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History

● ML: Meta Language
● 1973, University of Edinburg
● Used to program search tactics in LCF theorem 

prover
● SML: Standard ML

● 1990, Princeton University
● OCaml

● 1996, INRIA
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Reading Material

● Main page
● http://ocaml.org

● Online repository of packages
● https://opam.ocaml.org/

● O'Reilly book (Translation from French, online)
● http://caml.inria.fr/pub/docs/oreilly-book/

http://ocaml.org/
https://opam.ocaml.org/
http://caml.inria.fr/pub/docs/oreilly-book/
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Language Features

● Functional, with imperative and OO elements
● Garbage collection (no free())
● Strongly typed, type-safe

● No segfaults or pointer bugs
● Type inference

● The programmer doesn't need to write types, but can
● Polymorphic types (similar to Java Generics)

● Data types and pattern matching
● Easy e.g., to write syntax trees
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Functional Programming

● Programs are expressions (not instructions)
let double x = (x + x);;

double 2;;

let quad x = double (double x);;

● Avoid explicit memory management and state
● Avoid mutable memory (pointers)

● Closer to mathematical functions
● Meaning of an expression does not depend on state

● Two calls to the same function with the same arguments always return 
the same result

● Programs are more predictable
● Easier to read and understand parts of the program
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The OCaml runtime

● Part of most Linux Distributions
● Windows (Visual Studio or CygWin)
● MacOS X (standalone and in fink)
● Source and binaries at http://www.ocaml.org

● Run interpreter:  ocaml
# print_string “Hello world!\n”;;

Hello_world!

- : unit = ()

# let x = 10;;

val x : int = 10

#

http://www.ocaml.org/
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Example program

print_string “Hello world!\n”;;  

                     (* use ;; to end top-level expressions *)

let x = 40;;         (* this is a comment

                        (* and this is nested *) *)

let answer: int =    (* you don't have to use types,

                        but you can *)

  x + 2              (* whitespace, returns are ignored *)

                     (* and empty lines, too *)

;;

print_int answer;;

print_string “\n”;;
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The OCaml compiler

● Can be compiled, too
● It is not necessary in source files to end top-level expressions with ;;

● To compile programs use ocamlc
● Compiles to object (.cmo) and interface (.cmi) files using -c
● Links to a.out by default

● Compiling the previous example
$ ocamlc example1.ml

$ ./a.out

Hello world!

42

$
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Scoping and let

● Used to create local variables
● let x = 40 + 2 in exp means x has the value 42 during the evaluation of exp

● Scoped:
let x = 40 + 2 in exp;;

x;;  (* error, x is out of scope *)

● Similarly in C:
{ int x = 40 + 2;

  exp;

}

x;  // error, x is out of scope

● Omit in at the top level to create global variable

let x = 42;;  (* in scope from now on *)

x;;  (* this is fine, x is in the scope *)
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More scoping

● let can be nested:

let x = 42 in

let y = successor x in

print_int (x + y);;

● The innermost binding hides outer scopes:
let x = 42 in

let x = successor x in

print_int x;;  (* prints 43, not 42 *)

let x = 1;;

● No side effects, immutable memory:
let addtox y = x + y;;  (* refers to the x in scope *)

let x = 42;;  (* new variable, hides previous declaration *)

addtox 3;;    (* will compute 4, not 45 *)
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Other Syntax

● if e1 then e2 else e3
● Evaluate e1, if true evaluate and return e2, 

otherwise evaluate and return e3

● e1; e2
● Evaluate e1 and ignore the result. Then evaluate 

and return e2
● Used to separate expressions, not to terminate an 

expression
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Basic Types

● Strongly typed language, no casts
● Basic types:

● unit: Type with one value, no data

● int: Integers

● float: Floats

● char: Characters

● string: Strings

● bool: Booleans
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Type Inference and Annotations

● To state that e has type t, write (e : t)
let (x : int) = 42;;

let (y : int) = “some string” (* type error *);;

let f (x : int) : float = (float_of_int x) *. 
3.14;;

let x = (y: int) + (z: int);;

let f x : int = 3 (* it means f returns int *);;

