Lecture 13: Subtyping

Polyvios Pratikakis

Computer Science Department, University of Crete

Type Systems and Programming Languages
Subtyping

- Usually found in Object Oriented languages
- One form of polymorphism: a program can have more than one types
- So far, each language feature we saw is compositional: can be added without affecting the rest of the language
- Subtyping is not: we might need to change the type rules for other features
- Roughly: if all expressions of type T also have type T', then T is a subtype of T'
- Alternatively: if we can always substitute an expression of type T' with an expression of type T in any context and still have a valid program, T is a subtype of T'

Pratikakis (CSD)
Background

- Simply typed lambda calculus with numbers and records:

\[
\begin{align*}
e & ::= x | \lambda x : T.e | e e | n | \{l_1 = e_1, \ldots, l_n = e_n\} \\
& \quad | \text{case } e \text{ of } \{l_1(x) = e_1| \ldots| l_n(x) = e_n\} \\
n & ::= n | \lambda x : T.e | \{l_1 = v_1, \ldots, l_n = v_n\} \\
T & ::= T \rightarrow T \mid Nat \mid \{l_1 : T_1, \ldots, l_n : T_n\}
\end{align*}
\]

- Type rule for function application:

\[
[T\text{-App}] \quad \frac{\Gamma \vdash e_1 : T \rightarrow T' \quad \Gamma \vdash e_2 : T}{\Gamma \vdash (e_1 \ e_2) : T'}
\]

- Not allowed: \((\lambda x : \{\text{foo} : Nat\}.(x.\text{foo})) \ \{\text{foo} = 5, \ \text{bar} = 42\}\)

- Even though it is always safe!
Subsumption

- It is always safe to pass a struct with more fields.
- If the function can be typed assuming its argument x has type $\{\text{foo} : \text{Nat}\}$, then it only accesses the foo field of record x.
- It won’t hurt if x has additional fields.
- We say $\{\text{foo} : \text{Nat}, \text{bar} : \text{Nat}\}$ is a subtype of $\{\text{foo} : \text{Nat}\}$.
 - Also written as $\{\text{foo} : \text{Nat}, \text{bar} : \text{Nat}\} <: \{\text{foo} : \text{Nat}\}$.
- To use the subtype relation $<:$ during type-checking, we add one more type rule:
 \[
 \frac{\Gamma \vdash e : T_1 \quad T_1 <: T_2}{\Gamma \vdash e : T_2} \quad \text{[T-SUB]}
 \]
- It says we can use a subtype instead of a supertype.
Defining subtype

- We define a relation \triangleleft between types as usual
 - Inductively, using inference rules
- Each rule produces a judgement $T \triangleleft T'$
- The relation is the smallest set of subtyping judgements produced by the inference rules
- The same as all definitions so far
Subtyping relation

- The subtyping relation is reflexive:
 \[
 [S\text{-REFL}] \quad T <: T
 \]

- The subtyping relation is transitive:
 \[
 [S\text{-TRANS}] \quad T_1 <: T_2 \quad T_2 <: T_3 \quad \Rightarrow \quad T_1 <: T_3
 \]

- Both, from the intuition of safely substituting a subtype for a supertype
A record type is a subtype of another if it has more fields:

\[[S\text{-WIDE}]\quad \{l_1 : T_1, \ldots, l_{n+k} : T_{n+k}\} \ll \{l_1 : T_1, \ldots, l_n : T_n\}\]

or if all its fields are subtypes:

\[[S\text{-DEEP}]\quad T_i \ll T'_i, \text{ for each } 0 \leq i \leq n\quad \{l_1 : T_1, \ldots, l_n : T_n\} \ll \{l_1 : T'_1, \ldots, l_n : T'_n\}\]

or if the fields are reordered:

\[[S\text{-PERM}]\quad \{l_1 : T_1, \ldots, l_i : T_i, \ldots, l_j : T_j, \ldots, l_n : T_n\} \ll \{l_1 : T_1, \ldots, l_j : T_j, \ldots, l_i : T_i, \ldots, l_n : T_n\}\]
Subtyping relation (cont’d)

