Service Fabric: A Distributed Platform for
Building Microservices in the Cloud

Gopal Kakivaya®, Lu Xun®, Richard Hasha®, Shegufta Bakht Ahsan*, Todd Pfleiger”, Rishi Sinha®, Anurag Gupta®, Mihail Tarta®, Mark
Fussell®, Vipul Modi*, Mansoor Mohsin®, Ray Kong®, Anmol Ahuja®, Oana Platon”, Alex Wun®, Matthew Snider®, Chacko Daniel”, Dan
Mastrian®, Yang Li*, Aprameya Rao®, Vaishnav Kidambi®, Randy Wang", Abhishek Ram”, Sumukh Shivaprakash®, Rajeet Nair", Alan
Warwick®, Bharat S. Narasimman®, Meng Lin", Jeffrey Chen”, Abhay Balkrishna Mhatre”, Preetha Subbarayalu®, Mert Coskun®,
Indranil Gupta®

#: University of lllinois at Urbana Champaign | * : Microsoft Azure

Presenter: Shegufta Bakht Ahsan pereeuiuc: hitp://dprs.cs.uivc.edu

Service Fabric: aka.ms/servicefabric

EuroSys 2018, April 23rd-26th | Porto, Portugal

][[LLINOIS These slides were adapted for teaching purposes, the original set is available at https://shegufta.com/publications/ TV
HE

http://dprg.cs.uiuc.edu/
http://aka.ms/servicefabric

Microsoft Service Fabric

A distributed platform that enables building and management of scalable
and reliable microservice based applications

Culmination of over 15 years of design and development

< Skype > < Microsoft Intune > Azure Cosmos DB TalkTalk TV

< Cortana > < Microsoft loT Suite > BMW

» Microsoft Azure SQL DB:
* Hosts ~2 Million DBs | Containing 3.5 PB of data | Spans over 100K machines

»Azure Cosmos DB:
 Utilizes 2 million cores | Spans over 100K machines

» Cloud Telemetry Engine:

* Processes 3 Trillion events/week
] [LLINOIS 2 == Microso ft Azure

Monolithic Vs. Microservice Based Approach

App 1 App 2

~ Can Scale-out

 Cannot scale out individual functions é \ (e
* Needs to scale out everything @ @ t2s7 @ individual
/ \ % (Yisai} components
//i i
AR
AN weaZs Th ST NodeN O
W\H Ul E Database @ Node1 > \N,Pigl{/f \ T NodeN
Balancer \
\
9 O ol o0l
’ | oo
C 17 ! \
8339\ {) ¢ am e "1‘\)
\\ / w / el \ 7 /
Classic Monolithic Approach Microservice Based Approach

I
Not Cloud Friendly Cloud Friendly

] [LLINOIS == Microsoft Azure

State in Monolithic approach

State in Microservices approach

stateless
presentation
services

stateless
S S service oy

stateful
services

stateless services with
separate stores

\\——-———————.—-—’/

Monolithic application approach Microservices application approach

Monolithic vs. Microservice Applications

Monolithic design | Microservice-based design

Application complexity Complex Modular

Fault-tolerance Complex Modular
Agile development No Yes

Communication between components NA RPCs

Easily scalable No Yes
Easy app lifecycle management No Yes
Cloud ready No Yes

Application Model

(Application)

C Service 1) eee (Service N)

(Cnd;) (Cnnfrig ﬁ) (Dat; B) (Cnd;) (Cnn;ig ﬁ) (Dat; B)

Service Fabric and Its Goals

»Support for Strong Consistency:
 Ground Up

* Higher layer focuses on “their” relevant notion of consistency (ACID at
Reliable Collections)

> Fault Tolerance

»Support for Stateful Microservices:
* Microservices can have their own state

1

[LLINOIS == Microso ft Azure

Service Fabric Major Subsystems

(Reliable Collections)
(Application Model Native and Managed APIs)
/Management\ [(S:or;ml:mca&c;r; J [(I:%elllablllf\\/fl SUbSVSts:_r;) j[Ho::ng T'?thft;on J / \
ubsystem ailover Manager pp. Lifecycle
Subsystem Testability
(Cluster Manager, Federation Subsystem Subsystem (Fault
Health Manager, (Failure Detection, Leader Election, Routing Consistency, Consistent Neighborhood) Injection)
Image Store)
(Transport Subsystem (secure point-to-point communication))

][[LLINOIS 9 == Microsoft Azure

Consistency: Higher layers reuse lower layer’s,

implementing their own notion of consistency

Reliability
Subsystem

)

(< Leader Election

< Routing Consistency

)

