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Microsoft Service Fabric

A distributed platform that enables building and management of scalable 
and reliable microservice based applications

Culmination of over 15 years of design and development
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➢Microsoft Azure SQL DB:
• Hosts ~2 Million DBs | Containing 3.5 PB of data | Spans over 100K machines

➢Azure Cosmos DB:
• Utilizes 2 million cores | Spans over 100K machines

➢Cloud Telemetry Engine:
• Processes 3 Trillion events/week



Monolithic Vs. Microservice Based Approach

UI Database

Business Logic

DB

CacheLoad
Balancer

Classic Monolithic Approach

Not Cloud Friendly Cloud Friendly

Node 1 Node 2 Node N

App 1 App 2

Microservice Based Approach
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• Cannot scale out individual functions
• Needs to scale out everything

Can Scale-out 
individual 
components
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Monolithic vs. Microservice Applications
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Application Model
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Service Fabric and Its Goals

➢Support for Strong Consistency:
• Ground Up

• Higher layer focuses on “their” relevant notion of consistency (ACID at 
Reliable Collections)

➢Fault Tolerance

➢Support for Stateful Microservices:
• Microservices can have their own state
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Service Fabric Major Subsystems
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Reliable Collection (Queue, Dictionary): [Highly Available] & [Fault Tolerant] & [Persisted] & 

[Transactional]

Leader Election

Routing Consistency

Reliable Failure Detector Routing Token

Federation Subsystem

Reliable Primary Selection Consistent Replica Set

Replicated State Machines

Reliability 
SubsystemFailover Management
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Federation Subsystem

➢Nodes are organized in a virtual ring (SF-Ring):
• Consists of 2m points (e.g., m=128 bits)

• Key -> owned by the closest node

• Neighborhood set: { ‘n’ successors, ‘n’ predecessors }

➢Ensures:
• Consistent Membership and Failure Detection

• Consistent Routing

• Leader Election
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➢Design Principles:
1. Membership  -> Strongly Consistent

• For each node, all its monitors agree on its up/down status
2. Decouples Failure Detection from Failure Decision (using Arbitrator)

➢Lease Based Monitoring:
• Node A sends Lease Request to Node B
• If Node A receives ACK, lease stablishes

➢Symmetric Monitoring (SM)
• Node A and Node B monitor each other

➢Node X (Decoupling Detection-Decision):
• Maintains SM with all neighbors
• If at-least one Lease fails (Detection)

• ask for Arbitration (Decision)

Consistent Membership and Failure Detection
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Monitor Lease Status
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Arbitrator

Arbitrator – Decouple Detection From Decision

➢Fail to renew lease (lease timeout Tm) (Detection)
• Ask for arbitration immediately (Decision)

• IF don’t receive any reply within Tm, leave!

• ELSE follow arbitrators decision !

Node 
A

Node
B

[2] Hey, I think B is dead  !

[3] Yes it is!

[4] Hey, I think A is dead !

[5] It’s too late! You have to leave

Arbitration Log
Log 1: Time T : Node B 

declared dead
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In Production: Multiple Arbitrators, 
Quorum Based approach

[1] Symmetric Monitoring Failed 

Recently-failed list
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Each node Y and its monitors (X, Z) maintain Y’s lease
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Y Z
X

LRackLRack

fail(Y)?

accept(fail(X))

Y’s own lease

No lease

X’s own lease

LR for X

d
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Arbitrator

fail(X)?

“Too late X - you 
are dead”

LR for Y LR for Y

X and Y’s LR’s are almost simultaneous and both fail: only one of them is kicked out, situation is resolved fast

No lease

Although its lease expired, 
Y remains in the ring

X is dead

- Cannot be a monitor
- Must stop serving, 

responsibilities will 
be taken over
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Y Z
X

LRack
LRack

Tm

“Wait To &         
reclaim Y’s token”

fail(Y)?

accept(fail(Y))

Y’s lease

No lease

X’s lease

LR for X

LRack

LRack
Y is dead – do 
not respond

Arbitrator

fail(X)?

