
Lecture 12: Memory and References

Polyvios Pratikakis

Computer Science Department, University of Crete

Type Systems and Programming Languages

Pratikakis (CSD) Memory and References CS546, 2024-2025 1 / 21

So far

Pure lambda calculus
Simply typed lambda calculus
Additional types: sums, products, lists, tuples, variants, etc.
Pure language features:

▶ The machine state is a program expression
▶ The semantics rewrite the program expresssion/machine state
▶ Program evaluation reduces the program expression to a result

Pure features form the backbone of most languages

Pratikakis (CSD) Memory and References CS546, 2024-2025 2 / 21

Impure features

Impure languages
▶ The machine state is not just the program expression
▶ Program evaluation does not just produce a result,
▶ …it also changes the machine state

Most languages also include impure features
▶ Mutable state: memory locations, arrays, mutable record fields, etc.
▶ I/O: network, display, etc.
▶ Exceptions, signals, interrupts
▶ Inter-process communication
▶ …

Computation has “side-effects”: computational effects

Pratikakis (CSD) Memory and References CS546, 2024-2025 3 / 21

Memory effects

Support for assignment, a way to alter memory contents
Variable names remain immutable

▶ In C, a variable name can mean two things
⋆ At the left side of an assignment: a memory location
⋆ At the right side of an assignment: the contents of a memory location

▶ Keep variables immutable: a variable name always means the same
▶ Use explicit syntax to read from or write to a memory location

Pratikakis (CSD) Memory and References CS546, 2024-2025 4 / 21

Memory operations

Memory allocation (and initialization):

let r = ref 5

Memory dereference (read)
!r

Memory assignment (write)

r := 42

Pratikakis (CSD) Memory and References CS546, 2024-2025 5 / 21

Aliasing

A reference points to a memory location
We can copy the reference:

let s = r

That does not copy the memory location
▶ Both s and r point to the same original location
▶ If we assign s := 2
▶ Then !r will also be 2
▶ We say references s and r are aliases for the same memory location

Is the program (r := 1; r :=!s) equivalent to the program (r :=!s)?

Pratikakis (CSD) Memory and References CS546, 2024-2025 6 / 21

Shared state

A reference is like a communication channel
Implicitly sends something from one part of the program to another,
e.g.:

let c = ref 0
let incc = λx : Unit. (c := succ (!c); !c)
let decc = λx : Unit. (c := pred (!c); !c)

Create sequential numbers from anywhere in the program by calling
incc()
The function incc is stateful: we don’t need to give it the previous
value, incc remembers it (and so is decc)
Reference c works like an implicit argument to incc and decc, contains
the last thing stored

Pratikakis (CSD) Memory and References CS546, 2024-2025 7 / 21

Shared state (cont’d)

We can pack it all in a record

let counter =
let c = ref 0 in
{

incr = λx : Unit. (c := succ (!c); !c) ,
decr = λx : Unit. (c := pred (!c); !c)

}

We can now use counter.incr() and counter.decr()
This is a simple object

Pratikakis (CSD) Memory and References CS546, 2024-2025 8 / 21

References, formally

Syntax
e ::= . . . | ref e |!e | e := e
T ::= . . . | Ref T

Typing
[T-Ref] Γ ` e : T

Γ ` ref e : Ref T

[T-Deref]
Γ ` e : Ref T
Γ `!e : T

[T-Assign]
Γ ` e1 : Ref T Γ ` e2 : T

Γ ` e1 := e2 : Unit

Pratikakis (CSD) Memory and References CS546, 2024-2025 9 / 21

References, formally (cont’d)

What is the result of ref 2 at run time?
▶ Allocates a new memory location,
▶ initiallizes it with 2, and
▶ returns a pointer to that location
▶ But what is the value of the pointer?

We add another type of value (and expression) that only occurs at
run-time:

v, e ::= . . . | l

A pointer, or location, l is an element of an abstract set of all possible
locations L

We represent memory as a partial function from locations l to values

Pratikakis (CSD) Memory and References CS546, 2024-2025 10 / 21

References, formally (cont’d)

Extend operational semantics with memory
The machine state is not just an expression e like in pure calculus
New machine state is 〈M | e〉
M represents memory: a map from locations l to values (also called
store)
Operational semantics define transitions between the new machine
states:

▶ Small-step: 〈M | e〉 → 〈M′ | e′〉
▶ Big-step: 〈M | e〉 ↓ 〈M′ | v〉

Pratikakis (CSD) Memory and References CS546, 2024-2025 11 / 21

Semantics

We need to extend all existing semantic rules with memory

〈M | (λx : T.e) v〉 → 〈M | e[v/x]〉

〈M | e1〉 → 〈M′ | e′1〉
〈M | e1 e2〉 → 〈M′ | e′1 e2〉

〈M | e〉 → 〈M′ | e′〉
〈M | v e〉 → 〈M′ | v e′〉

Pratikakis (CSD) Memory and References CS546, 2024-2025 12 / 21

Semantics (cont’d)

