
CS 546

Lectures 2-3

Introduction to OCaml

Polyvios Pratikakis

Based on slides by Jeff Foster

 2

History

● ML: Meta Language
● 1973, University of Edinburg
● Used to program search tactics in LCF theorem

prover
● SML: Standard ML

● 1990, Princeton University
● OCaml

● 1996, INRIA

 3

Reading Material

● Main page
● http://ocaml.org

● Online repository of packages
● https://opam.ocaml.org/

● O'Reilly book (Translation from French, online)
● http://caml.inria.fr/pub/docs/oreilly-book/

http://ocaml.org/
https://opam.ocaml.org/
http://caml.inria.fr/pub/docs/oreilly-book/

 4

Language Features

● Functional, with imperative and OO elements
● Garbage collection (no free())
● Strongly typed, type-safe

● No segfaults or pointer bugs
● Type inference

● The programmer doesn't need to write types, but can
● Polymorphic types (similar to Java Generics)

● Data types and pattern matching
● Easy e.g., to write syntax trees

 5

Functional Programming

● Programs are expressions (not instructions)
let double x = (x + x);;

double 2;;

let quad x = double (double x);;

● Avoid explicit memory management and state
● Avoid mutable memory (pointers)

● Closer to mathematical functions
● Meaning of an expression does not depend on state

● Two calls to the same function with the same arguments always return
the same result

● Programs are more predictable
● Easier to read and understand parts of the program

 6

The OCaml runtime

● Part of most Linux Distributions
● Windows (Visual Studio or CygWin)
● MacOS X (standalone and in fink)
● Source and binaries at http://www.ocaml.org

● Run interpreter: ocaml
print_string “Hello world!\n”;;

Hello_world!

- : unit = ()

let x = 10;;

val x : int = 10

#

http://www.ocaml.org/

 7

The OCaml runtime

● Part of most Linux Distributions
● Windows (Visual Studio or CygWin)
● MacOS X (standalone and in fink)
● Source and binaries at http://www.ocaml.org

● Run interpreter: ocaml
print_string “Hello world!\n”;;

Hello_world!

- : unit = ()

let x = 10;;

val x : int = 10

#

Types Values

http://www.ocaml.org/

 8

Example program

print_string “Hello world!\n”;;

 (* use ;; to end top-level expressions *)

let x = 40;; (* this is a comment

 (* and this is nested *) *)

let answer: int = (* you don't have to use types,

 but you can *)

 x + 2 (* whitespace, returns are ignored *)

 (* and empty lines, too *)

;;

print_int answer;;

print_string “\n”;;

 9

The OCaml compiler

● Can be compiled, too
● It is not necessary in source files to end top-level expressions with ;;

● To compile programs use ocamlc
● Compiles to object (.cmo) and interface (.cmi) files using -c
● Links to a.out by default

● Compiling the previous example
$ ocamlc example1.ml

$./a.out

Hello world!

42

$

 10

Scoping and let

● Used to create local variables
● let x = 40 + 2 in exp means x has the value 42 during the evaluation of exp

● Scoped:
let x = 40 + 2 in exp;;

x;; (* error, x is out of scope *)

● Similarly in C:
{ int x = 40 + 2;

 exp;

}

x; // error, x is out of scope

● Omit in at the top level to create global variable

let x = 42;; (* in scope from now on *)

x;; (* this is fine, x is in the scope *)

 11

More scoping

● let can be nested:

let x = 42 in

let y = successor x in

print_int (x + y);;

● The innermost binding hides outer scopes:
let x = 42 in

let x = successor x in

print_int x;; (* prints 43, not 42 *)

let x = 1;;

● No side effects, immutable memory:
let addtox y = x + y;; (* refers to the x in scope *)

let x = 42;; (* new variable, hides previous declaration *)

addtox 3;; (* will compute 4, not 45 *)

 12

Other Syntax

● if e1 then e2 else e3
● Evaluate e1, if true evaluate and return e2,

otherwise evaluate and return e3

● e1; e2
● Evaluate e1 and ignore the result. Then evaluate

and return e2
● Used to separate expressions, not to terminate an

expression

 13

Basic Types

● Strongly typed language, no casts
● Basic types:

● unit: Type with one value, no data

● int: Integers

● float: Floats

● char: Characters

● string: Strings

● bool: Booleans

 14

Type Inference and Annotations

● To state that e has type t, write (e : t)
let (x : int) = 42;;

let (y : int) = “some string” (* type error *);;

let f (x : int) : float = (float_of_int x) *.
3.14;;

let x = (y: int) + (z: int);;

let f x : int = 3 (* it means f returns int *);;

● The compiler will infer all types, and verify the
annotations (or produce an error message)
● Very useful for debugging, incremental changes

 15

Function Types

● Function types use the -> type constructor
● float -> int: Type of a function that takes a

float and returns an integer
● Examples:

● let successor x = x + 1 (* int -> int *)
● let iszero x = (* int -> bool *)

 if x = 0 then true else false

 16

Functions

● Use fun to define functions and let to name them

let successor = fun x -> x + 1;;
● Functions are also values, can be given names using let expressions

● A simpler notation
let successor x = x + 1;;

● Functions can take multiple arguments
let multiply x y = x * y;;

● This is really a function that returns a function!
let multiply = fun x -> fun y -> x * y;;

● This is called Currying (after the logician Haskell Curry)
● Functions can take functions

let apply_twice2 f = f (f 2);; (* apply the function f twice on 2
*)

● Here apply_twice2 has type (int -> int) -> int, its argument is a function
● What is apply_twice2 (multiply 3)?

 17

● Currying is very common in OCaml programs
● Currying conventions:

● -> is right associative

int -> int -> int is the same as

int -> (int -> int)
● Function application is left associative

multiply 2 3 is the same as

(multiply 2) 3

● Use currying up to an arbitrary number of arguments
let f x1 x2 x3 x4 x5 ... = ...

● Enables partial application
● Not slow - compiler smart enough to avoid creating a new function for

each argument

Currying

 18

Recursive Functions

● The scope of x in let x = e1 in e2 does
not include e1

let fib n =

 if n = 0 then 0

 else if n = 1 then 1

 else fib (n-1) + fib (n-2)
● Error, fib is not in scope at the last line!

● Recursive functions have special definition

 19

Recursive Functions (cont'd)

● The scope of x in let rec x = e1 in e2 includes e1

let rec fib n =

 if n = 0 then 0

 else if n = 1 then 1

 else fib (n-1) + fib (n-2)
● Binds fib recursively during its definition

● Can only be used for functions, not values
● Mutually recursive functions connected with and

let rec f x = if x = 0 then 1 else g (x – 1)

and g x = (f x) * 2;;

 20

Tuples

● Tuples group together other data:

(1, false) is a tuple of two values (or a pair)

(e1, e2, e3) constructs a tuple holding the results of e1, e2 and e3

● To deconstruct, use let

let (x, y) = x;; (* where x is a pair *)

● Tuple types are products of element types:
(2, true) : (int * bool)

● Tuples can be used to group function arguments:
let f (x,y) = x + y;; (* f has type (int * int) -> int *)

● Bad practice, results in unnecessary memory allocation at each function call

● Can name tuple types using type

type triple_int_bool = (int * int * int * bool)
● Works for naming types in general

 21

Lists

● The list is the basic data structure in OCaml
● Lists are written [e1; e2; e3;...]

[1; 2; 3]

- : int list = [1; 2; 3]
● What happens when using comma instead of semicolon?

● All the elements in the list must have the same type
● list is a type constructor, meaning int list is a list of integers

● [] is the empty list

[]

- : 'a list = []

● 'a means any type, 'a list is a list of any one type

 22

Lists in C

struct list {

 int data;

 struct list *next;

};

...

struct list *l;

...

while (l != NULL) {

 l = l->next;

}

NULL

 23

Lists in OCaml

● The mathematical definition of a list is recursive: a list is either
● empty: []
● a pair of an element (the head) and the rest of the list, which is also a
list of the same type, recursively

● a::b is the list that starts with element a, and continues with
list b

● :: is a constructor, because it creates a list

● a :: b allocates a list cell, sets its data to a and the next pointer to b

● Examples:

1::[] is the same as [1]

1::(2::(3::[])) is the same as [1; 2; 3]