“Too late Y - you 
are dead”

LR for Y LR for Y

LR for Y LR for Y

Y’s lease is renewed, then Y suffers temporary disconnection: Y can be kicked out, may only find out in (up to) Tm time

Y is dead

- Cannot be a monitor
- Should stop serving, 

responsibilities will be taken over

Tlaxity



Routing is Bidirectional and Symmetric (SF-Routing)

➢ith clockwise/anticlockwise routing table entry is the node whose ID is 
closest to the key (n +/- 2i)mod(2m)

➢SF-Routing:
• Provides more routing options

• Routes message faster

➢In latest design, SF-Routing is used for
• Discovery routing when a node starts up

• After Discovery, nodes communicate directly
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Consistent Routing
➢At any given time all messages sent to key ‘K’ will be received by a unique

Node. If that node crashes, a new node will take the responsibility
• Leader Election: For entire system use K=0

➢Each Node owns a routing token:
• A portion of the ring whose keys it is responsible for

➢SF-Ring ensures following consistency properties:
• Always Safe: there is no overlap among tokens owned by nodes

• Eventually Live: Eventually every token range will be claimed by a node

➢Efficiently Handle: Node Join, Leave and Fail
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Consistent Routing
➢At any given time all messages sent to key ‘K’ will be received by a 

unique Node. If that node crashes, a new node will take the responsibility
• Leader Election: For entire system use K=0

➢Each Node owns a routing token:
• A portion of the ring whose keys it is responsible for

➢SF-Ring ensures following consistency properties:
• Always Safe: there is no overlap among tokens owned by nodes (ensured by 

strong membership and failure detection)

• Eventually Live: Eventually every token range will be claimed by a node

➢Efficiently Handle: Node Join, Leave and Fail
19

➢ SF Ring
• Is being used in production for more than 15 years
• Working successfully, hence have not had to change it

➢ Invented concurrent with Chord and Pastry

➢ Chord/Pastry do not support Strong Consistency
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Reliable Collection (Queue, Dictionary): [Highly Available] & [Fault Tolerant] & [Persisted] & 

[Transactional]

Leader Election

Routing Consistency

Reliable Failure Detector Routing Token

Federation Subsystem

Reliable Primary Selection Consistent Replica Set

Replicated State Machines

Reliability 
SubsystemFailover Management
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Reliability Subsystem

➢Provides:
• Replication

• High Availability

• Load Balancing
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Reliable Collection (Queue, Dictionary): [Highly Available] & [Fault Tolerant] & [Persisted] & 

[Transactional]

Leader Election

Routing Consistency

Reliable Failure Detector Routing Token

Federation Subsystem

Reliable Primary Selection Consistent Replica Set

Replicated State Machines

Reliability 
SubsystemFailover Management
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Reliable Collection (Queue, Dictionary)
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➢Reliable Collections:
• Fault Tolerant

• Highly Available

• Persisted, Replicated

• Transactional

➢Leverages lower layer guarantees (Failure Detection, Leader election, 
load balance etc.)

➢Used in Stateful Microservices



Evaluation – SF Arbitrator vs. Fully Distributed Scheme

Single Neighbors NeighborsNon-Neighbors Non-Neighbors

Scalable Failure Detector 
(SWIM): Not Strong

1 2 2 4 45 6

Node 1
+

4 neighbors = 5

Node 1, 2
+

4 neighbors = 6

10 8

20Strong Failure Detector (Virtual 
Synchrony): Not Scalable

Arbitrator based FD:
1. Scalable
2. Strong Failure Detection
3. Prevents Cascading Failure
4. Does not depend on #neighbors
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If a node fails to maintain lease, it will gracefully leave the system
It is the fully distributed way of maintaining strong consistency

Total neighbors

Cascading Failure

SF arbitrator 
approach



Summary

➢Microsoft Service Fabric: A distributed platform that enables building and 
management of scalable and reliable microservice based applications

➢Service Fabric ensures strong consistency and fault-tolerance from lower 
layers, which helps us to build state at the upper layers

➢Selected Components:
• Federation Subsystem, Reliability Subsystem, Reliable Collection (Queue, Dictionary)

DPRG@UIUC: http://dprg.cs.uiuc.edu

Service Fabric: aka.ms/servicefabric

Open Source: github.com/Microsoft/service-fabric

http://dprg.cs.uiuc.edu/
http://aka.ms/servicefabric

