Infrastructure Technologies for Large-
Scale Service-Oriented Systems

Kostas Magoutis
magoutis@csd.uoc.gr
http://www.csd.uoc.gr/~magoutis

Garage innovator

e Creates new Web applications that may rocket to
popular success

— Success typically comes in the form of “flash crowds”
e Requires load-balanced system to support growth

e Does not have access to large upfront investment

Contemporary utility computing

e |Low overhead during lean times
e Highly scalable

e Quickly scalable

Storage delivery networks

Amazon S3, Nirvanix platforms
Similar to Content Delivery Networks (CDNs)
Large clusters of tightly coupled machines

Handle data replication, distributed consensus, load
distribution behind a static-content interface

Compute Clouds

e Before Cloud computing (~2006):
— Bandwidth to colocation facilities billed on per-use basis
— Virtual private servers billed monthly

e Current utility computing providers offer VM
instances billed per hour

Other building blocks

e Missing piece: relational databases

e DNS outsourcing
— Avoids DNS becoming single point of failure

DNS example

n root DNS server

2
3
/7 a o
=R - Lll| TLD DNS server
t1
local DNS serve
dns.client.com
7 6

1118

n authoritative DNS server
dns.yourstartup.com

requesting host
host.client.com

serverl.yourstartup.com

DNS: caching and updating records

e Once any name server learns mapping, it caches it
— Cache entries timeout after some time (TTL)

— TLD servers cached in local name servers
e Thus root name servers are not visited often

e update/notify mechanisms under design by IETF

— RFC 2136
— http://www.ietf.org/html.charters/dnsind-charter.html

DNS records

RR format: (name, value, type, TTL)

+ name is hostname < name is alias for some
%+ value is IP address “canonical” (real) name

www.ibm.com is really
servereast.backup2.ibm.com

< Vvalue is canonical name

o Type=NS
— name is domain (e.g.
foo.com) 3 Type=MX
— value is hostname of < value is name of mail server
authoritative name server associated with name

for this domain

Inserting records into DNS

e Example: just created startup "Network Utopia”

e Register name networkuptopia.com at a registrar
(e.g., Network Solutions)

— Need to provide registrar with names and IP addresses of
your authoritative name server (primary and secondary)
— Registrar inserts two RRs into the com TLD server:
e (networkutopia.com, dnsl.networkutopia.com, NS)
e (dnsl.networkutopia.com, 212.212.212.1, A)

Inserting records into DNS (2)

e Put in authoritative server Type A record for
www.networkuptopia.com

e Put Type MX record for networkutopia.com

Scaling architectures

Using the bare SDN

DNS load-balanced cluster
HTTP redirection

L4 or L7 load balancing

Hybrid approaches

Analysis of the design space

Application scope
Scale limitations
Client affinity

Scale up/down time

Response to failures

Application scope

Bare SDN suitable for static content only
HTTP redirector works with HTTP
L7 load balancers constrained by application protocol

DNS and L4 load balancers work across applications

Scale limitation

SDNs are designed to be scalable
HTTP redirection involved only in session setup

L4/L7 load balancer limited by forwarder’s ability to
handle entire traffic

DNS load balancing has virtually no scalability limit

Client affinity

SDN fulfills client request regardless of where it
arrives

HTTP redirection provides strong client affinity
— Use client session identifier

L4 balancers cannot provide affinity
L7 balancers can provide affinity

DNS clients cannot be relied upon to provide affinity

Scale up and down time

e Bare SDN designed for instantaneous scale up/down

e HTTP redirectors and L4/L7 balancers have identical
behavior

— Scale down time is trickier, need to consider worst-case
session length

e DNS is most problematic

Effects of front-end failure
SDN has multiple redundant hot-spare load balancers

L4 and L7 balancers are highly susceptive

— A solution is to split traffic across m balancers, use
redundant hot spares (DNS load-balanced)

HTTP redirectors same as above, except that there is
no impact on existing sessions

DNS load balancing affected by failure when
— Using single DNS server (no replication)

— Short TTLs so as to handle scale-up/down and backend
node failure

Effects of back-end failure

“Back-end” are servers that are running service code
SDN managed by service provider (~1% writes fail)

HTTP redirector and L4/L7 balancer

— Newly arriving sessions see no degradation at all
— Existing sessions see only transient failures

