Lecture 15: The Curry-Howard Correspondance

Polyvios Pratikakis

Computer Science Department, University of Crete

Type Systems and Programming Languages
Curry-Howard Correspondance

- Another use of λ-calculus
- Roughly:
 - Types correspond to theorems
 - Programs correspond to proofs
 - Typed languages correspond to logics
 - A typechecker is a proof verifier
Classical propositional logic

- Formulas of the form

\[\phi ::= p \mid \bot \mid \phi \lor \phi \mid \phi \land \phi \mid \phi \rightarrow \phi \]

- Where \(p \in \mathcal{P} \) is an atomic proposition, e.g. “Socrates is a man”

- Convenient abbreviations:

 - \(\neg \phi \) means \(\phi \rightarrow \bot \)

 - \(\phi \leftrightarrow \phi' \) means \((\phi \rightarrow \phi') \land (\phi' \rightarrow \phi) \)
Semantics of classical logic

- Interpretation \(m : \mathcal{P} \rightarrow \{ \text{true}, \text{false} \} \)

\[
\begin{align*}
[p]^m &= m(p) \\
[\bot]^m &= \text{false} \\
[\phi \land \phi']^m &= [\phi]^m \land [\phi']^m \\
[\phi \lor \phi']^m &= [\phi]^m \lor [\phi']^m \\
[\phi \rightarrow \phi']^m &= \neg [\phi]^m \lor [\phi']^m
\end{align*}
\]

- Where \(\land, \lor, \neg \) are the standard boolean operations on \(\{ \text{true}, \text{false} \} \)
Terminology

- A formula ϕ is valid if $[\phi]^m = \text{true}$ for all m
- A formula ϕ is unsatisfiable if $[\phi]^m = \text{false}$ for all m
- Law of excluded middle:
- Formula $\phi \lor \neg\phi$ is valid for any ϕ
- A proof system attempts to determine the validity of a formula
Proof theory for classical logic

- Proves judgements of the form $\Gamma \vdash \phi$:
 - For any interpretation, under assumption Γ, ϕ is true
- Syntactic deduction rules that produce “proof trees” of $\Gamma \vdash \phi$:
 - *Natural deduction*
- Problem: classical proofs only address truth value, not constructive
- Example: “There are two irrational numbers x and y, such that x^y is rational”
 - Proof does not include much information
Intuitionistic logic

- Get rid of the law of excluded middle
- Notion of “truth” is not the same
 - A proposition is true, if we can construct a proof
 - Cannot assume predefined truth values without constructed proofs (no “either true or false”)
- Judgements are not expression of “truth”, they are constructions
 - \(\vdash \phi \) means “there is a proof for \(\phi \)”
 - \(\vdash \phi \rightarrow \bot \) means “there is a refutation for \(\phi \)”, not “there is no proof”
 - \(\vdash (\phi \rightarrow \bot) \rightarrow \bot \) only means the absense of a refutation for \(\phi \), does not imply \(\phi \) as in classical logic
Proofs in intuitionistic logic

\[
\begin{align*}
\Gamma, \phi & \vdash \phi \\
\Gamma & \vdash \phi \quad \Gamma & \vdash \psi \\
\hline
\Gamma & \vdash \phi \land \psi \\
\Gamma, \phi & \vdash \psi \\
\hline
\Gamma & \vdash \phi \lor \psi \\
\Gamma & \vdash \phi \\
\end{align*}
\]

Does that resemble anything?
Curry-Howard correspondence

- We can mechanically translate formulas ϕ into type τ for every ϕ and the reverse
 - E.g. replace \land with \times, \lor with $+$, ...
- *If* $\Gamma \vdash e : \tau$ *in simply-typed lambda calculus,* and τ translates to ϕ, *then* $\text{range}(\Gamma) \vdash \phi$ *in intuitionistic logic*
- *If* $\Gamma \vdash \phi$ *in intuitionistic logic,* and ϕ translates to τ, *then there exists* e *and* Γ' *such that* $\text{range}(\Gamma') = \Gamma$ *and* $\Gamma' \vdash e : \tau$
- Proof by induction on the derivation $\Gamma \vdash \phi$
 - Can be simplified by fixing the logic and type languages to match
Consequences

- Lambda terms encode proof trees
- Evaluation of lambda terms is proof simplification
- Automated proving by trying to construct a lambda term with the wanted type
- Verifying a proof is typechecking
 - Increased trust in complicated proofs when machine-verifiable
- Proof-carrying code
- Certifying compilers