● The compiler will infer all types, and verify the 
annotations (or produce an error message)
● Very useful for debugging, incremental changes
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Function Types

● Function types use the -> type constructor
● float -> int: Type of a function that takes a 

float and returns an integer
● Examples:

● let successor x = x + 1 (* int -> int *)
● let iszero x =          (* int -> bool *)

  if x = 0 then true else false
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Functions

● Use fun to define functions and let to name them

let successor = fun x -> x + 1;;
● Functions are also values, can be given names using let expressions

● A simpler notation
let successor x = x + 1;;

● Functions can take multiple arguments
let multiply x y = x * y;;

● This is really a function that returns a function!
let multiply = fun x -> fun y -> x * y;;

● This is called Currying (after the logician Haskell Curry)
● Functions can take functions

let apply_twice2 f = f (f 2);; (* apply the function f twice on 2 
*)

● Here apply_twice2 has type (int -> int) -> int, its argument is a function
● What is apply_twice2 (multiply 3)?
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● Currying is very common in OCaml programs
● Currying conventions:

● -> is right associative

int -> int -> int is the same as

int -> (int -> int)
● Function application is left associative

multiply 2 3 is the same as 

(multiply 2) 3

● Use currying up to an arbitrary number of arguments
let f x1 x2 x3 x4 x5 ... = ...

● Enables partial application
● Not slow - compiler smart enough to avoid creating a new function for 

each argument

Currying
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Recursive Functions

● The scope of x in let x = e1 in e2 does 
not include e1

let fib n =

  if n = 0 then 0

  else if n = 1 then 1

  else fib (n-1) + fib (n-2)
● Error, fib is not in scope at the last line!

● Recursive functions have special definition
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Recursive Functions (cont'd)

● The scope of x in let rec x = e1 in e2 includes e1

let rec fib n =

  if n = 0 then 0

  else if n = 1 then 1

  else fib (n-1) + fib (n-2)
● Binds fib recursively during its definition

● Can only be used for functions, not values
● Mutually recursive functions connected with and

let rec f x = if x = 0 then 1 else g (x – 1)

and g x = (f x) * 2;;
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Tuples

● Tuples group together other data:

(1, false) is a tuple of two values (or a pair)

(e1, e2, e3) constructs a tuple holding the results of e1, e2 and e3

● To deconstruct, use let

let (x, y) = x;; (* where x is a pair *)

● Tuple types are products of element types:
(2, true) : (int * bool)

● Tuples can be used to group function arguments:
let f (x,y) = x + y;;  (* f has type (int * int) -> int *)

● Bad practice, results in unnecessary memory allocation at each function call

● Can name tuple types using type

type triple_int_bool = (int * int * int * bool)
● Works for naming types in general
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Lists

● The list is the basic data structure in OCaml
● Lists are written [e1; e2; e3;...]

# [1; 2; 3]

- : int list = [1; 2; 3]
● What happens when using comma instead of semicolon?

● All the elements in the list must have the same type
● list is a type constructor, meaning int list is a list of integers

● [] is the empty list

# []

- : 'a list = []

● 'a means any type, 'a list is a list of any one type
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Lists in C

struct list {

  int data;

  struct list *next;

};

...

struct list *l;

...

while (l != NULL) {

  l = l->next;

}

NULL
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Lists in OCaml

● The mathematical definition of a list is recursive: a list is either
● empty: []
● a pair of an element (the head) and the rest of the list, which is also a 
list of the same type, recursively

● a::b is the list that starts with element a, and continues with 
list b

● :: is a constructor, because it creates a list

● a :: b allocates a list cell, sets its data to a and the next pointer to b

● Examples:

1::[]  is the same as [1]

1::(2::(3::[])) is the same as [1; 2; 3]
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Using Lists with Pattern Matching

● To read the contents of a list e, use the match construct

match e with p1 -> e1 | p2 -> e2 | ... | pn -> en

● Patterns p1,...,pn use [], :: and pattern variables to describe a list structure

● match tests each pattern that matches the shape of e and evaluates the 
corresponding expression
● The pattern variables are bound to the corresponding parts of the structure for the 

evaluation of the case expression
● Example:

match [1;2] with

  [] -> print_string “impossible\n”

| (head::tail) -> ... (* head is 1, tail is [2] *)

● The underscore pattern _ matches anything and does not bind it

● Compiler warns if the patterns do not cover all cases
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Pattern Matching

● match can deconstruct tuples too

match (1, 3.14, true) with (x, y, z) -> ...