DNS load balancing suffers worst performance

Summary

Design
Criterion Bare SDN | HTTP Redir. | 1.4/L.7 Load Bal. | DNS Load Bal.
§3.1: Application Scope Static HTTP HTTP All All
§3.2: Scale Limitation Very large Client arrival rate Total traffic rate Unlimited
§3.3: Client affinity N/A Consistent Consistent Inconsistent
: ' VM Startup +
§3.4: Scale-Up Time Immediate VM Startu!:s Time M Stdm'? Time DNS TTL
(about a minute) (about a minute) ;
(3-10 minutes)
§3.4: Scale-Down Time Immediate Session Length Session Length Days
§3.5: Front-End NG‘# Failure: N/A Total Failure Total Failure Major Failure
Effect on New Sessions ;
§3.3: Front-End N'}dé Failure: N/A No effect Total Failure Rare effect
Effect on Estab. Sessions
§3.5: Front-End Node Failure: long delav for lone delav for
Effect on New Sessions Unlikely . 5 Y L . & ’ . Short delay (§4.2)
1 /mith sessions? 1 /mith sessions?
{mm redundant front-ends) ! :
£3.5: Front-End Node Failure: A few sessions
Effect on Estab. Sessions Unlikely No effect 1 /mth sessions fail | L
' see short delay
(mm redundant front-ends)
£3.6: Back-End Node Failure: . . . long delay for
Effect on New Sessions Unlikely No effect No etfect 1 /nith of sessions
£3.6: Back-End Node Failure: T User-recoverable e long delay for
Effect on Estab. Sessions Unlikely failure Transient failure 1 /nith of sessions

EC2-integrated HTTP redirector

e Monitors load on each running service instance
— Servers send periodic heartbeats with load statistics
— Redirector uses heartbeats to evaluate server liveness

e Resizes server farm in response to client load

— When total free CPU capacity on servers with short run
queues are less than 50%, start new server

— When more than 150%, terminate server with stale sessions

e Routes new sessions probabilistically to lightly loaded
servers

count

HTTP redirect experiment

15l
clisnl counl
125 - = = EOCVEr courd
mbtad sasaions
106}
e
Hil
25

—— T
- -'—'—r\-_. |‘i L T S
ﬂ _—— PR . . |) M P |

1] 1000 2000 A0 Ani0 KO a0
time (s)
] = O51h parcentia
sz clinn
Sl parcandile

™
o

client delay (s)
g 3

DNS server failover behavior

o
wow

I
~

o
o

=T
g

fraction of responses
= =
(%] n

e 9
- M

=
1

—— axperiment
- =- control —

500 1000 . 1500 2000 23500
response time, ms

=

Other microbenchmarks

Web client DNS failover behavior
— Clients experience delays from 3 to 190 seconds

Badly-behaved resolvers
Maximum size of DNS replies

Client affinity observations

MapCruncher

Interactive map generated by client (AJAX) code

Service instance responds to HTTP GET bringing an
image off of stable storage

Initially used 25GB of images on a single server’s disk
Flash crowd service peaked at 100 files / sec

Moving to Amazon S3 solved I/O bottleneck

Asirra
e CAPTCHA Web service

e Asirra session consists of
— Client retrieves challenge
— Submits user response for scoring
— Produce service ticket to present to webmaster
— Webmaster independently verifies service ticket

e Deployed in EC2
— 100GB of images (S3)

— Metadata (MySQL) reduced into simple database loaded on
each server’s local disk

Asirra (2)

Session state kept locally within each server
— S3 option considered inadequate (write performance)

Client affinity becomes important
— DNS load balancing does not guarantee affinity

Servers forward session to its home
— Rate of affinity failures about 10%

Flash crowd
— 75,000 challenges plus 30,000 DoS requests over 24 hours

Asirra lessons learned

Poor client-to-server affinity due to DNS load
balancing was not a big problem

EC2 lost IP reservation after failure (fixed)

Denial of service attack easily dealt with with Cloud
resources

— Further lesson: No need to optimize code before on-going
popularity materializes

Inkblot

Website to generate images as password reminders
— Must store dynamically created information (images) durably

Coded simply but inefficiently in Python
Store both persistent and ephemeral state in S3

Initial cluster consistent of two servers, load balanced
through DNS

— Updating DNS required interacting with human operator

Inkblot (2)

Flash crowd resulted into run-queue length of 137
— Should be below 1

Added 12 more servers, DNS update, within half hour

New server saw load immediately, original servers
recovered in about 20 minutes

14 servers averaged run queue lengths b/w 0.5-0.9

After peak, removed 10 servers from DNS, waited an
extra day for rogue DNS caches to empty

