Lecture 18: Alias analysis

Unification

Polyvios Pratikakis

Computer Science Department, University of Crete

Type Systems and Programming Languages

Based on slides by Jeff Foster
Introduction

- **Aliasing** occurs when different names refer to the same thing
 - Typically, we only care for imperative programs
 - The usual culprit: pointers
- A core building block for other analyses
 - For example in `*p = 3;` what does `p` point to?
- Useful for many languages
 - C – lots of pointers all over the place
 - Java – “objects” point to updatable memory
 - ML – ML has updatable references
Alias analysis

- **Alias analysis** answers the question: Do pointers p and q alias the same address?
- Unfortunately, undecidable
 - Remember Rice’s theorem: *No program can precisely decide anything interesting about arbitrary source code*
- Usual solution: allow imprecision
 - Decision problem: yes/no – undecidable
 - Approximation: yes/no/maybe – decidable
May alias analysis

- \(p \) and \(q \) *may alias* if it is possible that \(p \) and \(q \) might point to the same address.

- Negative answer is precise
 - “yes” – imprecise, means \(p \) and \(q \) might alias
 - “no” – precise, means \(p \) and \(q \) never alias

- If \(p \) may *not* alias \(q \), then a write through \(p \) does not affect memory pointed to by \(q \)
 - \(*p = 3; x = *q*;\) means write through \(p \) does not affect \(x \)

- What is the most conservative may-alias analysis?
Must alias analysis

- p and q must alias if they do point to the same address
- Positive answer is precise
 - “yes” – precise, means p and q definitely alias
 - “no” – imprecise, means p and q might not alias
- If p must alias q, then a write through p always affects memory pointed to by q
 - \(*p = 3; \ x = *q; \) means x is 3
- What is the most conservative must-alias analysis?
Early alias analysis

- By Landi and Ryder
- Expressed as computing alias pairs
 - E.g., (*p, *q) means p and q may point to the same memory
- Issues?
 - There could be many alias pairs
 - (*p, *q), (p->a, q->a), (p->b, q->b), ...
 - What about cyclic data structures?
 - (*p, p->next), (*p, p->next->next), ...
Points-to analysis

- Determine the set of locations that \(p \) may point to
 - E.g., \((p, \{&x\})\) means \(p \) may point to the location of \(x \)
 - To decide if \(p \) and \(q \) alias, see if their points-to sets overlap

- More compact representation
 - The same aliasing information takes less memory
 - Analysis scales better

- We must name all locations in the program
 - Pick a finite set of location names
 - No problem with cyclic data structures
 - \(x = \text{malloc}(\ldots); \) – where does \(x \) point to?
 - \((x, \{\text{malloc@42}\})\) – “the \text{malloc()} at line 42”
Flow-sensitivity

- An analysis is *flow-sensitive* if it computes the answer at every program point
 - We saw that dataflow analysis is flow-sensitive
- An analysis is *flow-insensitive* if it does not depend on the order of statements
 - We saw that type systems are flow-insensitive
- Flow-sensitive alias/points-to analysis is much more precise
- ...but also much more expensive
- Flow-insensitive alias analysis is much faster
Example

- Assume the program

  ```
  p = &x;
p = &y;
*p = &z;
  ```

- Flow-sensitive analysis – solution per program point

  ```
  p = &x;  // (p, {&x})
p = &y;  // (p, {&y})
*p = &z;  // (p, {&y}), (y, {&z})
  ```

- Flow-insensitive analysis – one solution

  ```
  (p, {&x, &y})
  (x, {&z})
  (y, {&z})
  ```
A simple calculus

\[T ::= T \to T \mid \text{Nat} \mid \text{Bool} \mid \text{Unit} \mid \text{Ref } T \]

\[e ::= x \quad \text{variables} \]
\[\mid n \quad \text{integers} \]
\[\mid \text{true} \mid \text{false} \quad \text{booleans} \]
\[\mid () \quad \text{unit} \]
\[\mid e; e \quad \text{sequence} \]
\[\mid \lambda x : T . e \quad \text{functions} \]
\[\mid e \; e \quad \text{application} \]
\[\mid \text{let } x = e \text{ in } e \quad \text{binding} \]
\[\mid \text{if } e \text{ then } e \text{ else } e \quad \text{conditional} \]
\[\mid \text{ref } e \quad \text{allocation} \]
\[\mid !e \quad \text{dereference} \]
\[\mid e ::= e \quad \text{assignment} \]
Type system

