Lecture 13: Subtyping

Polyvios Pratikakis

Computer Science Department, University of Crete

Type Systems and Programming Languages
Subtyping

- Usually found in Object Oriented languages
- One form of polymorphism: a program can have more than one type
- So far, each language feature we saw is compositional: can be added without affecting the rest of the language
- Subtyping is not: we might need to change the type rules for other features
- Roughly: if all expressions of type T also have type T', then T is a subtype of T'
- Alternatively: if we can always substitute an expression of type T' with an expression of type T in any context and still have a valid program, T is a subtype of T'
Background

- Simply typed lambda calculus with numbers and records:

\[
e ::= \ x \mid \lambda x : T.e \mid e \ e \mid n \mid \{l_1 = e_1, \ldots, l_n = e_n\}
\]

\[
| \quad \text{case} \ e \ \text{of} \ \{l_1(x) \Rightarrow e_1| \ldots | l_n(x) \Rightarrow e_n\}
\]

\[
v ::= \ n \mid \lambda x : T.e \mid \{l_1 = v_1, \ldots, l_n = v_n\}
\]

\[
T ::= T \rightarrow T | Nat | \{l_1 : T_1, \ldots, l_n : T_n\}
\]

- Type rule for function application:

\[
[T-\text{App}] \quad \frac{\Gamma \vdash e_1 : T \rightarrow T' \quad \Gamma \vdash e_2 : T}{\Gamma \vdash (e_1 \ e_2) : T'}
\]

- Not allowed: \((\lambda x : \{\text{foo} : Nat\}.(x.\text{foo})) \ \{\text{foo} = 5, \text{bar} = 42\}\)

- Even though it is always safe!
Subsumption

- It is always safe to pass a struct with more fields
- If the function can be typed assuming its argument x has type \{foo : Nat\}, then it only accesses the foo field of record x
- It won’t hurt if x has additional fields
- We say \{foo : Nat, bar : Nat\} is a subtype of \{foo : Nat\}
 - Also written as \{foo : Nat, bar : Nat\} <: \{foo : Nat\}
- To use the subtype relation <: during type-checking, we add one more type rule:

\[
[T\text{-}SUB] \quad \frac{\Gamma \vdash e : T_1 \quad T_1 <: T_2}{\Gamma \vdash e : T_2}
\]

- It says we can use a subtype instead of a supertype
Defining subtype

- We define a relation \ll: between types as usual
 - Inductively, using inference rules
- Each rule produces a judgement $T \ll T'$
- The relation is the smallest set of subtyping judgements produced by the inference rules
- The same as all definitions so far
The subtyping relation is \textit{reflexive}:

\[
[S\text{-}\textsc{Refl}] \quad T \ll T
\]

The subtyping relation is \textit{transitive}:

\[
[S\text{-}\textsc{Trans}] \quad T_1 \ll T_2 \quad T_2 \ll T_3 \implies T_1 \ll T_3
\]

Both, from the intuition of safely substituting a subtype for a supertype
A record type is a subtype of another if it has more fields:

\[
[S\text{-}WIDE] \quad \{l_1 : T_1, \ldots, l_{n+k} : T_{n+k}\} <: \{l_1 : T_1, \ldots, l_n : T_n\}
\]

or if all its fields are subtypes:

\[
[S\text{-}DEEP] \quad T_i <: T'_i, \text{ for each } 0 \leq i \leq n
\quad \Rightarrow \quad \{l_1 : T_1, \ldots, l_n : T_n\} <: \{l_1 : T'_1, \ldots, l_n : T'_n\}
\]

or if the fields are reordered:

\[
[S\text{-}PERM] \quad \{l_1 : T_1, \ldots, l_i : T_i, \ldots, l_j : T_j, \ldots, l_n : T_n\} <: \{l_1 : T_1, \ldots, l_j : T_j, \ldots, l_i : T_i, \ldots, l_n : T_n\}
\]
Subtyping relation (cont’d)

- A function type is a subtype of another if it can be used instead
 - The subtype should accept all arguments the supertype accepts (contravariant)
 - The subtype shouldn’t return anything not returned by the supertype (covariant)

\[
\begin{align*}
\text{[S-FUN]} & \quad T_2 <: T_1 & \quad T'_1 <: T'_2 \\
 & \quad T_1 \to T'_1 <: T_2 \to T'_2
\end{align*}
\]

