Because executions are sequences of events, they
induce a total order on all the events.

It is possible that two events by different processors
do not influence each other, yet they are (arbitrarily)
ordered by the execution.

+ The structure of causality between events is lost.

The happens-before relation
Fix some execution a.
Consider two events g, and ¢, by the same process p;in a. ¢
casually influences ¢,, if ¢, occurs before ¢,.
Consider two events ¢, and ¢, by different processes, p; and p;,
respectively. Event ¢, causally influences g,, if ¢, is the event
that sends message m from p; to p;, and ¢, is the event in which
the message m is received by p;.
Also, transitivity holds (if ¢, causally influences ¢, and ¢, causally
influences g, then @, causally influences g,).
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Formally:
Given two events ¢, and g, in a, ¢, happens before ¢,, denoted
@1 — @, if one of the following conditions hold:

=) q:ll ¢, are events by the same processor P and ¢, occurs before @,
ina,

2 @y is the send event of a message m from p; fo p;, and g, is the
receive event of the message m by p;,

o There exists an event ¢ such that ¢; — ¢ and ¢ — o,.

Obviously, — is an irreflexive partial order.

Do \I ﬁ; Dy
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(a) exec(C), o) (b) exec(C, w)
The happens-before relation characterizes the causality
relations in an execution.

o If the events of an execution are reordered with respect o each
other but without altering the happens-before relation, the result is
still an execution and it is indistinguishable to the processors.

Definition: Given an execution segment a = exec(C,0), a

permutation m of 0 is a causal shuffle of o if:

o forall j,0¢jen-1,0|j=m]j and

o if a message m is sent during process’ P; event ¢ in a, then in m, ¢
precedes the delivery of m.




Lemma 1

Let a = exec(C,0) be an execution fragment.
Then, any total ordering of the eventsino

that is consistent with the happens-before
relationship of q, is a casual shuffle of o.

Lemma 2

Let a = exec(C,0) be an execution fragment.
Let 7 be a casual shuffle of 0. Then, a' =
exec(C,m) is an execution fragment that is
indistinguishable to a in all processes.

How can processes observe the happens-before relation in an execution a,

With each event ¢, we associate a timestamp, LT(¢) (Logical Time of o).

We require an irreflexive partial order < on the timestamps, such that
for every pair of events, ¢, and ¢,:

if ; — ¢, then LT(g;) <LT(9,)
Simple Algorithm to maintain logical timestamps correctly

Each process p; keeps a local variable LT;, called its logical clock,
which is a non- nega‘nve integer, initially 0

As part of each event ¢, p; increases LT, to be one greater than
the maximum of LT s current value and the largest timestamp
on any message received in this event.

Every message sent by the event is time-stamped with the new
value of LT;.

» The fimestamp, LT(y), associated with an event ¢ of process p;, is the
new value LT; computed during the event.
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The partial order on timestamps is the ordinary < relation
among integers.

For each process p;, LT; is strictly increasing.

Theorem: Let a be an execution, and let ¢; and ¢, be two
events ina. If ¢; — @,, then LT(9,) < LT(9,).

Logical Clocks - Negative Points

If LT(y,) 2 LT(9,), then we know that ¢, does
not happen before o,.

Is the converse true?

NO! It is possible that LT(p,) < LT(y,) but it
does not h%ld that ¢1 — :.pZ? 2

» The problem is that the happens-before
relation is (in general) a partial order, whereas
the logical timestamps are integers with the
totally ordered <relation.




Definition
o Two events @, and ¢, are concurrent in execution a,

denoted ¢, || @,, if it does not hold neither ¢, — o,,
nor that ¢, — @,.

o If ¢, || 9, then there are two executions a; and a,,
both indistinguishable from a, such that ¢, precedes
9, in a;, and ¢, precedes o, in a,.

—=> processes cannot tell whether ¢, occurs before ¢, or
vice versa, and in fact, it makes no difference which
order they occur.

Each process p; keeps a local n-element array VC;,
called its Vector Clock (VC), each element of whicl‘q
is a non-negative integer, initially O.

As part of each event ¢, p; updates VC; as follows:

o VCj[j]is incremented by 1

o For each i # j, VC|[i] is set equal fo the maximum of its
current value and the largest value for entry i among the
timestamps of messages received in this event.

o Every message, sent by ¢, is time-stamped with the new value
of VC..
J

The vector timestamp of ¢, VC(p), is the value of VC; at the
end of o.
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Proposition: For each process p., in every reachable configuration, VC.[j] 2
Cljl, foralli, 0 i <n-1. Pi 4 g L

Partial Ordering of Vector Clocks

= Let v, kai v, be two vectors of n integers. Then, v, < v, if and only if,
for every j,0¢j<n-1,v[jl<v,[j] v; < v,if and only hgv1 <v, and
ZEA

= Vectors v, and v, are /ncomparable if neither vy <v,, nor v, <v,.