● Conversely, let can pattern match lists

let hd::_ = [1;2;3] in ...
● Compiler will warn about uncovered cases

● Example pattern matching
● let [x; y; z;] = e in ...  (* produces warning about

                              lists with !=3 elements *)
● match e with

  [] -> ...

| (x,y)::(_,z)::_::_ -> ...

| _ -> ...
● let list_function = fun (hd::tl) -> …

    (* produces a warning about [] case *)
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Polymorphic Types

● Some of the above functions require specific list types
● # let add_first_two (x::y::_) = x + y;;

val add_first_two : int list -> int = <fun>

● Others work on any kind of list
● let hd (h::_) = h
● hd [1; 2; 3]        (* returns 1 *)
● hd ['a'; 'b'; 'c']  (* returns 'a' *)

● Polymorphic types describe such functions
● hd : 'a list -> 'a
● 'a is a type variable

● means that hd takes a list of any type 'a, and returns a value of that 
type
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Example Polymorphic Functions

● # let swap (x, y) = (y, x);;

val swap : 'a * 'b -> 'b * 'a = <fun>

● # let tl (_::t) = t;;

val tl : 'a list -> 'a list = <fun>

● # let fst (x, y) = x;;

val fst : 'a * 'b -> 'a = <fun>

● # let inc_fst (x, y) = (x + 1, y);;

val inc_fst : int * 'a -> int * 'a = <fun>



 28

Looping with Recursion

● The only way to iterate
● for this class at least

● Example: print sequence
let rec print_seq start finish =

  print_int start; print_string “\n”;

  if start < finish

  then print_seq (start + 1) finish
● else clause can be omitted when type is unit
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Recursive List Traversal

● List are recursively defined
● Functions on list are also usually recursive

let rec count l = match l with

  [] -> 0

| (_::t) -> 1 + (count t)

● Resembles induction in mathematics
● Base case: the empty list
● Inductive case: construct the solution for the whole list by 

reducing to the solution of the tail
● Called inductive definition

● What is the type of count?
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Recursive Examples

● let rec sum l = match l with

  [] -> 0

| (hd::tl) -> hd + (sum tl)

● let rec project_first = function

  [] -> []

| (a,_)::tl -> a::(project_first 
tl)
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Recursive Examples (cont'd)

● let rec list_append l1 l2 = match l1 with

  [] -> l2

| (hd::tl) -> hd::(list_append tl l2)

● let rec list_reverse = function

  [] -> []

| (hd::tl) -> list_append (list_reverse tl) 
[hd]

● list_reverse takes O(n^2)!
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Recursive Examples (cont'd)

● let list_reverse l =

  let rec rev r = function

    [] -> r

  | (hd::tl) -> rev (hd::r) tl

  in

  rev [] l
● Example execution:

list_reverse [1; 2; 3] calls

rev [] [1; 2; 3] which calls

rev [1] [2; 3] which calls

rev [2; 1] [3] which calls

rev [3; 2; 1] [] which returns [3; 2; 1]
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Recursive Examples (cont'd)

● let rec list_gt n = function

  [] -> []

| (hd::tl) ->

  if hd > n then hd::(list_gt n tl) else list_gt n tl
● Can you think of a better way, like with list_reverse?
● let list_gt n =

  let helper r = function

    [] -> r

  | (hd::tl) ->

    if hd > n then helper (hd::r) tl

    else helper r tl

  in helper []
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Tail recursion

● Every recursive call is the last thing that 
happens

● The compiler can optimize
● Reuse local variables
● Avoid new stack frame
● Amounts to a for loop
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Higher order functions

● So far all recursive functions walk through the list
● do something to every element, or
● compute something of every element

● Remember: in OCaml, functions are values
● We can pass functions as arguments

● Let's try to separate the recursion from the action on each 
element

● Write a function that takes another function, and a list, 
applies it to every element, and returns a list of all the 
results

● What is its type?
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The map function

● let rec map f = function

  [] -> []

| (hd::tl) -> (f hd)::(map f tl)
● Can it be tail recursive?
● How about map_rev that returns a reversed list of the results?

