
Lecture 19: Alias analysis
Subtyping

Polyvios Pratikakis

Computer Science Department, University of Crete

Type Systems and Programming Languages

Based on slides by Jeff Foster

Pratikakis (CSD) Alias analysis CS546, 2024-2025 1 / 21



Last time

Label-flow analysis
▶ Assign a label at every “interesting” program point (pointers)
▶ Aliasing question: does label R1 “flow” to label R2 at runtime?

Type-based label-flow (for pointers)
▶ Annotate types with labels
▶ Type-checking is flow checking

An inference system
▶ Type system creates “fresh” label variables
▶ Typing creates constraints among variables
▶ Constraint solution gives aliasing information

⋆ We used unification to solve constraints

Pratikakis (CSD) Alias analysis CS546, 2024-2025 2 / 21



Limitation of unification

Unification creates “backwards flow” of labels
When x and y both alias z, they alias each other too
For example

let x = ref 1 in
let y = ref 2 in
let z = if true then x else y in

x := 42;
y := 0;

Unification gives
x : RefR Nat
y : RefR Nat
z : RefR Nat

Pratikakis (CSD) Alias analysis CS546, 2024-2025 3 / 21



Subtyping

We can solve this problem using subtyping
▶ Each label variable represents a set of labels

⋆ In unification, a variable could only stand for one label
▶ We write [α] for the set of labels represented by α

⋆ Trivially, [R] = {R} for any constant R
For example, assume

▶ x has type Refα Nat
▶ [α] = {R1,R2}
▶ Then x may point to either location R1 or location R2

⋆ Again, labels R1 and R2 are static approximations, they may refer to
many runtime locations

Pratikakis (CSD) Alias analysis CS546, 2024-2025 4 / 21



Labels on references

Labeling is slightly different
▶ We assume each allocation has a unique constant label

⋆ Generate a fresh one for each syntactic occurence
▶ Add a fresh variable on each reference type and generate a subtyping

constraint between constant and variable
⋆ α1 ≤ α2 means [α1] ⊆ [α2]

[T-Ref]

Γ ⊢ e : T
R ≤ α

R − fresh α− fresh
Γ ⊢ refR e : Refα T

Pratikakis (CSD) Alias analysis CS546, 2024-2025 5 / 21



Subtype inference

The same approach as before
▶ Visit the AST, generate constraints
▶ Constraints allow subsets, instead of equalities

We could change all rules that generate constraints to allow
inequalities

▶ For example

Γ ⊢ e : Bool
Γ ⊢ e1 : Refρ1 T Γ ⊢ e2 : Refρ1 T

ρ1 ≤ ρ ρ2 ≤ ρ

Γ ⊢ if e then e1 else e2 : Refρ T

Pratikakis (CSD) Alias analysis CS546, 2024-2025 6 / 21



Subtyping constraints

We need to generalize to arbitrary types
▶ Think of types as representing sets of values

⋆ For example Nat represents the set of natural numbers
⋆ So, Refρ Nat represents the sets of pointers to integers labeled with [ρ]

▶ Extend ≤ to a relation T ≤ T on types

Nat ≤ Nat
ρ1 ≤ ρ2 Nat ≤ Nat
Refρ1 Nat ≤ Refρ2 Nat

Pratikakis (CSD) Alias analysis CS546, 2024-2025 7 / 21



Subsumption

Instead of modifying all rules with constraints, add one more typing
rule (remember subtyping from λ-calculus)

Γ ⊢ e : T T ≤ T′

Γ ⊢ e : T′

Like normal subtyping: we can use a supertype anywhere a subtype is
expected

Pratikakis (CSD) Alias analysis CS546, 2024-2025 8 / 21



Example

let x = ref 0 in // x : Refα Nat
let y = ref 1 in // y : Refβ Nat
let z = if true then x else y in // z : Refγ Nat

x := 42

Types of x and y must match as conditional

Γ ⊢ x : Refα Nat
α ≤ γ

Refα Nat ≤ Refγ Nat
Γ ⊢ x : Refγ Nat

So, we have z : Refγ Nat with α ≤ γ and β ≤ γ
▶ And we can pick [α] = {Rx} , [β] = {Ry} , [γ] = {Rx,Ry}

Pratikakis (CSD) Alias analysis CS546, 2024-2025 9 / 21



Subtyping references

Let’s try to generalize to arbitrary types

ρ1 ≤ ρ2
T1 ≤ T2

Refρ1 T1 ≤ Refρ2 T2

This is broken
let x = refRx (refR0 0) in // x : Refα Refβ Nat, R0 ≤ β

let y = x in // y : Refγ Refδ Nat, β ≤ δ

y := refR1 1; // R1 ≤≤ δ
!! x := 3 // deref of β

We can pick [β] = {R0}, [δ] = {R0,R1}
▶ Then writing through β doesn’t write R1

Pratikakis (CSD) Alias analysis CS546, 2024-2025 10 / 21



Aliasing

Through subtyping, we have multiple names for the same memory
location

▶ They have different types
▶ We can write different types on the same memory location

Solution: require equality under a ref
▶ We saw this before: subtyping and references
▶ We can write T1 = T2 as T1 ≤ T2 and T2 ≤ T1

