
Lecture 14: Recursive Types

Polyvios Pratikakis

Computer Science Department, University of Crete

Type Systems and Programming Languages

Pratikakis (CSD) Recursive Types CS546, 2024-2025 1 / 11

Motivation

Lists, so far
▶ Introduce a type constructor List T
▶ Values are either nil or cons (ehd, etl)
▶ List have arbitrary size, but regular structure

Similarly, queues, binary trees, labeled trees, ASTs, etc
It is impractical to extend the language with each as an additional
primitive type!
Solution: recursive types

Pratikakis (CSD) Recursive Types CS546, 2024-2025 2 / 11

Example

Lists of numbers:

NatList = ⟨nil : Unit, cons : {Nat,NatList}⟩

This equation defines an infinite tree
To change into a definition, use abstraction

NatList = µX. ⟨nil : Unit, cons : {Nat,X}⟩

µ is the explicit recursion operator for types
Intuitively: “NatList is the type that satisfies the equation
X = ⟨nil : Unit, cons : {Nat,X}⟩”

Pratikakis (CSD) Recursive Types CS546, 2024-2025 3 / 11

Example: Lists

Lists
▶ nil = ⟨nil = ()⟩ as NatList
▶ cons = λx : Nat.λl : NatList. ⟨cons = {x, l}⟩ as NatList
▶ isnil = λl : NatList.case l of nil(_) => true | cons(_) => false
▶ hd = λl : NatList.case l of nil(_) => 0 | cons(p) => p.1
▶ tl = λl : NatList.case l of nil(_) => l | cons(p) => p.2
▶ sum = fix λf : NatList → Nat.λl : NatList.

case l of nil(_) => 0 | cons(p) => p.1 + (f p.2)

Pratikakis (CSD) Recursive Types CS546, 2024-2025 4 / 11

Hungry functions

A function that can always take more:

hungry = µX.Nat → X

Such a function is a fixpoint (recursive function):

f = fix (λf : Nat → hungry.λn : Nat.f)

What is the type of f 1 2 3 4 5 ?

Pratikakis (CSD) Recursive Types CS546, 2024-2025 5 / 11

Streams

A stream is a function that can return an arbitrary number of values
Each time it consumes a unit, returns a new value

Stream = µX.Unit → {Nat,X}

We can use it like an infinite list
▶ Next item hd = λs : Stream.(s ()).1
▶ Rest of stream tl = λs : Stream.(s ()).2

The stream of all natural numbers:

fix (λf : Nat → Stream.λn : Nat.λ_ : Unit. {n, f(succ n)})0

Pratikakis (CSD) Recursive Types CS546, 2024-2025 6 / 11

Objects

Objects can also be recursive types

Counter = µC. {get : Nat, inc : Unit → C}

Unlike last time, this is a functional object: inc returns the new object

▶ Java strings are immutable

Pratikakis (CSD) Recursive Types CS546, 2024-2025 7 / 11

Recursive type of fixpoint

Using recursive types we can type the fixpoint operator

fixT = λf : T → T.
(λx : (µX.X → T).f (x x)) (λx : (µX.X → T).f (x x))

Without types this is the fixpoint combinator of untyped calculus
Allows programs to diverge: not strongly normalizing
A term that doesn’t terminate can have any type T!
By Curry-Howard:

▶ All propositions are proved, including false!
▶ The corresponding logic is inconsistent

Pratikakis (CSD) Recursive Types CS546, 2024-2025 8 / 11

Type system

Two ways to treat recursive types
Depending on the relation between folded/unfolded type

▶ e.g: NatList and ⟨nil : Unit, cons : {Nat,NatList}⟩
Implicit fold/unfold, the above types are equal in all contexts

▶ Transparent to the programmer
▶ More complex to write typechecker
▶ All proofs remain the same (except induction on type expressions)

Explicit fold/unfold using language primitives
▶ Programmer must write fold/unfold primitives to help typechecker
▶ Easier to typecheck
▶ Requires extra proof cases for soundness: fold/unfold

Pratikakis (CSD) Recursive Types CS546, 2024-2025 9 / 11

Type system (cont’d)

Syntax:
e ::= . . . | fold [T] e | unfold [T] e
v ::= . . . | fold [T] v
T ::= . . . | X | µX.T

Typing
[T-Fold]

U = µX.T Γ ⊢ e : T[U/X]
Γ ⊢ fold [U] e : U

[T-Unfold]
U = µX.T Γ ⊢ e : U

Γ ⊢ unfold [U] e : T[U/X]

Pratikakis (CSD) Recursive Types CS546, 2024-2025 10 / 11

Semantics

unfold [S] (fold [T] v) → v

e → e′
fold [T] e → fold [T] e′

e → e′
unfold [T] e → unfold [T] e′

Pratikakis (CSD) Recursive Types CS546, 2024-2025 11 / 11