- A function type is a subtype of another if it can be used instead
 - The subtype should accept all arguments the supertype accepts (contravariant)
 - The subtype shouldn’t return anything not returned by the supertype (covariant)

\[
[S\text{-FUN}] \quad T_2 <: T_1 \quad T'_1 <: T'_2 \\
\frac{T_1 \rightarrow T'_1 <: T_2 \rightarrow T'_2}{T_1 \rightarrow T'_1 <: T_2 \rightarrow T'_2}
\]

- One supertype to rule them all (like java.lang.Object):

\[
[T\text{-TOP}] \\
\frac{T <: \top}{T <: \top}
\]
Metatheory

- **Inversion lemma of the subtyping relation**
 - If $T <: T_1 \rightarrow T_2$ then T has the form $T'_1 \rightarrow T'_2$ with $T_1 <: T'_1$ and $T'_2 <: T_2$
 - If $T <: \{l_1 : T_1, \ldots, l_n : T_n\}$ then T has the form $\{k_1 : T'_1, \ldots, k_n : T'_n\}$ with at least the labels l_1, \ldots, l_n and for all $0 \leq i \leq n$, if $k_j = l_i$ then $T'_j <: T_i$.

- **Inversion lemma of the typing relation**
 - If $\Gamma \vdash (\lambda x : T.e) : T_1 \rightarrow T_2$, then $T_1 <: T$ and $\Gamma, x : T \vdash e : T_2$
 - If $\Gamma \vdash \{k_1 = e_1, \ldots, k_n = e_n\} : \{l_1 : T_1, \ldots, l_m : T_m\}$ then for each $i \in 0..m$ there is a $j \in 0..n$ such that $l_i = k_j$ and $\Gamma \vdash e_j : T_i$
Substitution and preservation remain the same (their proof changes)

Substitution lemma
- If $\Gamma, x : T_1 \vdash e : T_2$ and $\Gamma \vdash e' : T_1$ then $\Gamma \vdash e'[e/x] : T_2$

Preservation theorem
- If $\Gamma \vdash e : T$ and $e \to e'$ then $\Gamma \vdash e' : T$
Metatheory (cont’d)

- Canonical forms lemma
 - If \(v \) is a value and \(\emptyset \vdash v : T_1 \rightarrow T_2 \) then \(v \) has the form \(\lambda x : T . e \)
 - If \(v \) is a value and \(\emptyset \vdash v : \{ l_1 : T_1, \ldots, l_n : T_n \} \) then \(v \) has the form \(\{ k_1 = v_1, \ldots, k_m = v_m \} \) where for all \(l_i \) there is a \(k_j = l_i \)

- Progress theorem
 - If \(\emptyset \vdash e : T \) then either \(e \) is a value or there is some \(e' \) with \(e \rightarrow e' \)
Subtyping and casts

- Ascription: explicitly stating the type of an expression—in ML, written \((e : T)\)
- Also called casting in languages like C/C++, Java, C#, etc.—written \((T)e\)
- Two very different forms of casting
 - Up-cast: \(T\) is a supertype of the typechecker’s type for \(e\)
 - Down-cast: \(T\) is a subtype of the typechecker’s type for \(e\)
- Down-cast is unsafe
 - What happens if at runtime \(e\) does not have type \(T\)?
 - Down-casts usually compiled into run-time checks that raise a dynamic exception
 - Alternatively, down-casts only allowed as a test (like instanceof), providing an “else” case
Subtyping and references

- References are like implicit function arguments
- ...and also like implicit function results
- They have to be both covariant and contravariant!
- References are *invariant* under subtyping to preserve type safety:

\[
\frac{T_1 <: T_2 \quad T_2 <: T_1}{\text{Ref}^{T_1} <: \text{Ref}^{T_2}}
\]

- This restriction is caused by the two operations supported
 - Read causes a covariant constraint
 - Write causes a contravariant constraint
Arrays are like references: can read and write the contents

Like references, we need invariant subtyping for type-safety

\[
T_1 <: T_2 \quad T_2 <: T_1 \\
\hline
T_1[] <: T_2[]
\]
Arrays in Java

- Interestingly, Java permits covariant subtyping for arrays

\[
T_1 <: T_2 \\
T_1[] <: T_2[]
\]

- But, consider:

```java
Integer[] x = new Integer[10];
Object[] y = (Object[]) x;
y[3] = new Object();
x[3].intValue(); // OOPS, no such method!
```

- Bad design, big performance hit to keep safe:
 - Every array assignment is equivalent to a downcast
 - Must check every assignment to every array at runtime!