- One supertype to rule them all (like java.lang.Object):

\[
\text{[T-TOP]} \quad T <: \top
\]
Metatheory

- **Inversion lemma of the subtyping relation**
 - If $T <: T_1 \rightarrow T_2$ then T has the form $T'_1 \rightarrow T'_2$ with $T_1 <: T'_1$ and $T'_2 <: T_2$.
 - If $T <: \{l_1 : T_1, \ldots, l_n : T_n\}$ then T has the form $\{k_1 : T'_1, \ldots, k_n : T'_n\}$ with at least the labels l_1, \ldots, l_n and for all $0 \leq i \leq n$, if $k_j = l_i$ then $T'_j <: T_i$.

- **Inversion lemma of the typing relation**
 - If $\Gamma \vdash (\lambda x : T. e) : T_1 \rightarrow T_2$, then $T_1 <: T$ and $\Gamma, x : T \vdash e : T_2$.
 - If $\Gamma \vdash \{k_1 = e_1, \ldots, k_n = e_n\} : \{l_1 : T_1, \ldots, l_m : T_m\}$ then for each $i \in 0..m$ there is a $j \in 0..n$ such that $l_i = k_j$ and $\Gamma \vdash e_j : T_i$.
Substitution and preservation remain the same (their proof changes)

Substitution lemma
- If $\Gamma, x : T_1 \vdash e : T_2$ and $\Gamma \vdash e' : T_1$ then $\Gamma \vdash e'[e/x] : T_2$

Preservation theorem
- If $\Gamma \vdash e : T$ and $e \rightarrow e'$ then $\Gamma \vdash e' : T$
Metatheory (cont’d)

- **Canonical forms lemma**
 - If \(v \) is a value and \(\emptyset \vdash v : T_1 \rightarrow T_2 \) then \(v \) has the form \(\lambda x : T. e \)
 - If \(v \) is a value and \(\emptyset \vdash v : \{l_1 : T_1, \ldots, l_n : T_n\} \) then \(v \) has the form \(\{k_1 = v_1, \ldots, k_m = v_m\} \) where for all \(l_i \) there is a \(k_j = l_i \)

- **Progress theorem**
 - If \(\emptyset \vdash e : T \) then either \(e \) is a value or there is some \(e' \) with \(e \rightarrow e' \)
Subtyping and casts

- Ascription: explicitly stating the type of an expression—in ML, written \((e : T)\)
- Also called *casting* in languages like C/C++, Java, C#, etc.—written \((T)e\)
- Two very different forms of casting
 - Up-cast: \(T\) is a supertype of the typechecker’s type for \(e\)
 - Down-cast: \(T\) is a subtype of the typechecker’s type for \(e\)
- Down-cast is unsafe
 - What happens if at runtime \(e\) does not have type \(T\)?
 - Down-casts usually compiled into *run-time checks* that raise a dynamic exception
 - Alternatively, down-casts only allowed as a test (like `instanceof`), providing an “else” case
Subtyping and references

- References are like implicit function arguments
- ...and also like implicit function results
- They have to be both covariant and contravariant!
- References are *invariant* under subtyping to preserve type safety:

 \[
 T_1 <: T_2 \quad T_2 <: T_1 \quad \therefore \quad \text{Ref}^T_1 <: \text{Ref}^T_2
 \]

- This restriction is caused by the two operations supported
 - Read causes a covariant constraint
 - Write causes a contravariant constraint
Subtyping and arrays

- Arrays are like references: can read and write the contents
- Like references, we need invariant subtyping for type-safety

\[
\begin{align*}
 T_1 &\leq T_2 \\
 T_2 &\leq T_1 \\
 \therefore T_1[\] &\leq T_2[\]
\end{align*}
\]
Arrays in Java

- Interestingly, Java permits covariant subtyping for arrays

\[
T_1 <: T_2 \\
T_1[] <: T_2[]
\]

- But, consider:

```java
Integer[] x = new Integer[10];
Object[] y = (Object[]) x;
y[3] = new Object();
x[3].intValue(); // OOPS, no such method!
```

- Bad design, big performance hit to keep safe:
 - Every array assignment is equivalent to a downcast
 - Must check every assignment to every array at runtime!