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Causality and Time

The Happens-Before Relation
� Because executions are sequences of events, they 

induce a total order on all the events. 
� It is possible that two events by different processors 

do not influence each other, yet they are (arbitrarily) 
ordered by the execution. 

The structure of causality between events is lost.

The happens-before relation
� Fix some execution α. 
� Consider two events φ1 and φ2 by the same process pj in a; φ1

casually influences φ2, if φ1 occurs before φ2.
� Consider two events φ1 and φ2 by different processes, pi and pj, 

respectively. Event φ1 causally influences φ2, if φ1 is the event 
that sends message m from pi to pj, and φ2 is the event in which 
the message m is received by pj.

� Also, transitivity holds (if φ1 causally influences φ2 and φ2 causally 
influences φ3, then φ1 causally influences φ3). 
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The Happens-Before Relation

Formally:
� Given two events φ1 and φ2 in a, φ1 happens before φ2, denoted

φ1 → φ2, if one of the following conditions hold:
� φ1, φ2 are events by the same processor pj and φ1 occurs before φ2

in a,
� φ1 is the send event of a message m from pi to pj, and φ2 is the 

receive event of the message m by pj,
� There exists an event φ such that φ1 → φ and φ → φ2.

� Obviously, → is an irreflexive partial order.

Causal Shuffles

� The happens-before relation characterizes the causality 
relations in an execution.

� If the events of an execution are reordered with respect to each
other but without altering the happens-before relation, the result is 
still an execution and it is indistinguishable to the processors.

� Definition: Given an execution segment α = exec(C,σ), a 
permutation π of σ is a causal shuffle of σ if:
� for all j, 0 ≤ j ≤ n-1, σ | j = π | j, and

� if a message m is sent during process’ pj event φ in a, then in π, φ
precedes the delivery of m.



3

Causal Shuffles

Lemma 1
� Let a = exec(C,σ) be an execution fragment. 

Then, any total ordering of the events in σ
that is consistent with the happens-before 
relationship of a, is a casual shuffle of σ.

Lemma 2
� Let a = exec(C,σ) be an execution fragment. 

Let π be a casual shuffle of σ. Then, a’ = 
exec(C,π) is an execution fragment that is 
indistinguishable to a in all processes. 

Logical Clocks
How can processes observe the happens-before relation in an execution a;

� With each event φ, we associate a timestamp, LT(φ) (Logical Time of φ).

� We require an irreflexive partial order < on the timestamps, such that 
for every pair of events, φ1 and φ2: 

if φ1 → φ2 then LT(φ1) < LT(φ2)

Simple Algorithm to maintain logical timestamps correctly

� Each process pj keeps a local variable LTj, called its logical clock, 
which is a non-negative integer, initially 0.

� As part of each event φ, pj increases LTj to be one greater than 
the maximum of LTj`s current value and the largest timestamp 
on any message received in this event. 

� Every message sent by the event is time-stamped with the new 
value of LΤj.

The timestamp, LT(φ), associated with an event φ of process pj, is the 
new value LTj computed during the event.
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Logical Clocks

� The partial order on timestamps is the ordinary < relation 
among integers.

� For each process pj, LTj is strictly increasing.

� Theorem: Let a be an execution, and let φ1 and φ2 be two 
events in a. If φ1 → φ2, then LT(φ1) < LT(φ2).

Vector Clocks

Logical Clocks - Negative Points

� If LT(φ1) ≥ LT(φ2), then we know that φ1 does 
not happen before φ2. 

Is the converse true?
� NO! It is possible that LT(φ1) < LT(φ2) but it 

does not hold that φ1 → φ2.

The problem is that the happens-before 
relation is (in general) a partial order, whereas 
the logical timestamps are integers with the 
totally ordered <relation.
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Vector Clocks 

Definition
� Two events φ1 and φ2 are concurrent in execution a, 

denoted φ1 ║ φ2, if it does not hold neither φ1 → φ2, 
nor that φ2 → φ1.

� If φ1 ║ φ2, then there are two executions a1 and a2, 
both indistinguishable from a, such that φ1 precedes 
φ2 in a1, and φ2 precedes φ1 in a2.

⇒ processes cannot tell whether φ1 occurs before φ2 or 
vice versa, and in fact, it makes no difference which 
order they occur. 

