ey >
HEN\E2| TANEMIZTHMIO KPHTHE
B30 /5| UNIVERSITY OF CRETE

HY-559
Infrastructure Technologies for Large-
Scale Service-Oriented Systems

Kostas Magoutis
magoutis@csd.uoc.gr
http://www.csd.uoc.gr/~hy559

Coordination services

e API for

— Storing and querying cluster state
e Live machines, association to services, roles

— Express interest in conditions, notifications

e High availability and data consistency
— Replication
— Order on state updates

e Google Chubby (Paxos), Apache ZooKeeper (ZAB)

Order on state updates

Append y
Append x ‘I

Log

Execute

Paxos algorithm

Way to build fault-tolerant distributed systems
— Replicated state machines (RSM)

Consensus via message exchange
— Asynchronous: no timing guarantees
— Network can delay, reorder, lose (but not corrupt) packets

Can guarantee safety
— Replicas will agree on a single value

Need additional assumptions to ensure progress

Informally

Three roles: Proposer, acceptor, learner
Simplest, but fault-intolerant solution: single acceptor
With >1 acceptors, agreement by a majority required

If single value proposed, that value should be chosen
— Thus, an acceptor must accept the first value proposed to it

However, this may lead to fragmented electorate
— Multiple proposals by each proposer should be possible
— Identify each proposal by a unique integer N

Informally

o After consensus, an acceptor cannot change its mind

— A value is chosen when single proposal with that value
accepted by a majority of the acceptors

e Allow multiple proposals to be chosen, but guarantee
that all chosen proposals have the same value

Paxos setup

client | e
value v proposer
" | proposer acceptor
/ learner
// acceptor proposer \\
,’I learner N P— |
/ x 5
1 e = \
! N learner \|
l NS |
\ S |
\ proposer % J
\ proposer /!
\ acceptor K
\ -
\ learner acceptor e Be able to agree in the
learner presence of up to f failures
N N e e 2f+1 nodes
\\\\ ‘\‘:‘”‘“-: ‘:‘: . .
S g - Agreement when majority

(f +1) agrees on a value

= -
=~ -
~ - —
Tt e e

Need to try to get a majority to accept

. .]
client
X5 value v
A proposer
N propose N, v
proposer —| acceptor
propose N, v learner
acceptor oroposer
\\
leamer » acceptor
~ X
S learner

W

propose N, v

S
proposer <
proposer
acceptor
acceptor
learner
learner

L
r

7
Wt

Informally

e Allow multiple proposals to be chosen, but guarantee
that all chosen proposals have the same value

e If proposal N with value vis chosen, every higher

numbered proposal issued by any proposer should
have value v

e A proposer wanting to issue a proposal numbered NV
must learn the highest-numbered proposal <NV (if
any) that has been or will be accepted by a majority

Informally

e A proposer wanting to issue a proposal numbered NV
must learn the highest-numbered proposal <N (if
any) that has been or will be accepted by a majority
— Easy to learn about values already accepted
— Hard to predict the future

e Control the future by extracting a promise that there
will not be any acceptances of proposals <N

Paxos — phase 1

prepare N Proposer
proposer N — acceptor [N, _ value v
\
leamer » acceptor
< =
= prepare N learner
X
S
proposer %
t proposer
acceptor
acceptor [N, _
learner learner . Highest-numbered proposal
. accepted
:‘\‘-.,; Highest-numbered prepare

Wt

request acknowledged \

Written to stable store

Paxos — phase 2

propose N, v |Proposer

value v’
proposer | — acceptor | N, v
propose N, v learner
acceptor | py, proposer
\\
learner \ N acceptor
. S
D propose N, v learner
—=
S
proposer ‘%
proposer
acceptor
acceptor |N, v
learner
learner
S

Wt

Paxos — communicate agreement

client

<;£7'// \

decide N, v

4
r

W e

Wt

decide N, v proposer
proposer | —| acceptor | N, v
learner (
deC|de N, v
proposer
proposer
acceptor
acceptor [N,
learner
learner
S

/a A

<

proposer

acceptor

learner

value v’

Paxos — majority learns outcome

C

lient

(ﬁ"ﬁ’ \

proposer

acceptor

WL

learner

proposer

acceptor

proposer

acceptor

learner

4
!