 24

Using Lists with Pattern Matching

● To read the contents of a list e, use the match construct

match e with p1 -> e1 | p2 -> e2 | ... | pn -> en

● Patterns p1,...,pn use [], :: and pattern variables to describe a list structure

● match tests each pattern that matches the shape of e and evaluates the
corresponding expression
● The pattern variables are bound to the corresponding parts of the structure for the

evaluation of the case expression
● Example:

match [1;2] with

 [] -> print_string “impossible\n”

| (head::tail) -> ... (* head is 1, tail is [2] *)

● The underscore pattern _ matches anything and does not bind it

● Compiler warns if the patterns do not cover all cases

 25

Pattern Matching

● match can deconstruct tuples too

match (1, 3.14, true) with (x, y, z) -> ...

● Conversely, let can pattern match lists

let hd::_ = [1;2;3] in ...
● Compiler will warn about uncovered cases

● Example pattern matching
● let [x; y; z;] = e in ... (* produces warning about

 lists with !=3 elements *)
● match e with

 [] -> ...

| (x,y)::(_,z)::_::_ -> ...

| _ -> ...
● let list_function = fun (hd::tl) -> …

 (* produces a warning about [] case *)

 26

Polymorphic Types

● Some of the above functions require specific list types
● # let add_first_two (x::y::_) = x + y;;

val add_first_two : int list -> int = <fun>

● Others work on any kind of list
● let hd (h::_) = h
● hd [1; 2; 3] (* returns 1 *)
● hd ['a'; 'b'; 'c'] (* returns 'a' *)

● Polymorphic types describe such functions
● hd : 'a list -> 'a
● 'a is a type variable

● means that hd takes a list of any type 'a, and returns a value of that
type

 27

Example Polymorphic Functions

● # let swap (x, y) = (y, x);;

val swap : 'a * 'b -> 'b * 'a = <fun>

● # let tl (_::t) = t;;

val tl : 'a list -> 'a list = <fun>

● # let fst (x, y) = x;;

val fst : 'a * 'b -> 'a = <fun>

● # let inc_fst (x, y) = (x + 1, y);;

val inc_fst : int * 'a -> int * 'a = <fun>

 28

Looping with Recursion

● The only way to iterate
● for this class at least

● Example: print sequence
let rec print_seq start finish =

 print_int start; print_string “\n”;

 if start < finish

 then print_seq (start + 1) finish
● else clause can be omitted when type is unit

 29

Recursive List Traversal

● List are recursively defined
● Functions on list are also usually recursive

let rec count l = match l with

 [] -> 0

| (_::t) -> 1 + (count t)

● Resembles induction in mathematics
● Base case: the empty list
● Inductive case: construct the solution for the whole list by

reducing to the solution of the tail
● Called inductive definition

● What is the type of count?

 30

Recursive Examples

● let rec sum l = match l with

 [] -> 0

| (hd::tl) -> hd + (sum tl)

● let rec project_first = function

 [] -> []

| (a,_)::tl -> a::(project_first
tl)

 31

Recursive Examples (cont'd)

● let rec list_append l1 l2 = match l1 with

 [] -> l2

| (hd::tl) -> hd::(list_append tl l2)

● let rec list_reverse = function

 [] -> []

| (hd::tl) -> list_append (list_reverse tl)
[hd]

● list_reverse takes O(n^2)!

 32

Recursive Examples (cont'd)

● let list_reverse l =

 let rec rev r = function

 [] -> r

 | (hd::tl) -> rev (hd::r) tl

 in

 rev [] l
● Example execution:

list_reverse [1; 2; 3] calls

rev [] [1; 2; 3] which calls

rev [1] [2; 3] which calls

rev [2; 1] [3] which calls

rev [3; 2; 1] [] which returns [3; 2; 1]

 33

Recursive Examples (cont'd)

● let rec list_gt n = function

 [] -> []

| (hd::tl) ->

 if hd > n then hd::(list_gt n tl) else list_gt n tl
● Can you think of a better way, like with list_reverse?
● let list_gt n =

 let helper r = function

 [] -> r

 | (hd::tl) ->

 if hd > n then helper (hd::r) tl

 else helper r tl

 in helper []

 34

Tail recursion

● Every recursive call is the last thing that
happens

● The compiler can optimize
● Reuse local variables
● Avoid new stack frame
● Amounts to a for loop

 35

Higher order functions

● So far all recursive functions walk through the list
● do something to every element, or
● compute something of every element

● Remember: in OCaml, functions are values
● We can pass functions as arguments

● Let's try to separate the recursion from the action on each
element

● Write a function that takes another function, and a list,
applies it to every element, and returns a list of all the
results

● What is its type?

