
Service Fabric: A Distributed Platform for
Building Microservices in the Cloud

Gopal Kakivaya*, Lu Xun*, Richard Hasha*, Shegufta Bakht Ahsan#, Todd Pfleiger*, Rishi Sinha*, Anurag Gupta*, Mihail Tarta*, Mark
Fussell*, Vipul Modi*, Mansoor Mohsin*, Ray Kong*, Anmol Ahuja*, Oana Platon*, Alex Wun*, Matthew Snider*, Chacko Daniel*, Dan

Mastrian*, Yang Li*, Aprameya Rao*, Vaishnav Kidambi*, Randy Wang*, Abhishek Ram*, Sumukh Shivaprakash*, Rajeet Nair*, Alan
Warwick*, Bharat S. Narasimman*, Meng Lin*, Jeffrey Chen*, Abhay Balkrishna Mhatre*, Preetha Subbarayalu*, Mert Coskun*,

Indranil Gupta#

: University of Illinois at Urbana Champaign | * : Microsoft Azure

Presenter: Shegufta Bakht Ahsan DPRG@UIUC: http://dprg.cs.uiuc.edu
Service Fabric: aka.ms/servicefabric

EuroSys 2018, April 23rd-26th | Porto, Portugal

These slides were adapted for teaching purposes, the original set is available at https://shegufta.com/publications/

http://dprg.cs.uiuc.edu/
http://aka.ms/servicefabric

Microsoft Service Fabric

A distributed platform that enables building and management of scalable
and reliable microservice based applications

Culmination of over 15 years of design and development

Azure Cosmos DB

BMW

Skype

Cortana

TalkTalk TVMicrosoft Intune

Microsoft IoT Suite And More…

2

➢Microsoft Azure SQL DB:
• Hosts ~2 Million DBs | Containing 3.5 PB of data | Spans over 100K machines

➢Azure Cosmos DB:
• Utilizes 2 million cores | Spans over 100K machines

➢Cloud Telemetry Engine:
• Processes 3 Trillion events/week

Monolithic Vs. Microservice Based Approach

UI Database

Business Logic

DB

CacheLoad
Balancer

Classic Monolithic Approach

Not Cloud Friendly Cloud Friendly

Node 1 Node 2 Node N

App 1 App 2

Microservice Based Approach

3

• Cannot scale out individual functions
• Needs to scale out everything

Can Scale-out
individual
components

4

5

Monolithic vs. Microservice Applications

6

Application Model

7

Service Fabric and Its Goals

➢Support for Strong Consistency:
• Ground Up

• Higher layer focuses on “their” relevant notion of consistency (ACID at
Reliable Collections)

➢Fault Tolerance

➢Support for Stateful Microservices:
• Microservices can have their own state

8

Service Fabric Major Subsystems

9

10

Reliable Collection (Queue, Dictionary): [Highly Available] & [Fault Tolerant] & [Persisted] &

[Transactional]

Leader Election

Routing Consistency

Reliable Failure Detector Routing Token

Federation Subsystem

Reliable Primary Selection Consistent Replica Set

Replicated State Machines

Reliability
SubsystemFailover Management

C
o

n
si

st
en

cy
: H

ig
h

e
r

la
ye

rs
 r

e
u

se
 lo

w
e

r
la

ye
r’

s,
im

p
le

m
e

n
ti

n
g

th
e

ir
 o

w
n

 n
o

ti
o

n
 o

f
co

n
si

st
en

cy

Federation Subsystem

➢Nodes are organized in a virtual ring (SF-Ring):
• Consists of 2m points (e.g., m=128 bits)

• Key -> owned by the closest node

• Neighborhood set: { ‘n’ successors, ‘n’ predecessors }

➢Ensures:
• Consistent Membership and Failure Detection

• Consistent Routing

• Leader Election

11

0

8

2030

40

22
2628

10

15

12

25

18

➢Design Principles:
1. Membership -> Strongly Consistent

• For each node, all its monitors agree on its up/down status
2. Decouples Failure Detection from Failure Decision (using Arbitrator)

➢Lease Based Monitoring:
• Node A sends Lease Request to Node B
• If Node A receives ACK, lease stablishes

➢Symmetric Monitoring (SM)
• Node A and Node B monitor each other

➢Node X (Decoupling Detection-Decision):
• Maintains SM with all neighbors
• If at-least one Lease fails (Detection)

• ask for Arbitration (Decision)

Consistent Membership and Failure Detection

12

Monitor Lease Status

1 OK

… …

2n OK

Node
20

Node
15

(Monitor
1)

Node
25

(Monitor
2n)

0

8

2030

40

22
2628

10

15

12

25

18

Arbitrator

Arbitrator – Decouple Detection From Decision

➢Fail to renew lease (lease timeout Tm) (Detection)
• Ask for arbitration immediately (Decision)

• IF don’t receive any reply within Tm, leave!

• ELSE follow arbitrators decision !

Node
A

Node
B

[2] Hey, I think B is dead !

[3] Yes it is!

[4] Hey, I think A is dead !

[5] It’s too late! You have to leave

Arbitration Log
Log 1: Time T : Node B

declared dead

13

In Production: Multiple Arbitrators,
Quorum Based approach

[1] Symmetric Monitoring Failed

Recently-failed list

14

Y
ZX

LRack
LRack

Each node Y and its monitors (X, Z) maintain Y’s lease

Tm

LRack
LRack

Tm

Y’s lease

Tm

Y’s lease

LR for Y
LR for Y

Y’s lease

LR for Y LR for Y

Tm

Y’s lease

Tm

Y’s lease

Tm

Y’s lease

15

Y Z
X

LRackLRack

fail(Y)?

accept(fail(X))

Y’s own lease

No lease

X’s own lease

LR for X

d
isco

n
n

ected

Arbitrator

fail(X)?

