Lecture 12: Memory and References

Polyvios Pratikakis

Computer Science Department, University of Crete

Type Systems and Programming Languages
So far

- Pure lambda calculus
- Simply typed lambda calculus
- Additional types: sums, products, lists, tuples, variants, etc.
- *Pure* language features:
 - The machine state is a program expression
 - The semantics rewrite the program expression/machine state
 - Program evaluation reduces the program expression to a result
- Pure features form the backbone of most languages
Impure features

- **Impure** languages
 - The machine state is not just the program expression
 - Program evaluation does not just produce a result,
 - ...it also changes the machine state

- Most languages also include impure features
 - Mutable state: memory locations, arrays, mutable record fields, etc.
 - I/O: network, display, etc.
 - Exceptions, signals, interrupts
 - Inter-process communication
 - ...

- Computation has “side-effects”: *computational effects*
Memory effects

- Support for assignment, a way to alter memory contents
- Variable names remain immutable
 - In C, a variable name can mean two things
 - At the left side of an assignment: a memory location
 - At the right side of an assignment: the contents of a memory location
 - Keep variables immutable: a variable name always means the same
 - Use explicit syntax to read from or write to a memory location
Memory operations

- Memory allocation (and initialization):

 \[
 \text{let } r = \text{ref } 5
 \]

- Memory dereference (read)

 \[
 !r
 \]

- Memory assignment (write)

 \[
 r := 42
 \]
Aliasing

- A reference points to a memory location
- We can copy the reference:

 \[\text{let } s = r \]

- That does not copy the memory location
 - Both \(s \) and \(r \) point to the same original location
 - If we assign \(s := 2 \)
 - Then \(!r \) will also be 2
 - We say references \(s \) and \(r \) are \textit{aliases} for the same memory location

- Is the program \((r := 1; r := !s) \) equivalent to the program \((r := !s) \)?
Shared state

- A reference is like a communication channel
- Implicitly sends something from one part of the program to another, e.g.:

  ```
  let c = ref 0
  let incc = \x : Unit. (c := succ (!c); !c)
  let decc = \x : Unit. (c := pred (!c); !c)
  ```

- Create sequential numbers from anywhere in the program by calling `incc()`
- The function `incc` is stateful: we don’t need to give it the previous value, `incc` remembers it (and so is `decc`)
- Reference `c` works like an implicit argument to `incc` and `decc`, contains the last thing stored
Shared state (cont’d)

- We can pack it all in a record

```ml
let counter =
    let c = ref 0 in
    {
        incr = \x : Unit. (c := succ (!c); !c),
        decr = \x : Unit. (c := pred (!c); !c)
    }
```

- We can now use `counter.incr()` and `counter.decr()`

- This is a simple object
References, formally

- **Syntax**

 \[
 e ::= \ldots | \text{ref } e | !e | e := e
 \]

 \[
 T ::= \ldots | \text{Ref } T
 \]

- **Typing**

 \[
 \text{[T-REF]} \quad \frac{\Gamma \vdash e : T}{\Gamma \vdash \text{ref } e : \text{Ref } T}
 \]

 \[
 \text{[T-DEREF]} \quad \frac{\Gamma \vdash e : \text{Ref } T}{\Gamma \vdash !e : T}
 \]

 \[
 \text{[T-ASSIGN]} \quad \frac{\Gamma \vdash e_1 : \text{Ref } T \quad \Gamma \vdash e_2 : T}{\Gamma \vdash e_1 := e_2 : \text{Unit}}
 \]
What is the result of `ref 2` at run time?
- Allocates a new memory location,
- initializes it with 2, and
- returns a pointer to that location
- But what is the value of the pointer?

We add another type of value (and expression) that only occurs at run-time:

$$v, e ::= \ldots \mid l$$

- A pointer, or location, `l` is an element of an abstract set of all possible locations \mathcal{L}
- We represent memory as a partial function from locations `l` to values
Extend operational semantics with memory

The machine state is not just an expression e like in pure calculus

New machine state is $\langle M \mid e \rangle$

M represents memory: a map from locations l to values (also called store)

Operational semantics define transitions between the new machine states:

- Small-step: $\langle M \mid e \rangle \rightarrow \langle M' \mid e' \rangle$
- Big-step: $\langle M \mid e \rangle \downarrow \langle M' \mid v \rangle$
Semantics

- We need to extend all existing semantic rules with memory

\[
\langle M \mid (\lambda x : T.e) \, \nu \rangle \rightarrow \langle M \mid e[\nu/x] \rangle
\]

\[
\langle M \mid e_1 \rangle \rightarrow \langle M' \mid e'_1 \rangle
\]

\[
\langle M \mid e_1 \, e_2 \rangle \rightarrow \langle M' \mid e'_1 \, e_2 \rangle
\]

\[
\langle M \mid e \rangle \rightarrow \langle M' \mid e' \rangle
\]

\[
\langle M \mid \nu \, e \rangle \rightarrow \langle M' \mid \nu \, e' \rangle
\]
Semantics (cont’d)

- **Allocation**

\[
\begin{align*}
\langle M \mid e \rangle &\rightarrow \langle M' \mid e' \rangle \\
\langle M \mid \text{ref } e \rangle &\rightarrow \langle M' \mid \text{ref } e' \rangle
\end{align*}
\]

\[
l \notin \text{dom}(M)
\]

\[
\langle M \mid \text{ref } v \rangle \rightarrow \langle (M, l \mapsto v) \mid l \rangle
\]

- **Dereference**

\[
\begin{align*}
\langle M \mid e \rangle &\rightarrow \langle M' \mid e' \rangle \\
\langle M \mid !e \rangle &\rightarrow \langle M' \mid !e' \rangle
\end{align*}
\]

\[
M(l) = v
\]

\[
\langle M \mid !l \rangle \rightarrow \langle M \mid v \rangle
\]
Semantics (cont’d)

