
Infrastructure Technologies for Large-
Scale Service-Oriented Systems

Kostas Magoutis

magoutis@csd.uoc.gr 

http://www.csd.uoc.gr/~magoutis



Order on state updates



Paxos algorithm

• Way to build fault-tolerant distributed systems

– Replicated state machines (RSM)

• Consensus via message exchange

– Asynchronous: no timing guarantees

– Network can delay, reorder, lose (but not corrupt) packets

• Can guarantee safety

– Replicas will agree on a single value

• Need additional assumptions to ensure progress



Informally

• Three roles: Proposer, acceptor, learner

• Simplest, but fault-intolerant solution: single acceptor

• With >1 acceptors, agreement by a majority required

• If single value proposed, that value should be chosen

– Thus, an acceptor must accept the first value proposed to it

• However, this may lead to fragmented electorate

– Multiple proposals by each proposer should be possible

– Identify each proposal by a unique integer N



Informally

• After consensus, an acceptor cannot change its mind

– A value is chosen when single proposal with that value 
accepted by a majority of the acceptors

• Allow multiple proposals to be chosen, but guarantee 
that all chosen proposals have the same value



Paxos setup

value v’

• Be able to agree in the 
presence of up to f failures

• 2f+1 nodes

• Agreement when majority 
(f +1) agrees on a value

value v



Need to try to get a majority to accept

propose N, v

value v’
propose N, v

propose N, v

value v



Informally

• Allow multiple proposals to be chosen, but guarantee 
that all chosen proposals have the same value

• If proposal N with value v is chosen, every higher 
numbered proposal issued by any proposer should 
have value v

• A proposer wanting to issue a proposal numbered N
must learn the highest-numbered proposal <N (if 
any) that has been or will be accepted by a majority



Informally

• A proposer wanting to issue a proposal numbered N
must learn the highest-numbered proposal <N (if 
any) that has been or will be accepted by a majority

– Easy to learn about values already accepted

– Hard to predict the future

• Control the future by extracting a promise that there 
will not be any acceptances of proposals <N



Paxos – phase 1

prepare N

prepare N

prepare N
value v’

N, _

N, _

N, _

Highest-numbered prepare

request acknowledged

Highest-numbered proposal

accepted

Written to stable store



Paxos – phase 2

propose N, v

propose N, v

propose N, v
value v’

N, v

N, v

N, v

N, _

N, _

N, _



Paxos – communicate agreement

decide N, v

decide N, v

decide N, v
value v’

N, v

N, v

N, v



Paxos – majority learns outcome

value v’

v

v

v
N, v

N, v

N, v



Paxos – learning chosen value

value v’prepare N’

prepare N’

prepare N’

N, v

N’, _

N’, _

N’, v



Paxos – propagate chosen value

propose N’,v

propose N’,v

propose N’,v

N’, _

N’, _

N’, v

N’, v

N’, v



Paxos – everyone learns outcome

v

v

N’, v

N, v

v

v

v

N, v

N’, v

N’, v



Example



Example (contd.)



Lamport: implementing a state machine

• How to run multiple instances of Paxos

– Assume the existence of a distinguished proposer (leader)

– A leader will run Paxos for a number of instances

– The leader may crash, at which point there may be gaps in 
the chosen instances (1-134, 138, ..)

– A new leader will try to fill in those slots or propose no-op

– As soon as gap fills, commands can be executed

• Multi-Paxos

– New leader: execute phase 1 for infinitely many instances

– Acceptors can respond with reasonably short messages

– Cost of Paxos effectively the cost of executing phase 2



Multi-Paxos

If a majority has not 
accepted anything 
for instances > I

Block acceptance 
of proposal # < N 
& learn accepted 
values

Skip prepare phase until 
a propose is rejected!



Multi-Paxos

Replicas write to disk prior 
to sending ACK

Servers play all roles