\[
\begin{align*}
[T-VAR] & \quad \frac{x : T \in \Gamma}{\Gamma \vdash x : T} \\
[T-NAT] & \quad \frac{}{\Gamma \vdash n : Nat} \\
[T-TRUE] & \quad \frac{}{\Gamma \vdash true : Bool} \\
[T-FALSE] & \quad \frac{}{\Gamma \vdash false : Bool} \\
[T-UNIT] & \quad \frac{}{\Gamma \vdash () : Unit} \\
[T-SEQ] & \quad \frac{\Gamma \vdash e_1 : Unit \quad \Gamma \vdash e_2 : T}{\Gamma \vdash (e_1 ; e_2) : T} \\
[T-LAM] & \quad \frac{\Gamma, x : T \vdash e : T'}{\Gamma \vdash \lambda x : T.e : T \rightarrow T'} \\
[T-APP] & \quad \frac{\Gamma \vdash e_1 : T \rightarrow T' \quad \Gamma \vdash e_2 : T}{\Gamma \vdash (e_1 e_2) : T'}
\end{align*}
\]
Type system (cont’d)

\[
\begin{align*}
[T\text{-LET}] & \quad \frac{\Gamma \vdash e_1 : T_1 \quad \Gamma, x : T_1 \vdash e_2 : T_2}{\Gamma \vdash \text{let } x = e_1 \text{ in } e_2 : T_2} \\
[T\text{-IF}] & \quad \frac{\Gamma \vdash e : \text{Bool} \quad \Gamma \vdash e_1 : T \quad \Gamma \vdash e_2 : T}{\Gamma \vdash \text{if } e \text{ then } e_1 \text{ else } e_2 : T} \\
[T\text{-REF}] & \quad \frac{\Gamma \vdash e : T}{\Gamma \vdash \text{ref } e : \text{Ref } T} \\
[T\text{-DEREF}] & \quad \frac{\Gamma \vdash e : \text{Ref } T}{\Gamma \vdash !e : T} \\
[T\text{-ASSIGN}] & \quad \frac{\Gamma \vdash e_1 : \text{Ref } T \quad \Gamma \vdash e_2 : T}{\Gamma \vdash e_1 := e_2 : \text{Unit}}
\end{align*}
\]
Label flow analysis

- A way to compute points-to information
- We extend references with labels
 - \(e ::= \ldots | ref^r e | \ldots \)
 - A label \(r \) identifies this particular allocation instruction
 - Like \texttt{malloc@42} identifies a point in the program
 - Drawn from a finite set of labels
 - For now, the programmers add these labels
- Goal of points-to analysis: find the set of labels a pointer may refer to
 - For example:

    ```
    let x = ref^{R_x} 0 in
    let y = x in
    y := 3 (* y may point to \{R_x\} *)
    ```
Type-based alias analysis

- We will build an alias analysis using the type system
 - Similar to OCaml’s *type inference*
- We use *labeled types* in the analysis
 - Extend reference types with labels: \(T ::= \ldots | Ref^* T | \ldots \)
 - To find the location at a pointer dereference \(!e\) or assignment \(e := \ldots\)
 - Find the type \(T\) of \(e\) (which must be a reference)
 - We look at the reference type to decide which location might be accessed
Type system (with labels)

\[
\begin{align*}
\text{[T-Ref]} & : \\
\Gamma \vdash e : T & \quad \Rightarrow \\
\Gamma \vdash \text{ref}^r e : \text{Ref}^r T
\end{align*}
\]

\[
\begin{align*}
\text{[T-Deref]} & : \\
\Gamma \vdash e : \text{Ref}^r T & \quad \Rightarrow \\
\Gamma \vdash \mathbf{!} e : T
\end{align*}
\]

\[
\begin{align*}
\text{[T-Assign]} & : \\
\Gamma \vdash e_1 : \text{Ref}^r T \\
\Gamma \vdash e_2 : T & \quad \Rightarrow \\
\Gamma \vdash e_1 := e_2 : \text{Unit}
\end{align*}
\]
Example

- In the previous program

  ```
  let x = ref^R x 0 in
  let y = x in
  y := 3
  ```

- `x` has type $\text{Ref}^R x \text{Nat}$
- `y` has the same type as `x`
- Therefore, at the assignment expression, we know which location `y` points to
Another example