● Examples:
let double x = x + x

let is_zero x = (x = 0)

map double [1; 2; 3; 4]

map is_zero [0; 2; 1; 0]

map (fun (x,_) -> x)  (* what is the type of this? *)
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The fold function

● Compute an aggregate on every element of a list
● Need to keep track of the results so far

let rec fold f a = function

  [] -> a

| h::t -> fold f (f a h) t

● a is the “accumulator”
● used to hold the intermediate result

● For a list [e1; ...; en], fold computes

f (...(f a e1) ...) en)

● What is its type?
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fold examples

● fold (fun a x -> a + x)

● fold (fun a _ -> a + 1)

● fold (fun a x -> x::a)
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Data Types

● Like C unions, only safe
● Use tag, or label, to identify the “case” of the union
type number =

  Zero

| Integer of int

| Real of float

| Complex of float * float

● Labels like Real or Integer above, are type constructors
● Functions that take a type and return a type
● Not first class in OCaml
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Data Types (cont'd)
● Use constructors to make values

let pi: number = (Real 3.14159)

let one = (Integer 1)

let i = Complex (0.0, 1.0)

● What is the type of [Zero; Real 1.0; pi] ?

● Deconstruct data types using match, cases differentiate on constructor
match n: number with

  Zero -> print_string “nada\n”

| Integer i -> print_int i; print_string “\n”

| Complex (real, 0.0) -> print_string “not too complex\n”

| _ -> print_string “uninteresting\n”

● Constructors must start with a capital letter
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Data Types (cont'd)

● Examples of data types
type optional_int =

  None

| Some of int

let set_or_add n = function

  None -> Some n

| Some n' -> Some (n + n')

● Arity: how many arguments a constructor takes
● None : nullary constructor (arity is zero)

● Some : unary constructor (arity is one)
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Polymorphic Data Types

● A data type that can be parameterized by another type
● type 'a option =

  None

| Some of 'a
● let x : string option =

  if ... then Some “result” else None
● let rec find_in_list (f: 'a -> bool) = function

  [] -> None

| h::tl ->

    if (f h) then Some h else find_in_list f tl

● What is the type of find_in_list?

● Option type is built-in in OCaml (like lists)
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Recursive Data Types

● A constructor can refer to the type name
● type t = ... is like let rec, only for types

● Lists, using data types:
type 'a list =

  Nil

| Cons of 'a * 'a list

let rec length = function

  Nil -> 0

| Cons (_, tl) -> 1 + (length tl)

● Works similarly with other kinds of types
type 'a pair = 'a * 'a
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Recursive Data Types (cont'd)

● Examples

type ('a, 'b) alt_list =

    Nil

  | Cons of 'a * ('b, 'a) alt_list

type 'a bintree =

    Empty

  | Node of 'a * 'a bintree * 'a bintree

● map : ('a -> 'b) -> 'a bintree -> 'b bintree
● Data types are handy in writing language ASTs!
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Exceptions

exception No_such_element of int

exception Found_it of int

let rec contains n l = match l with

  [] -> raise (No_such_element n)

| h::tl -> if h=n then raise (Found_it n)

  else contains n tl

let lookup n l =

  try

    contains n l

  with No_such_element i -> None

    |  Found_it n -> Some n
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Exceptions (cont'd)

● Declared using exception
● Work like normal data type constructors
● Can take arguments (or not)
● Raise exceptions with raise

● Catch exceptions using try ... with ...

