Lecture 14: Recursive Types

Polyvios Pratikakis

Computer Science Department, University of Crete

Type Systems and Programming Languages
Motivation

- Lists, so far
 - Introduce a type constructor $\text{List}\ T$
 - Values are either nil or cons $(\text{e}_{\text{hd}}, \text{e}_{\text{tl}})$
 - List have arbitrary size, but regular structure

- Similarly, queues, binary trees, labeled trees, ASTs, etc

- It is impractical to extend the language with each as an additional primitive type!

- Solution: recursive types
Example

- Lists of numbers:

\[\text{NatList} = \langle \text{nil} : \text{Unit}, \text{cons} : \{ \text{Nat}, \text{NatList} \} \rangle \]

- This equation defines an infinite tree

- To change into a definition, use abstraction

\[\text{NatList} = \mu X. \langle \text{nil} : \text{Unit}, \text{cons} : \{ \text{Nat}, X \} \rangle \]

- \(\mu \) is the explicit recursion operator for types

- Intuitively: “\(\text{NatList} \) is the type that satisfies the equation \(X = \langle \text{nil} : \text{Unit}, \text{cons} : \{ \text{Nat}, X \} \rangle \)”
Example: Lists

- Lists
 - `nil = ⟨nil = ()⟩ as NatList`
 - `cons = λx : Nat.λl : NatList. ⟨cons = {x, l}⟩ as NatList`
 - `isnil = λl : NatList.case l of nil(_, _) => true | cons(_, _) => false`
 - `hd = λl : NatList.case l of nil(_, _) => 0 | cons(p) => p.1`
 - `tl = λl : NatList.case l of nil(_, _) => l | cons(p) => p.2`
 - `sum = fix λf : NatList → Nat.λl : NatList. case l of nil(_, _) => 0 | cons(p) => p.1 + (f p.2)`
Hungry functions

- A function that can always take more:

 \[\text{hungry} = \mu X. \text{Nat} \rightarrow X \]

- Such a function is a fixpoint (recursive function):

 \[f = \text{fix} (\lambda f : \text{Nat} \rightarrow \text{hungry}. \lambda n : \text{Nat}. f) \]

- What is the type of \(f1 2 3 4 5 \)?
Streams

- A stream is a function that can return an arbitrary number of values.
- Each time it consumes a unit, returns a new value.

\[
Stream = \mu X. \text{Unit} \to \{ \text{Nat}, X \}
\]

- We can use it like an infinite list.
 - Next item \(\text{hd} = \lambda s : Stream. (s \,()) \cdot 1 \)
 - Rest of stream \(\text{tl} = \lambda s : Stream. (s \,()) \cdot 2 \)

- The stream of all natural numbers:

\[
\text{fix} \, (\lambda f : \text{Nat} \to Stream. \lambda n : \text{Nat}. \lambda _ : \text{Unit}. \{ n, f(\text{succ} \, n) \}) \cdot 0
\]
Objects

- Objects can also be recursive types

 \[\text{Counter} = \mu C. \{ \text{get} : \text{Nat}, \text{inc} : \text{Unit} \rightarrow C \} \]

- Unlike last time, this is a functional object: \text{inc} returns the new object

 - Java strings are immutable
Recursive type of fixpoint

- Using recursive types we can type the fixpoint operator

\[\text{fix}_T = \lambda f : T \rightarrow T. \]

\[(\lambda x : (\mu X.X \rightarrow T).f(x)) \ (\lambda x : (\mu X.X \rightarrow T).f(x)) \]

- Without types this is the fixpoint combinator of untyped calculus
- Allows programs to diverge: not strongly normalizing
- A term that doesn’t terminate can have any type \(T \! \)
- By Curry-Howard:
 - All propositions are proved, including false!
 - The corresponding logic is inconsistent
Type system

- Two ways to treat recursive types
 - Depending on the relation between folded/unfolded type
 - e.g: \(\text{NatList} \) and \(\langle \text{nil} : \text{Unit}, \text{cons} : \{\text{Nat}, \text{NatList}\} \rangle \)
 - Implicit fold/unfold, the above types are equal in all contexts
 - Transparent to the programmer
 - More complex to write typechecker
 - All proofs remain the same (except induction on type expressions)
 - Explicit fold/unfold using language primitives
 - Programmer must write fold/unfold primitives to help typechecker
 - Easier to typecheck
 - Requires extra proof cases for soundness: fold/unfold
Type system (cont’d)

- Syntax:

 \[
 e ::= \ldots \mid \text{fold } [T] e \mid \text{unfold } [T] e \\
 \nu ::= \ldots \mid \text{fold } [T] \nu \\
 T ::= \ldots \mid X \mid \mu X.T
 \]

- Typing

 \[
 \text{[T-FOLD]} \quad U = \mu X.T \quad \Gamma \vdash e : T[U/X] \\
 \quad \quad \quad \Gamma \vdash \text{fold } [U] e : U
 \]

 \[
 \text{[T-UNFOLD]} \quad U = \mu X.T \quad \Gamma \vdash e : U \\
 \quad \quad \quad \Gamma \vdash \text{unfold } [U] e : T[U/X]
 \]
Semantics

\[
\begin{align*}
\text{unfold } [S] (\text{fold } [T] v) & \rightarrow v \\
\text{fold } [T] e & \rightarrow \text{fold } [T] e' \\
\text{unfold } [T] e & \rightarrow \text{unfold } [T] e'
\end{align*}
\]