\(Reliable Failure Detector) (

Routing Token

>

Federation Subsystem

10

== Microsoft Azure

Federation Subsystem

»Nodes are organized in a virtual ring (SF-Ring):
* Consists of 2™ points (e.g., m=128 bits)
* Key -> owned by the closest node
* Neighborhood set: { ‘'n’ successors, ‘n” predecessors }

»Ensures:
* Consistent Membership and Failure Detection
* Consistent Routing
* Leader Election

I[‘L[N()IS 11 == Microsoft Azure

J{ILLINOIS 12 el

Consistent Membership and Failure Detection

» Design Principles:
1. Membership -> Strongly Consistent
* For each node, all its monitors agree on its up/down status
2. Decouples Failure Detection from Failure Decision (using Arbitrator)

Lease renewal is critical, but packet drops may cause it to fail.

> Lease Based Mon ito ri ng: To mitigate this, if node X does not receive LR .; within a timeout

(based on RTT), it re-sends the lease message LR until it receives

* Node A sends Lease Request to Node B 1, Resends are iterative.

. . Node
* |f Node A receives ACK, lease stablishes

15

(Monitor
1)

mmetric Monitoring

» Symmetric Monitoring (SM) Node
* Node A and Node B monitor each other 20 .

Node
25

(Monitor
2n)

»Node X (Decoupling Detection-Decision):
* Maintains SM with all neighbors

* |f at-least one Lease fails (Detection) ! oK
» ask for Arbitration (Decision)

2n OK

mmg Microsoft Azure

Arbitrator — Decouple Detection From Decision

@ Recently-failed list >
» Fail to renew lease (lease timeout Tm) (Detection)

 Ask for arbitration immediately (Decision) Arbitration Log
Log 1: Time T : Node B
declared dead

* |F don’t receive any reply within Tm, leave!
* ELSE follow arbitrators decision !

In Production: Multiple Arbitrators, @ /)
Quorum Based approach

[2] Hey, | think B is dead ! ___[4] Hey, I think A is dead !

N 0 d e i285] 13 e o i e (i) e o . nleeclis‘;g (?bta‘in confirmation from a majority (quorum) of nodes in N Od e
A the arbitrator group. Ar b It rato r the arbitrator group. _ B
! |
™ [5] It’s too late! You have to leave
[3] Yes it is!
An accept(fail(Y)) - 4
message is sent back to X within a timeout based on RTT (if this e —- -

timeout elapses, X itself leaves the ring). The accept messagealso === We set: Ty = Ty + laxity - (time since
carries a timer value called To, so that X can wait for Tp timeand ~~ ~ — = = T T o oemmm—m == = m—m first detection). If this is the first detection, T, = Ty, + laxity. Here,
th?n tflke actions w.r.t. Y (e.g., reclaim Y’s portion of the ring). [1] Sym m et ri C M on ito ri ng Fa i Ied laxity is typically 30 s, generously accounts for network latencies
] [LLINOIS 13 involved in arbitrator coordination, and independent of T,,. As all

timeouts are large (tens of seconds), loose time synchronization
suffices.

Each node Y and its monitors (X, Z) maintain Y’s lease

Y’s lease

LR forY
— or

LR

ack

T

m

Y’s /ease§

LR forY

Y

Y’s lease
T

— |~ LRforY

.

m

LR forY

—

I'Rack

—

ack

L
. \ LR
I-Rack ;

Y’s lease |

Y’s lease

Y’s lease

X and Y’s LR’s are almost simultaneous and both fail: only one of them is kicked out, situation is resolved fast

X’s own lease ; Y’s own lease Arbitrator

N Y z

X LR for Y /\ LRforY
N LRack T I-Rack

< accept(fail(X))

fail(Y)? “Too late X - you
are dead”

LR for X Xis dead

P3129UU0DS|

No lease

- Cannot be a monitor

- Must stop serving, Although its lease expired,

responsibilities will Y remains in the ring
be taken over

Y’s lease is renewed, then Y suffers temporary disconnection: Y can be kicked out, may only find out in (up to) T, time

. X’s lease
Arbitrator
\ % i

X | LRforY —| — LRforY

H ac

| — EY’s lease
ail(v)?_ %p, R |7

<f/ m
-

Y is dead
accept(fail(Y))

“Wait T, & |
< reclaim Y’s token” IR for Y /\ LR for Y

: B
Y is dead — do ? é_,w

not respond No lease

JRad
/ fail(X)?