Vector Clocks

� Each process pj keeps a local n-element array VCj, 
called its Vector Clock (VC),  each element of which 
is a non-negative integer, initially 0. 

� As part of each event φ, pj updates VCj as follows:

� VCj[j] is incremented by 1

� For each i ≠ j, VCj[i] is set equal to the maximum of its 
current value and the largest value for entry i among the 
timestamps of messages received in this event.

� Every message, sent by φ, is time-stamped with the new value 
of VCj.

The vector timestamp of φ, VC(φ), is the value of VCj at the 
end of φ.
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Vector Clocks

Proposition: For each process pj, in every reachable configuration, VCj[j] ≥
VCi[j], for all i, 0 ≤ i ≤ n-1.

Partial Ordering of Vector Clocks

� Let v1 και v2 be two vectors of n integers. Then, v1 ≤ v2 if and only if,
for every j, 0 ≤ j ≤ n-1, v1[j] ≤ v2[j]; v1 < v2 if and only if v1 ≤ v2 and
v1 ≠ v2.

� Vectors v1 and v2 are incomparable if neither v1 ≤ v2, nor v2 ≤ v1.

� Vector timestamps are said to capture concurrency if for any pair of 
events φ1 and φ2, φ1 ║ φ2 if and only if VC(φ1) and VC(φ2) are 
incomparable.

Vector Clocks
Theorem 1

Let α be an execution, and let φ1 and φ2 be two events in α. 
If φ1 → φ2 then VC(φ1) < VC(φ2).

Proof

Suppose that φ1, φ2 are events of the same process and let φ1
precede φ2. Why is the claim true in this case;

Suppose that φ1 is the sending of a message m with vector 
timestamp T by pi, and φ2 is the receipt of the message by pj. 
Why is the claim true in this case;

Does transitivity hold for the ≤ relation in vectors?
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Vector Clocks
Theorem 2

Let α be an execution, and let φ1 and φ2 be two events in α. 
If VC(φ1) < VC(φ2) then φ1 → φ2.

Proof

� Consider two concurrent events, φ1 by pi and φ2 by pj, pi ≠ pj.

� Suppose VCi[i](φ1) = m. The only way process pj can obtain a value 
for the ith entry of its vector that is at least m is through a chain 
of messages originating at pi (at event φ1 or later). 

� Such a chain would imply that φ1 and φ2 are not concurrent. A 
contradiction!

� Thus, VCj[i]( φ2) < m ⇒ VCi(φ1) cannot be smaller than VCj(φ2).

Similarly, the jth entry in VCj(φ2) cannot be smaller than the jth entry 
in VCi(φ1).

Theorems 1 and 2 imply that φ1 ║ φ2 if and only if VC(φ1) and VC(φ2) 
are incomparable.

A Lower Bound on the Size of Vector Clocks

Consider a complete network and an execution α in which:

� Each process pi sequentially sends a message to all processes other than 
pi-1, i.e. it sends a message to pi+1, pi+2, ..., pn-1, p0, p1, ...,pi-2.

� After all the messages have been sent, each pi sequentially receives all 
the messages sent to it in decreasing order of the sender’s index, 
starting with pi-1 and wrapping around; pi receives from pi-1, pi-2, ..., p0, 
pn-1, pn-2, ..., pi+2.

The events of process pi in α

pi+1 and pj in α

For each i, denote the first send event by ai and the last receive event by bi.
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A Lower Bound on the Size of Vector Clocks

Lemma 3

� For each i, 0 ≤ i ≤ n-1, ai+1 ║ bi (where we let an = a0).

Proof

� In α, a processor sends all its messages before it receives any 
message. 

The causality relation is simple and does not include any transitively 
derived relations.

� No message is sent from pi+1 to pi.

Lemma 4

� For each i and j, 0 ≤ i ≠ j ≤ n-1, ai+1 → bj.

Proof

Why is this true;

A Lower Bound on the Size of Vector Clocks

Theorem

If VC is a function that maps each event in α to a vector in Rk in 
a manner that captures concurrency, then k ≥ n.

Proof

For each i, 0 ≤ i ≤ n-1. By Lemma 3 ⇒ ai+1 ║ bi. 