= Vector timestamps are said to capture concurrency if for ana/ pair of
events ¢, and ¢,, ¢, | @, if and only if VC(p;) and VC(p,) are
incomparable.

Theorem 1

Let a be an execution, and let ¢, and ¢, be two events in a.
If ¢, — 9, then VC(9,) < VC(9,).

Proof

Suppose that ¢;, ¢, are events of the same process and let ¢,
precede ¢,. Why is the claim true in this case,

Suppose that ¢; is the sending of a message m with vector
timestamp T by p;, and ¢, is the receipt of the message by p;.
Why is the claim true in this case,

» Does transitivity hold for the < relation in vectors?




Theorem 2

Let a be an execution, and let ¢, and ¢, be two events in a.
If VC(y,) < VC(9,) then ¢, — o,.

Proof
Consider two concurrent events, ¢, by p; and ¢, by p;, p; # p;.

Suppose VCi[il(9,) = m. The only way process p; can obtain a value
for the ith entry of its vector that is at least*m is through a chain
of messages originating at p; (at event g, or later).

Such a chain would imply that ¢, and ¢, are not concurrent. A

contradiction!
Thus, VCJ.[i]( 9,) < m = VC,(p,;) cannot be smaller than ch((pz).

Similc{;l ( ﬂ)\e jth entry in VCi(g,) cannot be smaller than the jth entry
INVCiley).

+ Theorems 1 and 2 imply that ¢, | ¢, if and only if VC(e,) and VC(9,)
are incomparable.
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Consider a complete network and an execution a in which:

Each process cj:vi sequentially sends a message to all processes other than
pi.1, i.e. IT sends a message 10 Py, Pi.2. - Pn-1. Po. P1s -.Pi-2-

After all the messages have been sent, each p; sequentially receives all
the messages sent fo it in decreasing order of the sender's index,
starting with pi-1 and wrapping around; p; receives from p,, piz, - Po.
Pr-1: Pn-2s - Pis2: ,
Qi1
Pit1 e L —

piy and p; ina

p; . B N\ _ N

b,
For each i, denote the first send event by q; and the last receive event by b,.




Lemma 3
For eachi,0<i<n-1,a, | b; (where we let a, = a,).

Proof

In a, a processor sends all its messages before it receives any
message.

= The causality relation is simple and does not include any transitively
derived relafions.

No message is sent from p,; to p.

Lemma 4
Foreachiand j,0<iz# j<n-1, qa. — b,

Proof
Why is this true;

Theorem

If VCis a function that maps each event in a to a vector in Rk in
a manner that captures concurrency, then k > n.

Proof
For eachi,0<i<n-1.By Lemma 3 = a,., | b.

Since VC captures concurrency = VC(a,;) and VC(b)) are
incomparable

= there exists some coordinate r s.t. VC[r](b,) < VC[rl(a.,).
Denote one of these indices by f(i).

In this manner, we have defined a function
f: {0, ..., n-1} > {0, ..., k-1}.
We prove that k > n by showing that f is 1-1.




Assume, by the way of contradiction, that f is not 1-1.
» 3 two indicesiand j,i# j,s.t. f(i) = f(j)=r.
By the definition of f:
VCIf()1(by) < VCIf(1))(ai.,) and VEIF(§)I(b;) < VCIf())(a;1) =
VC[r](b;) < V€[r(a..;) and VC[r](b;) < VC[r](a;.1)
By Lemma 4: a;,; — b; = VC(a;.;) < VC(b)).
From all the above inequalities:
VEr](b) « VEIri(a.) < VEIrl(by) « VEIr ay.,).
A contradiction o Lemma 4!

The Happens-before relation

Given two events ¢, and ¢, of an execution a, ¢; happens-
before @,, denoted by ¢; — ¢, if one of the following
conditions hold:

o ¢; and ¢, are events of the same process, and ¢, occurs before
9, ina,

o ¢; and ¢, are conflicting events Sbo‘rh access the same shared
variable and one of them'is a write), and ¢, precedes ¢, in a,

o there exists an event ¢ s.t. 9; > ¢ and ¢ — ¢,.




Consistent Cuts
No omniscient observer exists who can record an instantaneous snapshot

of the system!

Such a capability would be desirable:

o restoring the system after a crash

o determining whether there is a deadlock in the system
o detecting fermination

Simplifying Assumption: At each event a process receives at most one
message.

Given an execution a, we number the steps of each process 1,2,3, ....

A cut k through the execution is an n-vector k = <k, ..., k> of positive
integers.

Given a cut of an execution, one can construct a set of process states:
o the state of process p; is its state in a after the $k;$th computation event.