- Consider the program

```ml
let x = ref R 1 in
let y = ref R 2 in
let w = ref Rw 0 in
let z = if true then x else y in
z := 3
```

- Here, \(x\) and \(y\) both have type \(Ref^R Nat\)
 - They must have the same type because of the if
- At assignment, we write to location \(R\)
 - We do not know which location this is exactly, \(x\) or \(y\)
 - But we know it cannot affect \(w\)
And another example

- Another program

```ocaml
let x = ref R 0 in
let y = ref R y x in
let z = ref R 2 in
y := z
```

- Both \(x \) and \(z \) have the same label
 - They must have the same type because of the pointed type of \(y \)
- We do not know whether \(y \) points to \(x \) or \(y \)
Things to notice

- We have a finite set of labels
 - At most one label for each occurrence of a ref in the program
 - A label may represent more than one run-time locations

- Whenever two labels “meet” in the type system, they must be the same
 - Can you see where this happens in the type-rules?

- The system is flow-insensitive
 - Types don’t change after assignment
Type inference

- In practice, the programmer does not write the labels
 - We need to infer them
- Given an unlabeled program that satisfies the standard type system, is there a labeling that satisfies the labeled type system?
 - That labeling is the analysis result
Checking vs. inference

- **Type checking**
 - The programmer annotates the program with types
 - Typing checks that the annotations are correct
 - It is “obvious” how to check

- **Type inference**
 - The programmer does not annotate the program
 - Typing tries to discover correct types
 - It is not “obvious”, requires more work to check

- **Consider the type-system of C**
 - C requires type annotations only at function types and local variable declarations
 - \(3 + 4\) does not need a type annotation
 - Trade-off: programmer annotations vs. computed types
A type inference algorithm

- A standard approach in type inference
 - Type the program by introducing *variables* at any point when an annotation is missing
 ★ We will use *label variables* \(\rho \) here
 ★ Now \(r \) may be either a constant \(R \) or a variable \(\rho \)

- Typing the unlabeled program does two things
 - Introduces label variables in all \(\text{Ref} \) types
 - Creates *constraints* among labels

- Solve the constraints to find a labeling
 - No solution means no valid labeling: type error
 - Alias analysis solution always exists: everything aliases
Step 1: Introduce labels

- Problem 1: What label to assign to the reference at $[T-\text{Ref}]$?
- Solution: Introduce a fresh, unknown variable

$$
[T-\text{Ref}] \quad \frac{\Gamma \vdash e : T \quad \rho - \text{fresh}}{\Gamma \vdash \text{ref } e : \text{Ref}^\rho \ T}
$$

- Why a variable and not a constant?
Step 1: Introduce labels (cont’d)

- Problem 2: What type to give to function arguments?
 - Type language T uses labeled reference types $\text{Ref}^p T$
 - But the programmer uses unlabeled types $\text{Ref} T$
- Solution:
 - Use two type languages
 - Standard $S ::= S \to S \mid \text{Nat} \mid \text{Bool} \mid \text{Unit} \mid \text{Ref} S$
 - Labeled $T ::= T \to T \mid \text{Nat} \mid \text{Bool} \mid \text{Unit} \mid \text{Ref}^p T$
 - Annotate type S with fresh labels to get a T
 - We write this as $T = \text{fresh}(S)$
 \[
 \begin{array}{c}
 \Gamma, x : T \vdash e : T' \\
 T = \text{fresh}(S)
 \end{array}
 \]
 \[
 \frac{
 \begin{array}{c}
 \Gamma \vdash \lambda x : S. e : T \to T'
 \end{array}
 }{
 \Gamma \vdash \lambda x : S.e : T \to T'
 \}
 \]
Step 2: Generate constraints

- Problem 3: Some rules implicitly require types to be equal
- Solution: Make this explicit using equality constraints
 - We write equality constraints as premises \(T_1 = T_2 \)
 - Each such premise is not checked, instead produces a constraint
 - We solve all generated constraints together after typing
- Rule \([T-\text{If}]\) requires both branches to have the same type

\[
\begin{align*}
\Gamma \vdash e : Bool \\
\Gamma \vdash e_1 : T_1 \\
\Gamma \vdash e_2 : T_2 \\
\hline
[T-\text{If}] \\
\Gamma \vdash if \ e \ \text{then} \ e_1 \ \text{else} \ e_2 : T_1 = T_2
\end{align*}
\]
Step 2: Generate constraints (cont’d)