� Since VC captures concurrency ⇒ VC(ai+1) and VC(bi) are 
incomparable

� ⇒ there exists some coordinate r s.t. VC[r](bi) < VC[r](ai+1).
Denote one of these indices by f(i).

� In this manner, we have defined a function 

f: {0, ..., n-1} -> {0, ..., k-1}.

� We prove that k ≥ n by showing that f is 1-1.
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A Lower Bound on the Size of Vector Clocks

� Assume, by the way of contradiction, that f is not 1-1. 

∃ two indices i and j, i ≠ j, s.t. f(i)  = f(j) = r.

� By the definition of f:
VC[f(i)](bi) < VC[f(i)](ai+1) and VC[f(j)](bj) < VC[f(j)](aj+1) ⇒

VC[r](bi) < VC[r](ai+1) and VC[r](bj) < VC[r](aj+1)

� By Lemma 4: ai+1 → bj ⇒ VC(ai+1) < VC(bj).

� From all the above inequalities:

VC[r](bi) < VC[r](ai+1) ≤ VC[r](bj) < VC[r](αj+1).

� A contradiction to Lemma 4!

Shared Memory Systems

The Happens-before relation

� Given two events φ1 and φ2 of an execution α, φ1 happens-
before φ2, denoted by φ1 → φ2, if one of the following 
conditions hold:

� φ1 and φ2 are events of the same process, and φ1 occurs before
φ2 in α,

� φ1 and φ2 are conflicting events (both access the same shared 
variable and one of them is a write), and φ1 precedes φ2 in α,

� there exists an event φ s.t. φ1 → φ and φ → φ2.
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Examples of using Causality
Consistent Cuts
� No omniscient observer exists who can record an instantaneous snapshot 

of the system!

� Such a capability would be desirable:

o restoring the system after a crash

o determining whether there is a deadlock in the system

o detecting termination

� Simplifying Assumption: At each event a process receives at most one 
message. 

� Given an execution α, we number the steps of each process 1,2,3, ... .

� A cut k through the execution is an n-vector k = <k1, ..., kn-1> of positive 
integers. 

� Given a cut of an execution, one can construct a set of process states:

� the state of process pi is its state in α after the $ki$th computation event. 

Examples of using Causality

Consistent Cuts

A cut k of an execution α is consistent if, for all i and j, the (ki+1)st 
event of pi in α does not happen before the kjth event of pj in α.

Finding the maximal consistent cut

� Given a cut k of an execution, find the “most recent” consistent cut that 
precedes (or at least does not follow) k.

Taking a Distributed Snapshot

� Instead of being given the upper bounding cut, processes are told when to 
start finding a consistent cut. 



11

Modeling Physical Clocks

� Assume that there is a mechanism, called
hardware clock, by which some time information 
is made available to the processes. 

Formal definition of a timed execution
� In each timed execution, associated with each process

pi, there is an increasing function HCi from non-negative 
real numbers to non-negative real numbers. When pi
performs a step at real time t, the value of HCi(t) is 
available as part of the input of pi’s transition function.

� pi`s transition function cannot change HCi.

� We assume that HCi(t) = t + ci, where ci is some 
constant offset. 

Modeling Physical Clocks
� Executions are sequences of events that impose an arbitrary ordering on 

concurrent events.

� We can break apart an execution into n sequences, where each sequence 
represents the view of a processor.

Definition 1

� A view with clock values of a process pi (in a model with hardware clocks) 
consists of an initial state of pi, a sequence of events that occur at pi, 
and a hardware clock value assigned to each event. The hardware clock 
values must be increasing, and if the sequence of events is infinite they 
must increase without bound.

Definition 2

� A timed view with clock values of a process pi (in a model with hardware 
clocks) is a view with clock values of pi together with a real time 
assigned to each event. The assignment must be consistent with the 
hardware clock having the form HCi(t) = t + ci for some constant ci.
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Timed Executions
� Given a timed execution α, time views with clock values can be 

extracted, denoted α | i, for pi’s timed view with clock values.

� A set of n timed views {η0, ..., ηn-1}, one for each process pi, can 
be merged as follows:
� The initial configuration is obtained by combining the initial states of 

all the timed views. 

� A sequence of events is obtained by interleaving the events in the 
timed views consistently with the real times.