Allocation
〈M | e〉 → 〈M′ | e′〉

〈M | ref e〉 → 〈M′ | ref e′〉

l /∈ dom (M)

〈M | ref v〉 → 〈(M, l 7→ v) | l〉
Dereference

〈M | e〉 → 〈M′ | e′〉
〈M |!e〉 → 〈M′ |!e′〉

M(l) = v
〈M |!l〉 → 〈M | v〉

Pratikakis (CSD) Memory and References CS546, 2024-2025 13 / 21

Semantics (cont’d)

Assignment

〈M | e1〉 → 〈M′ | e′1〉
〈M | e1 := e2〉 → 〈M′ | e′1 := e2〉

〈M | e〉 → 〈M′ | e′〉
〈M | v := e〉 → 〈M′ | v := e′〉

〈M | l := v〉 → 〈M[l 7→ v] | ()〉

Pratikakis (CSD) Memory and References CS546, 2024-2025 14 / 21

Store typing

To prove type soundness, we need (as before) progress and
preservation
But, the run-time language includes locations l
What is the type of a location?

▶ It depends on the value it points to in the store (incorrect):

Γ ` M(l) : T
Γ ` l : Ref T

The store becomes part of the typing relation: Γ;M ` e : T
Typing locations (not yet correctly):

Γ;M ` M(l) : T
Γ;M ` l : Ref T

Pratikakis (CSD) Memory and References CS546, 2024-2025 15 / 21

Store typing (cont’d)

What happens when the store has a cycle?
▶ Typing doesn’t terminate: bad!

Instead, use store typing Σ, a map from locations to types
Now, typing relation depends on Σ: Γ;Σ ` e : T
Typing locations (correctly):

[T-Loc]
Σ(l) = T

Γ;Σ ` l : Ref T

The other rules are simple to extend: just pass Σ up recursively
To type original program, use empty Σ: no pointers allowed in the
original program text

Pratikakis (CSD) Memory and References CS546, 2024-2025 16 / 21

Typing, finally

[T-Abs]
Γ, x : T; Σ ` e : T′

Γ;Σ ` (λx : T.e) : T → T′ [T-Var] x : T ∈ Γ
Γ;Σ ` x : T

[T-App]

Γ;Σ ` e1 : T → T′

Γ;Σ ` e2 : T
Γ;Σ ` e1 e2 : T′ [T-Unit]

Γ;Σ ` () : Unit

[T-Ref]
Γ;Σ ` e : T

Γ;Σ ` ref e : Ref T [T-Deref]
Γ;Σ ` e : Ref T
Γ;Σ `!e : T

[T-Assign]

Γ;Σ ` e1 : Ref T
Γ;Σ ` e2 : T

Γ;Σ ` e1 := e2 : Unit [T-Loc]
Σ(l) = T

Γ;Σ ` l : Ref T

. . .

Pratikakis (CSD) Memory and References CS546, 2024-2025 17 / 21

Store typing, finally

To state and prove soundness (progress and preservation) we need to
link M and Σ:

▶ A store M is well-typed in context Γ under store typing Σ, written
Γ;Σ ` M, if

⋆ dom (M) = dom (Σ) and
⋆ Γ;Σ ⊢ M(l) : Σ(l) for all l ∈ dom (M)

Pratikakis (CSD) Memory and References CS546, 2024-2025 18 / 21

Preservation theorem

If a well-typed program takes a step, it is still well-typed:
If

▶ Γ;Σ ` e : T,
▶ Γ;Σ ` M and
▶ 〈M | e〉 → 〈M′ | e′〉

then, for some Σ′ ⊇ Σ,
▶ Γ;Σ′ ` e′ : T and
▶ Γ;Σ′ ` M′

We prove as before by induction on the evaluation derivation.
But first, we need a few auxilliary lemmas

Pratikakis (CSD) Memory and References CS546, 2024-2025 19 / 21

Preservation theorem (cont’d)

Prove the substitution lemma:
If Γ, x : T; Σ ` e : T′ and Γ;Σ ` v : T then Γ;Σ ` e[v/x] : T′.
Prove we can update values in the store (keeping the same type):
If Γ;Σ ` M, Σ(l) = T and Γ;Σ ` v : T, then Γ;Σ ` M[l 7→ v]
Prove weakening for stores, we can always add stuff to the store:
If Γ;Σ ` e : T and Σ′ ⊇ Σ, then Γ;Σ′ ` e : T.

Pratikakis (CSD) Memory and References CS546, 2024-2025 20 / 21

Progress theorem

A closed, well-typed program is either a value, or it can take a step:
If ∅,Σ ` e : T, then either e is a value, or for any store M for which
∅; Σ ` M, there are some e′ and M′ such that 〈M | e〉 → 〈M′ | e′〉.
Proof as before, by induction on typing derivations
Need to extend the canonical forms lemma with the cases for Unit
and Ref T

Pratikakis (CSD) Memory and References CS546, 2024-2025 21 / 21