 36

The map function

● let rec map f = function

 [] -> []

| (hd::tl) -> (f hd)::(map f tl)
● Can it be tail recursive?
● How about map_rev that returns a reversed list of the results?

● Examples:
let double x = x + x

let is_zero x = (x = 0)

map double [1; 2; 3; 4]

map is_zero [0; 2; 1; 0]

map (fun (x,_) -> x) (* what is the type of this? *)

 37

The fold function

● Compute an aggregate on every element of a list
● Need to keep track of the results so far

let rec fold f a = function

 [] -> a

| h::t -> fold f (f a h) t

● a is the “accumulator”
● used to hold the intermediate result

● For a list [e1; ...; en], fold computes

f (...(f a e1) ...) en)

● What is its type?

 38

fold examples

● fold (fun a x -> a + x)

● fold (fun a _ -> a + 1)

● fold (fun a x -> x::a)

 39

Data Types

● Like C unions, only safe
● Use tag, or label, to identify the “case” of the union
type number =

 Zero

| Integer of int

| Real of float

| Complex of float * float

● Labels like Real or Integer above, are type constructors
● Functions that take a type and return a type
● Not first class in OCaml

 40

Data Types (cont'd)
● Use constructors to make values

let pi: number = (Real 3.14159)

let one = (Integer 1)

let i = Complex (0.0, 1.0)

● What is the type of [Zero; Real 1.0; pi] ?

● Deconstruct data types using match, cases differentiate on constructor
match n: number with

 Zero -> print_string “nada\n”

| Integer i -> print_int i; print_string “\n”

| Complex (real, 0.0) -> print_string “not too complex\n”

| _ -> print_string “uninteresting\n”

● Constructors must start with a capital letter

 41

Data Types (cont'd)

● Examples of data types
type optional_int =

 None

| Some of int

let set_or_add n = function

 None -> Some n

| Some n' -> Some (n + n')

● Arity: how many arguments a constructor takes
● None : nullary constructor (arity is zero)

● Some : unary constructor (arity is one)

 42

Polymorphic Data Types

● A data type that can be parameterized by another type
● type 'a option =

 None

| Some of 'a
● let x : string option =

 if ... then Some “result” else None
● let rec find_in_list (f: 'a -> bool) = function

 [] -> None

| h::tl ->

 if (f h) then Some h else find_in_list f tl

● What is the type of find_in_list?

● Option type is built-in in OCaml (like lists)

 43

Recursive Data Types

● A constructor can refer to the type name
● type t = ... is like let rec, only for types

● Lists, using data types:
type 'a list =

 Nil

| Cons of 'a * 'a list

let rec length = function

 Nil -> 0

| Cons (_, tl) -> 1 + (length tl)

● Works similarly with other kinds of types
type 'a pair = 'a * 'a

 44

Recursive Data Types (cont'd)

● Examples

type ('a, 'b) alt_list =

 Nil

 | Cons of 'a * ('b, 'a) alt_list

type 'a bintree =

 Empty

 | Node of 'a * 'a bintree * 'a bintree

● map : ('a -> 'b) -> 'a bintree -> 'b bintree
● Data types are handy in writing language ASTs!

 45

Exceptions

exception No_such_element of int

exception Found_it of int

let rec contains n l = match l with

 [] -> raise (No_such_element n)

| h::tl -> if h=n then raise (Found_it n)

 else contains n tl

let lookup n l =

 try

 contains n l

 with No_such_element i -> None

 | Found_it n -> Some n

 46

Exceptions (cont'd)

● Declared using exception
● Work like normal data type constructors
● Can take arguments (or not)
● Raise exceptions with raise

● Catch exceptions using try ... with ...