Consistent Cuts

(S]
el

/

/
A
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(1,3) (14) (2.6)

A cut k of an execution a is consistent if, for all i and j, the (ki+1)st
event of p; in a does not happen before the k;th event of p;ina.

Finding the maximal consistent cut
Given a cut k of an execution, find the "most recent” consistent cut that
precedes (or at least does not follow) k.

Taking a Distributed Snapshot

Instead of being given the upper bounding cut, processes are told when to
start finding a consistent cut.

10



Assume that there is a mechanism, called
hardware clock, by which some time information
is made available to the processes.

Formal definition of a timed execution

a In each fimed execution, associated with each process
p;, there is an increasing function HC; from non-negative
real numbers fo non-negative real numbers. When p,
performs a step at real time t, the value of HC(t) is
available as part of the input of p;'s transition function.

o p; s transition function cannot change HC,.

We assume that HC|(t) = t + ¢;, where c; is some
constant offseft.

Executions are sequences of events that impose an arbitrary ordering on
concurrent events.

We can break apart an execution into n sequences, where each sequence
represents the view of a processor.

Definition 1

A view with clock values of a process p; (in a model with hardware clocks)
consists of an initial state of p;,, a sequence of events that occur at p,,
and a hardware clock value assigned to each event. The hardware clock
values must be increasing, and if the sequence of events is infinite they
must increase without bound.

Definition 2

A timed view with clock values of a process p; (in a model with hardware
clocks) is a view with clock values of p; together with a real time
assigned to each event. The assignment must be consistent with the
hardware clock having the form HC,(t) = t + ¢; for some constant c;.

1



Given a timed execution a, time views with clock values can be
extracted, denoted a | i, for p;'s timed view with clock values.

A set of n timed views {n,, ..., h,.1}, one for each process p;, can
be merged as follows:

o The initial configuration is obtained by combining the initial states of
all the timed views.

o A sequence of events is obfained by interleaving the events in the
timed views consistently with the real times.

o Ties are broken by ordering all deliver events at time + before anx
computation events at time t, and breaking any remaining ties wit
processor indices.

The result is denoted by merge(n,, ..., n,.1).

Execution merge(n,, ..., n,.) is admissible, if the timed views are
consistent.

o if a message is delivered to p; from p; at fime t in n, but p, does not
send m to p; before time t'in n;, mérge(y, ..., h,4) is not a timed
execution.

real time t—x; t t+ r

Pi - = .
HC; (1) =1

pi shifted — o g -

B8 HCi(t +2;) =T

p; shifted S

—xi <0 HC;({ —2;) =T

Definition: Let a be a timed execution with hardware clocks and let
X be a vector of n real numbers. Define shifféa, X) to be
merge(no, ..., Np-p), where n; is the timed view obtained by adding x;
to the real time associated with each event ina | i.

The result of shifting an execution is not necessarily an execution.

0 a message may not be in the appropriate processor's outbuf variable
when a deliver event occurs.

Lemma: Let a be a timed execution with hardware clocks HC;, O < i

< n-1, and x be a vector of n real numbers. In shift(ax):

1. the hardware clock of p; is HC; = HC, - x;, and

2. every message from p; to p; has delay 3 - x; + x;, where 3 is the delay of
the message’ina, 0 <1, j < h-1.

12



Processes require to communicate to bring their clocks close together.
Each process p; has a special state component adj; that it can manipulate.
The adjusted clock of p; is a function AC(t) = HC(t) + adji(1).

Definition (achieving e-synchronized clocks):
In every admissible timed execution, there exists a real time t; s.t. the
algorithm has terminated
by real time t, and for all
processes p; and p;,
and all t2 ¥, |[AC(1) - AC(D) <e. | . . T~
The value ¢ is called the skew. Lh?q\ whish A;/AC,

‘ / !

Assumptions
There exists non-negative
constant dand u, d >'u, s.t.
in every admissible fimed executior
every message has delay within
the interval [d-u, d].

/

o

/

l
!
!
i
'
!
1
e

The value of u is the wncertainty = pe— T
in the message delay. £ precision .

A Simple Algorithm

Process p, sets adj, to O and sends its current
hardware clock value to process p;.

On receiving the messa%e with value T, process p,
setsadj,; = T + (d-u) - HC, (so AC;=T+(d-u))

Best case: skew = 0.
Worst case: skew = u.

» What happens if adj, is adjusted to T+ d - HC,

It is best to estimate the delay as d - u/2.
» What is the skew of the algorithm then?

13
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Let a be any admissible P .

execution in which the delay AL
of messages from p, to p;
is d-u and the delay of messages from p, to p, is d.

Let AC, and AC, be the adjusted clocks at some time T after termination.
Because A has skew ¢, AC; 2 AC; - &.

Consider the execution da' = shift(a, <-u, 0>); d' is an admissible timed
execution because all message delays are between d-u and d.