- Assignment

\[\langle M \mid e_1 \rangle \rightarrow \langle M' \mid e'_1 \rangle \]
\[\langle M \mid e_1 := e_2 \rangle \rightarrow \langle M' \mid e'_1 := e_2 \rangle \]

\[\langle M \mid e \rangle \rightarrow \langle M' \mid e' \rangle \]
\[\langle M \mid v := e \rangle \rightarrow \langle M' \mid v := e' \rangle \]

\[\langle M \mid l := v \rangle \rightarrow \langle M[l \mapsto v] \mid () \rangle \]
Store typing

- To prove type soundness, we need (as before) progress and preservation
- But, the run-time language includes locations l
- What is the type of a location?
 - It depends on the value it points to in the store (incorrect):

 \[
 \Gamma \vdash M(l) : T \\
 \Gamma \vdash l : \text{Ref } T
 \]

- The store becomes part of the typing relation: $\Gamma; M \vdash e : T$
- Typing locations (not yet correctly):

 \[
 \Gamma; M \vdash M(l) : T \\
 \Gamma; M \vdash l : \text{Ref } T
 \]
Store typing (cont’d)

What happens when the store has a cycle?
 ▶ Typing doesn’t terminate: bad!

Instead, use store typing Σ, a map from locations to types

Now, typing relation depends on Σ: $\Gamma; \Sigma \vdash e : T$

Typing locations (correctly):

\[
\begin{align*}
 \Sigma(l) &= T \\
 \Gamma; \Sigma &\vdash l : \text{Ref } T
\end{align*}
\]

The other rules are simple to extend: just pass Σ up recursively

To type original program, use empty Σ: no pointers allowed in the original program text
Typing, finally

\[
\begin{align*}
\text{[T-ABS]} & : \quad \frac{\Gamma, x : T; \Sigma \vdash e : T'}{\Gamma; \Sigma \vdash (\lambda x : T.e) : T \rightarrow T'} \\
\text{[T-VAR]} & : \quad \frac{x : T \in \Gamma}{\Gamma; \Sigma \vdash x : T} \\
\text{[T-APP]} & : \quad \frac{\Gamma; \Sigma \vdash e_1 : T \rightarrow T'}{\Gamma; \Sigma \vdash e_1 \ e_2 : T'} \\
\text{[T-UNIT]} & : \quad \frac{\Gamma; \Sigma \vdash () : Unit}{\Gamma; \Sigma \vdash () : Unit} \\
\text{[T-REF]} & : \quad \frac{\Gamma; \Sigma \vdash e : T}{\Gamma; \Sigma \vdash \text{ref } e : \text{Ref } T} \\
\text{[T-DEREF]} & : \quad \frac{\Gamma; \Sigma \vdash e : \text{Ref } T}{\Gamma; \Sigma \vdash !e : T} \\
\text{[T-ASSIGN]} & : \quad \frac{\Gamma; \Sigma \vdash e_1 : \text{Ref } T}{\Gamma; \Sigma \vdash e_1 := e_2 : \text{Unit}} \\
\text{[T-LOC]} & : \quad \frac{\Sigma(l) = T}{\Gamma; \Sigma \vdash l : \text{Ref } T} \\
\end{align*}
\]

\(\ldots \)
To state and prove soundness (progress and preservation) we need to link \(M \) and \(\Sigma \):

- A store \(M \) is \textit{well-typed} in context \(\Gamma \) under store typing \(\Sigma \), written \(\Gamma; \Sigma \vdash M \), if
 - \(\text{dom}(M) = \text{dom}(\Sigma) \) and
 - \(\Gamma; \Sigma \vdash M(l) : \Sigma(l) \) for all \(l \in \text{dom}(M) \)
Preservation theorem

If a well-typed program takes a step, it is still well-typed:

If

\[\Gamma; \Sigma \vdash e : T, \]
\[\Gamma; \Sigma \vdash M \text{ and } \]
\[\langle M \mid e \rangle \rightarrow \langle M' \mid e' \rangle \]

then, for some \(\Sigma' \supseteq \Sigma \),

\[\Gamma; \Sigma' \vdash e' : T \text{ and } \]
\[\Gamma; \Sigma' \vdash M' \]

We prove as before by induction on the evaluation derivation.

But first, we need a few auxiliary lemmas
Preservation theorem (cont’d)

- Prove the substitution lemma:
 If $\Gamma, x : T; \Sigma \vdash e : T'$ and $\Gamma; \Sigma \vdash v : T$ then $\Gamma; \Sigma \vdash e[v/x] : T'$.

- Prove we can update values in the store (keeping the same type):
 If $\Gamma; \Sigma \vdash M, \Sigma(l) = T$ and $\Gamma; \Sigma \vdash v : T$, then $\Gamma; \Sigma \vdash M[l \mapsto v]$.

- Prove weakening for stores, we can always add stuff to the store:
 If $\Gamma; \Sigma \vdash e : T$ and $\Sigma' \supseteq \Sigma$, then $\Gamma; \Sigma' \vdash e : T$.
Progress theorem

- A closed, well-typed program is either a value, or it can take a step:
 If $\emptyset, \Sigma \vdash e : T$, then either e is a value, or for any store M for which $\emptyset; \Sigma \vdash M$, there are some e' and M' such that $\langle M \mid e \rangle \rightarrow \langle M' \mid e' \rangle$.

- Proof as before, by induction on typing derivations

- Need to extend the canonical forms lemma with the cases for $Unit$ and $Ref T$