“Too late X - you
are dead”

LR for Y LR for Y

X and Y’s LR’s are almost simultaneous and both fail: only one of them is kicked out, situation is resolved fast

No lease

Although its lease expired,
Y remains in the ring

X is dead

- Cannot be a monitor
- Must stop serving,

responsibilities will
be taken over

16

Y Z
X

LRack
LRack

Tm

“Wait To &
reclaim Y’s token”

fail(Y)?

accept(fail(Y))

Y’s lease

No lease

X’s lease

LR for X

LRack

LRack
Y is dead – do
not respond

Arbitrator

fail(X)?

“Too late Y - you
are dead”

LR for Y LR for Y

LR for Y LR for Y

Y’s lease is renewed, then Y suffers temporary disconnection: Y can be kicked out, may only find out in (up to) Tm time

Y is dead

- Cannot be a monitor
- Should stop serving,

responsibilities will be taken over

Tlaxity

Routing is Bidirectional and Symmetric (SF-Routing)

➢ith clockwise/anticlockwise routing table entry is the node whose ID is
closest to the key (n +/- 2i)mod(2m)

➢SF-Routing:
• Provides more routing options

• Routes message faster

➢In latest design, SF-Routing is used for
• Discovery routing when a node starts up

• After Discovery, nodes communicate directly

17

Consistent Routing
➢At any given time all messages sent to key ‘K’ will be received by a unique

Node. If that node crashes, a new node will take the responsibility
• Leader Election: For entire system use K=0

➢Each Node owns a routing token:
• A portion of the ring whose keys it is responsible for

➢SF-Ring ensures following consistency properties:
• Always Safe: there is no overlap among tokens owned by nodes

• Eventually Live: Eventually every token range will be claimed by a node

➢Efficiently Handle: Node Join, Leave and Fail

18

Consistent Routing
➢At any given time all messages sent to key ‘K’ will be received by a

unique Node. If that node crashes, a new node will take the responsibility
• Leader Election: For entire system use K=0

➢Each Node owns a routing token:
• A portion of the ring whose keys it is responsible for

➢SF-Ring ensures following consistency properties:
• Always Safe: there is no overlap among tokens owned by nodes (ensured by

strong membership and failure detection)

• Eventually Live: Eventually every token range will be claimed by a node

➢Efficiently Handle: Node Join, Leave and Fail
19

➢ SF Ring
• Is being used in production for more than 15 years
• Working successfully, hence have not had to change it

➢ Invented concurrent with Chord and Pastry

➢ Chord/Pastry do not support Strong Consistency

20

Reliable Collection (Queue, Dictionary): [Highly Available] & [Fault Tolerant] & [Persisted] &

[Transactional]

Leader Election

Routing Consistency

Reliable Failure Detector Routing Token

Federation Subsystem

Reliable Primary Selection Consistent Replica Set

Replicated State Machines

Reliability
SubsystemFailover Management

C
o

n
si

st
en

cy
: H

ig
h

e
r

la
ye

rs
 r

e
u

se
 lo

w
e

r
la

ye
r’

s,
im

p
le

m
e

n
ti

n
g

th
e

ir
 o

w
n

 n
o

ti
o

n
 o

f
co

n
si

st
en

cy

Reliability Subsystem

➢Provides:
• Replication

• High Availability

• Load Balancing

21

22

Reliable Collection (Queue, Dictionary): [Highly Available] & [Fault Tolerant] & [Persisted] &

[Transactional]

Leader Election

Routing Consistency

Reliable Failure Detector Routing Token

Federation Subsystem

Reliable Primary Selection Consistent Replica Set

Replicated State Machines

Reliability
SubsystemFailover Management

C
o

n
si

st
en

cy
: H

ig
h

e
r

la
ye

rs
 r

e
u

se
 lo

w
e

r
la

ye
r’

s,
im

p
le

m
e

n
ti

n
g

th
e

ir
 o

w
n

 n
o

ti
o

n
 o

f
co

n
si

st
en

cy

Reliable Collection (Queue, Dictionary)

23

➢Reliable Collections:
• Fault Tolerant

• Highly Available

• Persisted, Replicated

• Transactional

➢Leverages lower layer guarantees (Failure Detection, Leader election,
load balance etc.)

➢Used in Stateful Microservices

Evaluation – SF Arbitrator vs. Fully Distributed Scheme

Single Neighbors NeighborsNon-Neighbors Non-Neighbors

Scalable Failure Detector
(SWIM): Not Strong

1 2 2 4 45 6

Node 1
+

4 neighbors = 5

Node 1, 2
+

4 neighbors = 6

10 8

20Strong Failure Detector (Virtual
Synchrony): Not Scalable

Arbitrator based FD:
1. Scalable
2. Strong Failure Detection
3. Prevents Cascading Failure
4. Does not depend on #neighbors

24

If a node fails to maintain lease, it will gracefully leave the system
It is the fully distributed way of maintaining strong consistency

Total neighbors

Cascading Failure

SF arbitrator
approach

Summary

➢Microsoft Service Fabric: A distributed platform that enables building and
management of scalable and reliable microservice based applications

➢Service Fabric ensures strong consistency and fault-tolerance from lower
layers, which helps us to build state at the upper layers

➢Selected Components:
• Federation Subsystem, Reliability Subsystem, Reliable Collection (Queue, Dictionary)

DPRG@UIUC: http://dprg.cs.uiuc.edu

Service Fabric: aka.ms/servicefabric

Open Source: github.com/Microsoft/service-fabric

http://dprg.cs.uiuc.edu/
http://aka.ms/servicefabric