� Ties are broken by ordering all deliver events at time t before any 
computation events at time t, and breaking any remaining ties with 
processor indices. 

� The result is denoted by merge(η0, ..., ηn-1).

� Execution merge(η0, ..., ηn-1) is admissible, if the timed views are 
consistent: 
� if a message is delivered to pi from pj at time t in ηi, but pj does not 

send m to pi before time t in ηj, merge(η0, ..., ηn-1) is not a timed 
execution.

Shifting 
a Process 
in Time

� Definition: Let α be a timed execution with hardware clocks and let 
x be a vector of n real numbers. Define shift(α, x) to be
merge(η0, ..., ηn-1), where ηi is the timed view obtained by adding xi
to the real time associated with each event in α | i.

� The result of shifting an execution is not necessarily an execution.
� a message may not be in the appropriate processor’s outbuf variable 

when a deliver event occurs.

� Lemma: Let α be a timed execution with hardware clocks HCi, 0 ≤ i
≤ n-1, and x be a vector of n real numbers. In shift(α,x):

1. the hardware clock of pi is HCi’ = HCi – xi, and

2. every message from pi to pj has delay δ – xi + xj, where δ is the delay of 
the message in α, 0 ≤ i, j ≤ n-1.
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The Clock-Synchronization Problem
� Processes require to communicate to bring their clocks close together. 

� Each process pi has a special state component adji that it can manipulate. 

� The adjusted clock of pi is a function ACi(t) = HCi(t) + adji(t).

Definition (achieving ε-synchronized clocks):

In every admissible timed execution, there exists a real time tf s.t. the 
algorithm has terminated 
by real time tf, and for all 
processes pi and pj, 
and all t ≥ tf, |ACi(t) – ACj(t)| ≤ ε. 
The value ε is called the skew.

Assumptions
� There exists non-negative 

constant d and u, d ≥ u, s.t.
in every admissible timed execution,
every message has delay within
the interval [d-u, d].

� The value of u is the uncertainty
in the message delay. 

The Clock-Synchronization Problem – The Two 
Processes Case

A Simple Algorithm

� Process p0 sets adj0 to 0 and sends its current 
hardware clock value to process p1.

� On receiving the message with value Τ, process p1
sets adj1 = Τ + (d-u) – HC1 (so AC1=T+(d-u))

� Best case: skew = 0.

� Worst case: skew = u.

What happens if adj1 is adjusted to Τ + d – HC1;

� It is best to estimate the delay as d – u/2.

What is the skew of the algorithm then?
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The Two Processes Case

Lemma: Te best skew that can 
be achieved in the worst case
by a clock synchronization 
algorithm Α for 2 processes p0
and p1 is u/2.

Proof
� Let α be any admissible

execution in which the delay
of messages from p0 to p1
is d-u and the delay of messages from p1 to p0 is d.

� Let AC0 and AC1 be the adjusted clocks at some time T after termination. 
Because Α has skew ε, AC0 ≥ AC1 – ε.

� Consider the execution α’ = shift(α, <-u, 0>); α’ is an admissible timed 
execution because all message delays are between d-u and d.

� At time T in α’, the adjusted clock of p0 is AC0 + u, whereas the adjusted 
clock of p1 is AC1. 

� Since A has skew ε, AC1 ≥ (AC0 + u) – ε.

� Thus, AC0 ≥ AC0 + u – 2ε ⇒ ε ≥ u/2.

The Clock-Synchronization Problem – An Upper Bound

� Choose one of the processes as a center. 
� Apply the two-processes algorithm between any process and 

the center. 

What is the skew of this algorithm in the worst case;

� We can do slightly better:
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The Clock-Synchronization Problem – An Upper Bound

Theorem: Algorithm 20 achieves u(1 – 1/n)-synchronization for n
processes. 

Proof: Consider any admissible timed execution α of the algorithm.

� After pi receives the message from pj, diffi[j] holds pi`s
approximation of the difference betweeen HCj and HCi. Because 
of the way diffi[j] is calculated, the error in the approximation is 
at most +u/2 or –u/2. Thus:

Lemma: For every time t after pi sets diffi[j], j ≠ i, it holds that
diffi[j] = HCj(t) – HCi(t) + errji, where errji is a constant with
–u/2 ≤ errji ≤ u/2.