● Pattern matching works normally under with
● When not caught by any pattern

● Propagate upwards in the stack
● Until the first with that matches
● Uncaught exceptions at the top-level end the program
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Functional Programming

● So far, no way to change memory
● Can only create new data that never change
● Each function returns its result

– e.g., a new list with the changes, the old list is the same

● Easier to program
● Aliasing does not matter
● Easy to reuse data in memory without actually 

making copies
● Functions are predictable, do not depend on outside 

state
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Imperative Programming

● OCaml has pointers, mutable state and side-effects
● Create a pointer (alloc)

ref : 'a -> 'a ref

● Read the data from a pointer (dereference)
! : 'a ref -> 'a

● Write a new value to a pointer (update)
:= : 'a ref -> 'a -> unit

● Example
let x = ref 1

let y = !x

let z = x

x := 42  (* y is 1, !z is 42 *)



 49

Functions with State

● Create unique numbers

let next =

  let counter = ref 1 in

  fun () ->

    let i = !counter in

    counter := i + 1;

    i

let x = next ();; (* x = 1, !counter = 2 *)

let y = next ();; (* y = 2, !counter = 3 *)
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No NULL

● Memory allocation requires an initial value
● ref 1 to allocate an int, etc

● No null-pointer errors
● Sometimes NULL is useful

● Use option types when None is a possible result
– Benefit: the compiler will force you to check for NULL (None)

● Alternatively, use a dummy value as a placeholder
● Example

let x = ref “dummy”

(* later in the program, after all initialization *)

x := “real value”
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Modules

● Good software engineering practice: break 
code into relevant parts, isolated from each 
other

● OCaml modules
● Similar to Java packages, class files
● Have interface (can be used for information hiding)
● Types checked by compiler (and linker)

● For examples, look into OCaml standard library
http://caml.inria.fr/pub/docs/manual-ocaml/libref/index.html

http://caml.inria.fr/pub/docs/manual-ocaml/libref/index.html
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Modules (cont'd)

module Numbers = struct

    type number =
        Zero
      | Integer of int
      | Real of float
      | Complex of float * float
    let pi = Real 3.14159
    let add_one = function
        Zero -> Integer 1
      | Integer n -> Integer (n+1)
      | Real r -> Real (r .+ 1.0)
      | Complex (r,i) -> Complex (r .+ 1.0, i)
  end;;
Zero;; (* not defined *)
Numbers.Zero (* defined with type number *)
open Numbers;; (* import module names into current scope *)
Zero;; (* defined *)
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Module Signatures

● The interface of a module
● Can hide implementation details

● Example
module type NUM =

  sig

    type number

    val add_one : number -> number

  end;;

module Number : NUM = struct

  type number = ...

  let add_one = ...

  let helper_function = ...

end;;
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Modules and Files

● Each file is a module:
● foo.ml is module Foo (without the struct...end)

● foo.mli is the signature (without the sig...end)
● The files must have the same name

● Compilation order matters
● Compiler must compile modules in order
● Cannot refer to a module later in the compilation 

order
– Except recursive modules, which have to be in the same 

file
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Functors

● A function that takes a module and returns a 
module
● E.g. Set in the standard library

module Strset = Set.Make(String)

● Signature of the formal argument must match 
signature of the actual argument
● Like what happens with function argument types
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Lazy Evaluation

● Defer evaluating an expression until it is 
necessary

● Create a lazy value
let x = Lazy.lazy (e)

● Read the result (might evaluate the expression)
let y = Lazy.force x

● Subsequent force x return the value 
computed at the first force
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Lazy Fibonacci

type 'a inf_list = Cons of 'a * 'a inf_list lazy_t

let fiblist : int inf_list =

  let rec build prevprev prev =

    Cons(prevprev,

             Lazy.lazy (build prev (prevprev+prev))

  in build 0 1

let rec nth (l: 'a inf_list) (n: int) : 'a =

  match (l, n) with

    (_, n) when n < 0 -> invalid_arg “negative index”

  | (Cons(x, _), 0) -> x        (* if n = 0 we are at the nth *)

  | (Cons(_, t), n) -> nth (Lazy.force t) (n-1)
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