● Pattern matching works normally under with
● When not caught by any pattern

● Propagate upwards in the stack
● Until the first with that matches
● Uncaught exceptions at the top-level end the program

 47

Functional Programming

● So far, no way to change memory
● Can only create new data that never change
● Each function returns its result

– e.g., a new list with the changes, the old list is the same

● Easier to program
● Aliasing does not matter
● Easy to reuse data in memory without actually

making copies
● Functions are predictable, do not depend on outside

state

 48

Imperative Programming

● OCaml has pointers, mutable state and side-effects
● Create a pointer (alloc)

ref : 'a -> 'a ref

● Read the data from a pointer (dereference)
! : 'a ref -> 'a

● Write a new value to a pointer (update)
:= : 'a ref -> 'a -> unit

● Example
let x = ref 1

let y = !x

let z = x

x := 42 (* y is 1, !z is 42 *)

 49

Functions with State

● Create unique numbers

let next =

 let counter = ref 1 in

 fun () ->

 let i = !counter in

 counter := i + 1;

 i

let x = next ();; (* x = 1, !counter = 2 *)

let y = next ();; (* y = 2, !counter = 3 *)

 50

No NULL

● Memory allocation requires an initial value
● ref 1 to allocate an int, etc

● No null-pointer errors
● Sometimes NULL is useful

● Use option types when None is a possible result
– Benefit: the compiler will force you to check for NULL (None)

● Alternatively, use a dummy value as a placeholder
● Example

let x = ref “dummy”

(* later in the program, after all initialization *)

x := “real value”

 51

Modules

● Good software engineering practice: break
code into relevant parts, isolated from each
other

● OCaml modules
● Similar to Java packages, class files
● Have interface (can be used for information hiding)
● Types checked by compiler (and linker)

● For examples, look into OCaml standard library
http://caml.inria.fr/pub/docs/manual-ocaml/libref/index.html

http://caml.inria.fr/pub/docs/manual-ocaml/libref/index.html

 52

Modules (cont'd)

module Numbers = struct

 type number =
 Zero
 | Integer of int
 | Real of float
 | Complex of float * float
 let pi = Real 3.14159
 let add_one = function
 Zero -> Integer 1
 | Integer n -> Integer (n+1)
 | Real r -> Real (r .+ 1.0)
 | Complex (r,i) -> Complex (r .+ 1.0, i)
 end;;
Zero;; (* not defined *)
Numbers.Zero (* defined with type number *)
open Numbers;; (* import module names into current scope *)
Zero;; (* defined *)

 53

Module Signatures

● The interface of a module
● Can hide implementation details

● Example
module type NUM =

 sig

 type number

 val add_one : number -> number

 end;;

module Number : NUM = struct

 type number = ...

 let add_one = ...

 let helper_function = ...

end;;

 54

Modules and Files

● Each file is a module:
● foo.ml is module Foo (without the struct...end)

● foo.mli is the signature (without the sig...end)
● The files must have the same name

● Compilation order matters
● Compiler must compile modules in order
● Cannot refer to a module later in the compilation

order
– Except recursive modules, which have to be in the same

file

 55

Functors

● A function that takes a module and returns a
module
● E.g. Set in the standard library

module Strset = Set.Make(String)

● Signature of the formal argument must match
signature of the actual argument
● Like what happens with function argument types

 56

Lazy Evaluation

● Defer evaluating an expression until it is
necessary

● Create a lazy value
let x = Lazy.lazy (e)

● Read the result (might evaluate the expression)
let y = Lazy.force x

● Subsequent force x return the value
computed at the first force

 57

Lazy Fibonacci

type 'a inf_list = Cons of 'a * 'a inf_list lazy_t

let fiblist : int inf_list =

 let rec build prevprev prev =

 Cons(prevprev,

 Lazy.lazy (build prev (prevprev+prev))

 in build 0 1

let rec nth (l: 'a inf_list) (n: int) : 'a =

 match (l, n) with

 (_, n) when n < 0 -> invalid_arg “negative index”

 | (Cons(x, _), 0) -> x (* if n = 0 we are at the nth *)

 | (Cons(_, t), n) -> nth (Lazy.force t) (n-1)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