“Too late Y - you
N T

are dead” laxity - Cannot be a monitor
- Should stop serving,

responsibilities will be taken over 16

Routing is Bidirectional and Symmetric (SF-Routing)

> ith clockwise/anticlockwise routing table entry is the node whose ID is
closest to the key (n +/- 2')mod(2™)

»SF-Routing: 2

180 Routing Table at node 64:

* Provides more routing options 174 B8 | Rotsing Partner = (200.2.30.98,135,200)
¢ ROUteS message faster 151 225 Routing Partner Calculation

Clock. | Active | Anti- | Active

250 Node | Clock. | Node

135

64+2° | 64 | 64-2° | 64
o |6a+2l| 64 |64-2' | 64
64+22 | 64 | 6422 | 64
17 | 64+23| 76 |64-23| 50
64+24 | 83 | 642 | 46
64+25 | 98 | 6425 | 30
64+2° | 135 | 64-26 | 2

50 64+27 | 200 | 64-27 | 200

»In latest design, SF-Routing is used for
e Discovery routing when a node starts up 103
* After Discovery, nodes communicate directly o

120

[+-]

76 64

[LLINOIS 17 8 Microsoft Azure

Consistent Routing

» At any given time all messages sent to key ‘K’ will be received by a unique
Node. If that node crashes, a new node will take the responsibility

* Leader Election: For entire system use K=0

»Each Node owns a routing token:
* A portion of the ring whose keys it is responsible for

»SF-Ring ensures following consistency properties:
* Always Safe: there is no overlap among tokens owned by nodes
* Eventually Live: Eventually every token range will be claimed by a node

» Efficiently Handle: Node Join, Leave and Fail

ll‘[‘lN()]S == Microso ft Azure

Consistent Routing

» At any given time all messages sent to key ‘K’ will be received by a
unique Node. If that node crashes, a new node will take the responsibilit

» SF Ring
* Is being used in production for more than 15 years
* Working successfully, hence have not had to change it

» Invented concurrent with Chord and Pastry

» Chord/Pastry do not support Strong Consistency

» Efficiently Handle: Node Join, Leave and Fail

ll‘[‘lN()]S == Microso ft Azure

Reliability
Subsystem

J

—

I

== Microsoft Azure

20

Adud3sisuod Jo uoljou umo J19y3 Sunnuawajdwi
‘s, 49Ae| J1omo| asnau siaAe| 19y3siH :Adudisisuo)

GRVENAITY OF ILAINGHS AT LRBANA CHANPAION.

ILLINOIS

Reliability Subsystem

»Provides:
* Replication
* High Availability
* Load Balancing

[LLINOIS

21

icrosoft Azure

Reliable Collection (Queue, Dictionary): [Highly Available] & [Fault Tolerant] & [Persisted] &
[Transactional]

Reliability
Subsystem

Consistency: Higher layers reuse lower layer’s,
implementing their own notion of consistency

I %QJ—..S 22 == Microsoft Azure

Reliable Collection (Queue, Dictionary)

> Reliable Collections:
e Fault Tolerant
* Highly Available
* Persisted, Replicated
* Transactional

» Leverages lower layer guarantees (Failure Detection, Leader election,
load balance etc.)

> Used in Stateful Microservices

ll‘[‘lN()]S == Microso ft Azure

Evaluation — SF Arbitrator vs. Fully Distributed Scheme

If a node fails to maintain lease, it will gracefully leave the system
It is the fully distributed way of maintaining strong consistency
Total neighbors

M Original, M=* M Arb. less, M=2 # Arb. less, M=4 N Arb. less, M=8

SF arbitrator
approach

Cascading Failure

yilg] Scalable Failure Detector Arbitrator based FD:
(SWIM): Not Strong 1. Scalable
2. Strong Failure Detection
3. Prevents Cascading Failure
4. Does not depend on #neighbors

30

Strong Failure Detector (Virtual
20 ,
Synchrony): Not Scalable

N
o

L0

10

NN

Total Nodes Leaving the Ring

10 N 7
Nt NI /N -
0 N o -
Node 1 Node 1, 2
+{1} {1:2} {1,10} {1,2,3,4} {1,10,20,30}
4 neighbors =5 4 neighbors =

rashed Node IDs

ILL[N()IS m Neighbors Non-Neighbors Neighbors Non-Neighbors B Microsoft Azure

Summary

» Microsoft Service Fabric: A distributed platform that enables building and
management of scalable and reliable microservice based applications

»Service Fabric ensures strong consistency and fault-tolerance from lower
layers, which helps us to build state at the upper layers

»Selected Components:
e Federation Subsystem, Reliability Subsystem, Reliable Collection (Queue, Dictionary)

Open Source: github.com/Microsoft/service-fabric

[LLINOIS DPRG@UIUC: http://dprg.cs.uiuc.edu
- \ Service Fabric: aka.ms/servicefabric B Microsoft Azure

http://dprg.cs.uiuc.edu/
http://aka.ms/servicefabric