� By the definition of the adjusted clocks, at any time t after the 
algorithm terminates, the following holds:

|ACi(t) – ACj(t)| = | HCi(t) + 1/n Σk=0
n-1 diffi[k] – HCj(t) –

1/n Σk=0
n-1 diffj[k]|    (1)

� After some algebraic manipulation, we get:

1/n | HCi(t) – HCj(t) + diffi[i] – diffj[i] + HCi(t) – HCj(t) + diffi[j] –
diffj[j] + Σk=0,k≠i,j

n-1 (HCi(t) – HCj(t) + diffi[k] – diffj[k])|

The Clock-Synchronization Problem – An Upper Bound

Proof (continued)
By laws of absolute value and the fact that

diffi[i] = diffj[j] = 0, this expression is

(1) ≤ 1/n(|HCj(t)  - HCi(t) + diffj[i] |
(*) + 

|HCi(t) – HCj(t) + diffi[j]|
(~) + 

Σk=0,k≠i,j
n-1 | HCi(t) – HCj(t) + diffi[k] – diffj[k]|(#))

(*)  -> difference between pi`s knowledge of its own clock and
pj`s estimate of pi`s clock: |errij| ≤ u/2

(~) -> the difference between pj`s knowledge of its own clock 
and pi`s estimate of pj‘s clock: | errji | ≤ u/2

(#) -> difference between pi`s estimate of pk‘s cloxk and pj`s
estimate of pk‘s clock:

| HCi(t) – HCj(t) + HCk(t) – HCi(t) +errki – HCk(t) + HCj(t) -errkj| 
≤ u.

⇒ So, the entire expression ≤ 1/n(u/2 + u/2 + (n-2) u) 
= 1/n(n-1)u = (1 – 1/n)u, as needed!



16

The Clock-Synchronization Problem – A Lower 
Bound
Theorem: For every algorithm that achieves ε-synchronized clocks, ε is 

at least u(1 – 1/n).

Proof: Consider any clock synchronization algorithm Α that achieves ε-
synchronized clocks. 

� Let α be an admissible timed execution of Α with hardware clocks HCi
s.t. for each process pi and pj, i < j:

� the dealy of every message from pi to pj is exactly d-u, 

� the dealy of every message from pj to pi is exactly d.

� Let ACi be the adjusted clock of pi in α after termination, 0 ≤ i ≤ n-1. 

A Lower 
Bound

Lemma: For each k, 1 ≤ k ≤ n-1, ACk-1(t) ≤ ACk(t) – u + ε.

Proof: Pick any k, 1 ≤ k ≤ n-1.

� Define a’ = shift(α, x), where xi = -u if 0 ≤ i ≤ k-1 and xi = 0 if k ≤ i ≤ n-1. 

� Consider two processes pi and pj with i < j.

� If j ≤ k-1 or k ≤ i, then the delays from pi to pj are d-u and the delays from
pj to pi are d.

� Otherwise (i ≤ k-1 < j), the delays from pi to pj are d and the delays from pj
to pi are d-u.

� Thus, α’ is admissible and Α much achieve ε-synchronized clocks in a. 

� Since processes are shifted earlier in real time, t is also after termination 
in α’ ⇒ ACk-1’(t) ≤ ACk’(t) + ε.

� We have ACk-1’(t) = ACk-1(t) + u and ACk’(t) = ACk(t).

� Putting all these pieces together, gives:

ACk-1(t) ≤ ACk(t) – u + ε, as needed.
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The Clock-Synchronization Problem – A Lower Bound

Proof of Theorem (continued):

� Since Α achieves ε-synchronized clocks, it holds that:

ACn-1(t) ≤ AC0(t).

� We apply the lemma repeatedly to finish the proof:

ACn-1(t) ≤ AC0(t) + ε

≤ AC1(t) – u + ε + ε = AC1(t) –u + 2ε

≤ AC2(t) – u + ε –u + 2ε = AC2(t) – 2u + 3ε

≤ ...

...

≤ ACn-1(t) – (n-1)u + nε

⇒ (n-1)u ≤ nε

⇒ ε ≥ (1 – 1/n)u, as needed!