At time T in d', the adjusted clock of p, is AC, + u, whereas the adjusted
clock of p; is AC,.

Since A has skew €, AC; > (ACy + u) - &.
Thus, ACy > ACy +u-2e = e 2u/2.

(b) Execution o’

Choose one of the processes as a center.

Apply the two-processes algorithm between any process and
the center.

» What is the skew of this algorithm in the worst case,

We can do slightly better:

Algorithm 20 A clock synchronization algorithm for n processors:
code for processor p;, 0 < 7 < n 1.

initially diff{i] = 0

1: at first computation step:

504 send HC (current hardware clock value) to all other processors

3:  upon receiving message 77 from some p;:

4: diff(j] =T+ d—u/2—HC

=32 it a message has been received from every other processor then
: 1 m—1 gegry

o: adj := 2 n—o diff[k]




Theorem: Algorithm 20 achieves u(l - 1/n)-synchronization for n
processes.

Proof: Consider any admissible timed execution a of the algorithm.

Affer p; receives the message from p, diff;&]] holds p;’s
approximation of the difference betweeen'HC; and HC,. Because
of the way diff;[j] is calculated, the error in the approximation is

at most +u/2 or -u/2. Thus:

Lemma: For every time t after p; sets diff[j], j # i, it holds that

diff[j] = ché - HC{(t) + erry, where err; is a constant with
-u/2 <err; < U/2.

By the definition of the adjusted clocks, at any time t after the
algorithm terminates, the following holds:

[ACi(t) - ACj(1)] = | HC,(1) + 1/n T, o™t diffi[k] - HC;(Y) -
1/n Z,.o™ diff K]l (1)
After some algebraic manipulation, we get:

1/n | HC(1) - HC (1) + diff[i] - diff [i] + HC() - HC.(1) + diff[j] -
ndilffjug +) zkzo,kii(,j")l (Héa(fgq HCJ'I(T)J*[”I]tiiffi[kj(-)diffj[f((]))l Tl

Proof (continued)
By laws of absolute value and the fact that
diffi[i] = diffj[j] = O, this expression is
(1) < /n(JHC,(t) - HC,(1) + diff[i] [C) +
[HC,(1) - HC{(1) + dif f[j1| ) +
Zioker T HG() - HC(F) + diffi[K] - diff [K]|#)

™) -> difference between p;'s knowledge of its own clock and
p; s estimate of p; s clock: |ef‘f‘sj| <u/?2

®) -> the difference between EJ‘S knowledge of its own clock
and p;" s estimate of p;'s clock” | err;; | < u72

#) -> difference between p;"s estimate of p,'s cloxk and p;"s
estimate of p,'s clock:

| HC,(t) - HC;() + HCk(t) - HC(T) +erry; - HCk(t) + HC;(1) -er'r'kjl
<u.

= So, the entire expression < 1/n(u/2 + u/2 + Sn—Z) u)
= 1/n(n-1)u = (1 - 1/n)u, as needed!
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Theorem: For every algorithm that achieves e-synchronized clocks, ¢ is
at least u(l - l/ng.

Proof: Consider any clock synchronization algorithm A that achieves ¢-
synchronized clocks.

Let a be an admissible timed execution of A with hardware clocks HC;
s.t. for each process p;and pj, i < j:

o the dealy of every message from p; to p; is exactly d-u,
o the dealy of every message from p; to p; is exactly d.
Let AC; be the adjusted clock of p; in a after termination, 0 <i < n-1.
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Lemma: For each k, 1 < k < n-1, AC,4(t) ¢ AC,(t) - u + €.

Proof: Pick any k, 1 < k < n-1.
Define a' = shift(a, x), where x; = -uif O ¢<i<k-land x;= 0 if k< i<n-1.
Consider two processes p; and p; with i< j.

If j<k-1or k<i, then the delays from p; to p; are d-u and the delays from
p; To p; are d.

Otherwise (i < k-1 < j), the delays from p; to p; are d and the delays from p;
to p; are d-u.

Thus, d' is admissible and A much achieve e-synchronized clocks in a.

Since processes are shifted earlier in real time, t is also after termination
ind = AC{(t) < AC/(t) +«.

We have AC, /(1) = AC, (1) + uand AC,(T) = AC,(Y).
Putting all these pieces together, gives:
AC, (1) ¢ AC, () - u + €, as heeded.

16



Proof of Theorem (continued):

Since A achieves g-synchronized clocks, it holds that:

AC, (1) < ACy().
We apply the lemma repeatedly fo finish the proof:
AC, (1) <ACy(t) + ¢
<AC(t)-u+e+e= AC(t) -u+ 2¢
<CAC()-u+e-u+2e= AC,(t) - 2u+ 3¢
<
< AC,4(t) - (n-1)u + ne
= (n-Nu<ne
= €2 (1-1/n)u, as needed!
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