- Rule $[\text{T-Assign}]$ requires that the assigned value has the same type as the pointer:

$$
\begin{align*}
\Gamma &\vdash e_1 : \text{Ref } T_1 \\
\Gamma &\vdash e_2 : T_2 \\
T_1 &= T_2 \\
\Gamma &\vdash e_1 := e_2 : \text{Unit}
\end{align*}
$$

- We assume that e_1 always has a pointer type
 - That is always true
 - We assume the program typechecks with standard types
Step 2: Generate constraints (cont’d)

- Rule \([T\text{-App}]\) requires the formal and actual arguments to have the same type

\[
\begin{align*}
\Gamma \vdash e_1 : T_1 \rightarrow T' \\
\Gamma \vdash e_2 : T_2 \\
T_1 = T_2 \\
\Gamma \vdash (e_1 e_2) : T'
\end{align*}
\]

- Again, we assume \(e_1\) has a function type
 - As before, this is always true
 - Because the program typechecks with standard types
Step 3: Solve the constraints

- After applying the type rules, we are left with a set of equality constraints
 - \(T_1 = T_2 \)
- We solve these constraints using rewriting
- Each rewriting step simplifies a constraint into simpler constraints
- \(C \rightarrow C' \) rewrites the set \(C \) of all constraints to constraints \(C' \)
Step 3: Solve the constraints (cont’d)

- $C \cup \{Nat = Nat\} \implies C$
- $C \cup \{Bool = Bool\} \implies C$
- $C \cup \{Unit = Unit\} \implies C$
- $C \cup \{T_1 \rightarrow T_2 = T'_1 \rightarrow T'_2\} \implies C \cup \{T_1 = T'_1\} \cup \{T_2 = T'_2\}$
- $C \cup \{\text{Ref}^{p_1} \ T_1 = \text{Ref}^{p_2} \ T_2\} \implies C \cup \{T_1 = T_2\} \cup \{\rho_1 = \rho_2\}$
- $C \cup \{\text{mismatched constructors}\} \implies \text{error}$
 - Cannot happen if we start with a program that typechecks with standard types
- This algorithm always terminates
- When no further reduction applies, we have only label equalities
Last step: Use solution to add constants

- Compute the sets of labels that are equal
 - Using union-find
- Create a constant label R for each equivalence class of label variables
- Two pointers alias if their types refer to the same constant label
Example

Program

```ml
let x = ref 1 in
let y = ref 2 in
let z = ref 3 in
let w = if true then x else y in
w := 42
```

Variable types:

```ml
x : Ref^a Nat
y : Ref^b Nat
z : Ref^c Nat
w : Ref^a Nat
```

- Typing annotates each `ref` expression with a variable `a`, `b`, `c`
- Typing the if creates equality constraint `Ref^a Nat = Ref^b Nat`
- Solving the constraint gives `a = b`
- Two equivalence classes: `{a, b}` and `{c}`
 - Create two constants `R_1` and `R_2` for the equivalence classes
Example (cont’d)

Annotated program

\[
\begin{align*}
\text{let } & \ x = \text{ref}^{R_1} 1 \ \text{in} \\
\text{let } & \ y = \text{ref}^{R_1} 2 \ \text{in} \\
\text{let } & \ z = \text{ref}^{R_2} 3 \ \text{in} \\
\text{let } & \ w = \text{if} \ \text{true} \ \text{then} \ x \ \text{else} \ y \ \text{in} \\
& \quad w := 42
\end{align*}
\]

Variable types:

\[
\begin{align*}
x & : \text{Ref}^{R_1} \ \text{Nat} \\
y & : \text{Ref}^{R_1} \ \text{Nat} \\
z & : \text{Ref}^{R_2} \ \text{Nat} \\
w & : \text{Ref}^{R_1} \ \text{Nat}
\end{align*}
\]

- The assignment writes to one of the locations labeled by \(R_1 \)
- Result: \(x, y \) and \(w \) may alias either of the first two allocated locations, but \(z \) cannot
 - May alias: their types have the same location label
Steensgaard’s Analysis

- Flow-insensitive
- Inter-procedural
 - Can analyze multiple functions together
- Context-insensitive
 - Does not discriminate between different calls to the same function
- Unification-based
 - Analysis named after Bjarne Steensgaard (1996)
 - In practice: implementation for C handles type casts, etc.

- Properties
 - Very scalable
 - What is its complexity?
 - Imprecise