ρ1 ≤ ρ2 T1 ≤ T2 T2 ≤ T1

Refρ1 T1 ≤ Refρ2 T2

Pratikakis (CSD) Alias analysis CS546, 2024-2025 11 / 21



Subtyping on function types

When is a function type T1 → T2 subtype of another function type
T′
1 → T′

2?
Similar to standard subtyping

▶ Contravariant on the argument type
▶ Covariant on the result type

T′
1 ≤ T1 T2 ≤ T′

2

T1 → T2 ≤ T′
1 → T′

2

Example: we can always use a function that returns a pointer to {R1}
as if it could return {R1,R2}
Example: if a function expects a pointer to {R1,R2} we can always
give it a pointer to {R1}

Pratikakis (CSD) Alias analysis CS546, 2024-2025 12 / 21



Type system

Typing is similar, generates ≤ instead of = constraints
[T-Var] x : T ∈ Γ

Γ ⊢ x : T [T-Nat]
Γ ⊢ n : Nat

[T-True]
Γ ⊢ true : Bool [T-False]

Γ ⊢ false : Bool

[T-Unit]
Γ ⊢ () : Unit

[T-Seq]

Γ ⊢ e1 : Unit
Γ ⊢ e2 : T

Γ ⊢ (e1; e2) : T

[T-Lam]

Γ, x : S ⊢ e : T′

T = fresh(S)
Γ ⊢ λx : S.e : T → T′ [T-App]

Γ ⊢ e1 : T → T′

Γ ⊢ e2 : T
Γ ⊢ (e1 e2) : T′

Pratikakis (CSD) Alias analysis CS546, 2024-2025 13 / 21



Type system (cont’d)

[T-If]

Γ ⊢ e : Bool
Γ ⊢ e1 : T Γ ⊢ e2 : T
Γ ⊢ if e then e1 else e2 : T [T-Let]

Γ ⊢ e1 : T1

Γ, x : T1 ⊢ e2 : T2

Γ ⊢ let x = e1 in e2 : T2

[T-Ref]

Γ ⊢ e : T R ≤ α
R − fresh α− fresh
Γ ⊢ refR e : Refα T

[T-Deref]
Γ ⊢ e : Refα T

Γ ⊢!e : T

[T-Assign]

Γ ⊢ e1 : Refα T
Γ ⊢ e2 : T

Γ ⊢ e1 := e2 : Unit [T-Sub]

Γ ⊢ e : T1

T1 ≤ T2

Γ ⊢ e : T2

Pratikakis (CSD) Alias analysis CS546, 2024-2025 14 / 21



Subtyping relation

In unification, we simplify T1 = T2 constraints to get ρ1 = ρ2
constraints
We can use the subtyping relation T1 ≤ T2 to do the same

[S-Nat]
T′
1 ≤ T1 T2 ≤ T′

2

T1 → T2 ≤ T′
1 → T′

2

[S-Nat] Nat ≤ Nat [S-Bool] Bool ≤ Bool

[S-Unit] Unit ≤ Unit [S-Ref]

ρ1 ≤ ρ2
T1 ≤ T2 T2 ≤ T1

Refρ1 T1 ≤ Refρ2 T2

Pratikakis (CSD) Alias analysis CS546, 2024-2025 15 / 21



The problem: subsumption

We can apply subsumption at any time
▶ Makes it hard to develop a deterministic algorithm
▶ Type checking is not syntax-driven

Fortunately, not many choices
▶ For each expression e we need to decide

⋆ Do we apply the “regular” syntax-driven rule for e?
⋆ or do we apply subsumption (and how many times)?

Pratikakis (CSD) Alias analysis CS546, 2024-2025 16 / 21



Getting rid of subsumtion

Lemma: Multiple sequential uses of subsumption can be collapsed
into a single use

▶ Proof: transitivity of ≤
We need at most one application of subsumption after typing an
expression
We can get rid of that one application

▶ Integrate it into the rest of the rules
▶ Each rule is the syntax-driven typing, plus a subsumption

Pratikakis (CSD) Alias analysis CS546, 2024-2025 17 / 21



Getting rid of subsumption (cont’d)

All rules that introduced T1 = T2 constraints in unification, now
introduce subtyping T1 ≤ T2

[T-App]

Γ ⊢ e1 : T1 → T′

Γ ⊢ e2 : T2

T2 ≤ T1

Γ ⊢ (e1 e2) : T′

[T-If]

Γ ⊢ e : Bool
Γ ⊢ e1 : T1 Γ ⊢ e2 : T2

T1 ≤ T T2 ≤ T
Γ ⊢ if e then e1 else e2 : T

Etc, for the other rules
We are left with an algorithmic, syntax-directed type system

Pratikakis (CSD) Alias analysis CS546, 2024-2025 18 / 21



Solving the constraints

Solving computes transitive closure of ρ ≤ ρ′

As in unification, use a rewriting system to simplify constraints
Except we have already solved the structural part and only have
r ≤ ρ1 constraints left

▶ If {ρ1 ≤ ρ2} and {ρ2 ≤ ρ3} then add {ρ1 ≤ ρ3}
Repeat until no new edges can be added
At most O(N2)

Points-to set [ρ] is then [ρ] = {R | R ≤ ρ}

Pratikakis (CSD) Alias analysis CS546, 2024-2025 19 / 21



Graph reachability

R1 ≤ a

R2 ≤ b

a ≤ c

b ≤ a

Pratikakis (CSD) Alias analysis CS546, 2024-2025 20 / 21



Andersen’s analysis

Flow-insensitive
Context-insensitive
Subtyping-based
Properties

▶ Still very scalable in practice
▶ Much less coarse than Steensgaard’s analysis
▶ Precision can still be improved

Pratikakis (CSD) Alias analysis CS546, 2024-2025 21 / 21


