Causality and Time

Lemma 1

 Let a = exec(C,σ) be an execution fragment. Then, any total ordering of the events in σ that is consistent with the happens-before relationship of a, is a casual shuffle of σ.

Lemma 2

• Let a = exec(C,σ) be an execution fragment. Let π be a casual shuffle of σ . Then, a' = exec(C,π) is an execution fragment that is indistinguishable to a in all processes.

Vector Clocks

Definition

- □ Two events φ_1 and φ_2 are *concurrent* in execution a, denoted $\varphi_1 \parallel \varphi_2$, if it does not hold neither $\varphi_1 \rightarrow \varphi_2$, nor that $\varphi_2 \rightarrow \varphi_1$.
- □ If $\varphi_1 \parallel \varphi_2$, then there are two executions a_1 and a_2 , both indistinguishable from a, such that φ_1 precedes φ_2 in a_1 , and φ_2 precedes φ_1 in a_2 .
- \Rightarrow processes cannot tell whether φ_1 occurs before φ_2 or vice versa, and in fact, it makes no difference which order they occur.

Vector Clocks

Theorem 1

Let a be an execution, and let φ_1 and φ_2 be two events in a. If $\varphi_1 \rightarrow \varphi_2$ then $VC(\varphi_1) < VC(\varphi_2)$.

Proof

Suppose that φ_1 , φ_2 are events of the same process and let φ_1 precede φ_2 . Why is the claim true in this case;

Suppose that φ_1 is the sending of a message m with vector timestamp T by p_i , and φ_2 is the receipt of the message by p_j . Why is the claim true in this case;

Does transitivity hold for the < relation in vectors?</p>

The Clock-Synchronization Problem – An Upper Bound **Proof** (continued) By laws of apsolute value and diffi[i] = diffj[j] = 0, this expression is laws of absolute fact that and the $(1) \leq 1/n(|HC_i(t) - HC_i(t) + diff_i[i]|^{(*)} +$ $|HC_{i}(t) - HC_{i}(t) + diff_{i}[j]|^{(~)} +$ $\Sigma_{k=0,k\neq i,i}^{n-1}$ | $HC_i(t) - HC_i(t) + diff_i[k] - diff_i[k]^{(\#)}$ (*) -> difference between p_i`s knowledge of its own clock and p_j`s estimate of p_i`s clock: |err_{ij}| ≤ u/2 $^{(\sim)}$ -> the difference between $p_j`s$ knowledge of its own clock and $p_i`s$ estimate of $p_j's$ clock: | err_{ji} | \leq u/2 (#) -> difference between p_i 's estimate of p_k 's cloxk and p_i 's estimate of p_k's clock: $|HC_{i}(t) - HC_{i}(t) + HCk(t) - HC_{i}(t) + err_{ki} - HCk(t) + HC_{i}(t) - err_{ki}|$ \Rightarrow So, the entire expression $\leq 1/n(u/2 + u/2 + (n-2)u)$ = 1/n(n-1)u = (1 - 1/n)u, as needed!

The Clock-Synchronization Problem - A Lower Bound Proof of Theorem (continued): • Since A achieves ε -synchronized clocks, it holds that: $AC_{n-1}(t) \leq AC_0(t)$. • We apply the lemma repeatedly to finish the proof: $AC_{n-1}(t) \leq AC_0(t) + \varepsilon$ $\leq AC_1(t) - u + \varepsilon + \varepsilon = AC_1(t) - u + 2\varepsilon$ $\leq AC_2(t) - u + \varepsilon - u + 2\varepsilon = AC_2(t) - 2u + 3\varepsilon$ $\leq ...$... $\leq AC_{n-1}(t) - (n-1)u + n\varepsilon$ $\Rightarrow (n-1)u \leq n\varepsilon$ $\Rightarrow \varepsilon \geq (1 - 1/n)u$, as needed!