome
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Paxos — learning chosen value
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Paxos — propagate chosen value
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Paxos — everyone learns outcome
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Example

ballots: xxxx00  xxxx01  xxxx02
proposers vV : v’ v’
pre (0) pre (0)
acceptors | (_,_) : (L) ()
proposers v : v : [ v
ACK-pre (0,_) ACK-pre (0, )

acceptors : (0,) (0,.) ()

proposers Vv : Vv’ ] ‘ v’
pro (0,v) pre (1) pre (1)

L
acceptors | (0, ) : (0,_) ‘ )

proposers v Vv’ v’
ACK-pro (0,v) ACK-pre (N-Pre (1)
I
acceptors | (O.vo)  (1.0) | | (1)
proposers Vv : v’ ‘ [ v
pro (1,v’)IN Zpre (2)
acceptors | (0,vp) : (1,) (1,0
proposers v : Vv’ ‘ [ v’
. ACK-pre
ACK-pro (1,v) 2v7) ACK-pre (2,_)
acceptors (O,VD): (2,\»"1)‘ [ (2,)
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Example (contd.)
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acceptors [ (3,V'3) : (3,v'3)




Lamport: implementing a state machine

How to run multiple instances of Paxos
— Assume the existence of a distinguished proposer (leader)
— A leader will run Paxos for a number of instances

— The leader may crash, at which point there may be gaps in
the chosen instances (1-134, 138, ..)

— A new leader will try to fill in those slots or propose no-op
— As soon as gap fills, commands can be executed

Multi-Paxos

— New leader: execute phase 1 for infinitely many instances
— Acceptors can respond with reasonably short messages

— Cost of Paxos effectively the cost of executing phase 2



Multi-Paxos
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Servers
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Servers play all roles

Replicas write to disk prior
— to sending ACK