W e

learner

<ﬂ’f°// j

proposer

acceptor

learner

/ay

N,

proposer

acceptor

learner

Wt

<

client

value v’

Paxos — learning chosen value

client

.
client
> proposer
s ’ value v’
proposer N’, v | acceptor | Prepare N u
learner
_acoeptor \ proposer ,
learner s N prepare N
» s — | acceptor

. =

¥ / learner

NS prepare N’

=
proposer / A
proposer
N’, _ | acceptor
acceptor
learner
learner
<

W t!

Paxos — propagate chosen value

C

lient

<:/’?"ﬁ" \

& h

l client

W t!

proposer
ropose N’,v
proposer N,, v | acceptor prop ,\/
learner
acceptor \ proposer N’
S i propose N’,v
learner » N’, v | acceptor
=
e learner
propose N’,v
S
proposer / %
proposer
N’, v | acceptor
acceptor
learner
learner
S

Paxos — everyone learns outcome

client

<ﬁ’?’°ﬁ’ \

<
< <

(4
r

W e

proposer

acceptor

learner

proposer

acceptor

learner

4
(]

/,;,//a

proposer

acceptor

</f//°f/ j

N’, v

proposer

acceptor

learner

/a

N’, v

learner | v

l client

proposer

acceptor \N’, v

WA

<

learner

Example

ballots: xxxx00 xxxx01 xxxx02
proposers vV : v’ v’
pre (0) pre (0)
acceptors | (_,_) : (L) ()
proposers v : v : [v
ACK-pre (0,_) ACK-pre (0,)

acceptors : (0,) (0,.) ()

proposers Vv : Vv’] ‘ v’
pro (0,v) pre (1) pre (1)

L
acceptors | (0,) : (0,_) ‘)

proposers v Vv’ v’
ACK-pro (0,v) ACK-pre (N-Pre (1)
I
acceptors | (O.vo) (1.0) | | (1)
proposers Vv : v’ ‘ [v
pro (1,v’)IN Zpre (2)
acceptors | (0,vp) : (1,) (1,0
proposers v : Vv’ ‘ [v’
. ACK-pre
ACK-pro (1,v) 2v7) ACK-pre (2,_)
acceptors (O,VD): (2,\»"1)‘ [(2,)

proposers

acceptors

proposers

acceptors

proposers

acceptors

Example (contd.)

v v’ ‘ ‘ v
pro (2,v) pro (2,v)
l L

Ovo) | [2V49)| | (2)

vV : v’ : v’

ACK-pro (2,v'») ACK-pro (2,v7)

(Ovo) | |(2V2)| [(2V2)

v v’

pre (3) re (3)

(Ovo) | [(2v72)

.]

proposers v v
ACK-pre (3,v;) ACK-pre (3, v’y
acceptors | (3,vg) : (3,Vv'2)
proposers v v’ :
pro (3,v) ro (3,v))
acceptors | (3,vo) : (3,Vv'2)
proposers v v’ :
ACK-
a3 vf;f 0 ACK-pro (3,v’s)
acceptors [(3,V'3) : (3,v'3)

Lamport: implementing a state machine

How to run multiple instances of Paxos
— Assume the existence of a distinguished proposer (leader)
— A leader will run Paxos for a number of instances

— The leader may crash, at which point there may be gaps in
the chosen instances (1-134, 138, ..)

— A new leader will try to fill in those slots or propose no-op
— As soon as gap fills, commands can be executed

Multi-Paxos

— New leader: execute phase 1 for infinitely many instances
— Acceptors can respond with reasonably short messages

— Cost of Paxos effectively the cost of executing phase 2

Multi-Paxos

Client Proposer (leader) Acceptors Learners

request

- New leader @N —> prevere(y)

- Learn accepted values RQ
for past instances
— =

OK (N, 1, {Va Vb, VC}J

é’_____-—"

propose{N I, Vm)

If a majority has not
/ accepted anything for

instances > I
— | /

OK (I, Vm) #é// OK (N, I, Vm) 74 OK (I, Vm) ,_\%

request
\ pl’OI’.‘lOSE

s

Skip prepare phase until a
propose is rejected!

)\XZ%\
IV

—

OK (N, 1+1, W
OK (1+1, W) é" (

T OK (1+1, W) _\>

Client

OK (I, Vn)

OK (1+1, W)

T

\ 2\

Multi-Paxos

Servers

prepare(M)

v

OK (N, I, {V

\

propose(

OK N, I,

propose(N, 1+

Wi

OK (M, 1+1, W)

\

N

.1, vn)

1. W)

:

V

Servers play all roles

Replicas write to disk prior
— to sending ACK

