Lecture 12: Memory and References

Polyvios Pratikakis

Computer Science Department, University of Crete

Type Systems and Programming Languages
So far

- Pure lambda calculus
- Simply typed lambda calculus
- Additional types: sums, products, lists, tuples, variants, etc.
- *Pure* language features:
 - The machine state is a program expression
 - The semantics rewrite the program expression/machine state
 - Program evaluation reduces the program expression to a result
- Pure features form the backbone of most languages
Impure features

- **Impure languages**
 - The machine state is not just the program expression
 - Program evaluation does not just produce a result,
 - ...it also changes the machine state

- Most languages also include impure features
 - Mutable state: memory locations, arrays, mutable record fields, etc.
 - I/O: network, display, etc.
 - Exceptions, signals, interrupts
 - Inter-process communication
 - ...

- Computation has “side-effects”: *computational effects*
Support for *assignment*, a way to alter memory contents

- Variable names remain immutable
 - In C, a variable name can mean two things
 - At the left side of an assignment: a memory location
 - At the right side of an assignment: the contents of a memory location
 - Keep variables immutable: a variable name always means the same
 - Use explicit syntax to read from or write to a memory location
Memory operations

- Memory allocation (and initialization):
 \[
 \text{let } r = \text{ref } 5
 \]

- Memory dereference (read)
 \[
 !r
 \]

- Memory assignment (write)
 \[
 r := 42
 \]
Aliasing

- A reference points to a memory location
- We can copy the reference:

 \[
 \text{let } s = r
 \]

- That does not copy the memory location
 - Both \(s \) and \(r \) point to the same original location
 - If we assign \(s := 2 \)
 - Then \(!r \) will also be 2
 - We say references \(s \) and \(r \) are \textit{aliases} for the same memory location

- Is the program \((r := 1; r := !s)\) equivalent to the program \((r := !s)\)?
Shared state

- A reference is like a communication channel
- Implicitly sends something from one part of the program to another, e.g.:

\[
\begin{align*}
\text{let } c &= \text{ref } 0 \\
\text{let } incc &= \lambda x : \text{Unit. } (c := \text{succ } (!c); !c) \\
\text{let } decc &= \lambda x : \text{Unit. } (c := \text{pred } (!c); !c)
\end{align*}
\]

- Create sequential numbers from anywhere in the program by calling \textcolor{red}{incc()}\textcolor{red}{()}
- The function \textcolor{red}{incc} is \textcolor{red}{stateful}: we don’t need to give it the previous value, \textcolor{red}{incc} remembers it (and so is \textcolor{red}{decc})
- Reference \textcolor{red}{c} works like an implicit argument to \textcolor{red}{incc} and \textcolor{red}{decc}, contains the last thing stored
Shared state (cont’d)

- We can pack it all in a record

```
let counter =
    let c = ref 0 in
    {
        incr = λx : Unit. (c := succ (!c); !c),
        decr = λx : Unit. (c := pred (!c); !c)
    }
```

- We can now use `counter.incr()` and `counter.decr()`
- This is a simple `object`
References, formally

- **Syntax**

 \[e ::= \ldots | \text{ref } e | !e | e := e \]

 \[T ::= \ldots | \text{Ref } T \]

- **Typing**

 \[
 \begin{array}{c}
 \text{[T-REF]} \quad \frac{\Gamma \vdash e : T}{\Gamma \vdash \text{ref } e : \text{Ref } T} \\
 \text{[T-DEREF]} \quad \frac{\Gamma \vdash e : \text{Ref } T}{\Gamma \vdash !e : T} \\
 \text{[T-ASSIGN]} \quad \frac{\Gamma \vdash e_1 : \text{Ref } T \quad \Gamma \vdash e_2 : T}{\Gamma \vdash e_1 := e_2 : \text{Unit}}
 \end{array}
 \]
References, formally (cont’d)

- What is the result of ref 2 at run time?
 - Allocates a new memory location,
 - initializes it with 2, and
 - returns a pointer to that location
 - But what is the value of the pointer?

- We add another type of value (and expression) that only occurs at run-time:
 \[v, e ::= \ldots | l \]

- A pointer, or location, \(l \) is an element of an abstract set of all possible locations \(\mathcal{L} \)

- We represent memory as a partial function from locations \(l \) to values
References, formally (cont’d)

- Extend operational semantics with memory
- The machine state is not just an expression e like in pure calculus
- New machine state is $\langle M \mid e \rangle$
- M represents memory: a map from locations l to values (also called \textit{store})
- Operational semantics define transitions between the new machine states:
 - Small-step: $\langle M \mid e \rangle \rightarrow \langle M' \mid e' \rangle$
 - Big-step: $\langle M \mid e \rangle \downarrow \langle M' \mid v \rangle$
Semantics

- We need to extend all existing semantic rules with memory

\[
\begin{align*}
\langle M | (\lambda x : T.e) \, v \rangle &\rightarrow \langle M | e[v/x] \rangle \\
\langle M | e_1 \rangle &\rightarrow \langle M' | e'_1 \rangle \\
\langle M | e_1 \ e_2 \rangle &\rightarrow \langle M' | e'_1 \ e_2 \rangle \\
\langle M | e \rangle &\rightarrow \langle M' | e' \rangle \\
\langle M | v \ e \rangle &\rightarrow \langle M' | v \ e' \rangle
\end{align*}
\]
Semantics (cont’d)

- **Allocation**
 \[
 \langle M \mid e \rangle \rightarrow \langle M' \mid e' \rangle
 \]
 \[
 \langle M \mid \text{ref } e \rangle \rightarrow \langle M' \mid \text{ref } e' \rangle
 \]
 \[
 l \notin \text{dom}(M)
 \]
 \[
 \langle M \mid \text{ref } v \rangle \rightarrow \langle (M, l \mapsto v) \mid l \rangle
 \]

- **Dereference**
 \[
 \langle M \mid e \rangle \rightarrow \langle M' \mid e' \rangle
 \]
 \[
 \langle M \mid !e \rangle \rightarrow \langle M' \mid !e' \rangle
 \]
 \[
 M(l) = v
 \]
 \[
 \langle M \mid !l \rangle \rightarrow \langle M \mid v \rangle
 \]
Semantics (cont’d)

- Assignment

\[
\langle M \mid e_1 \rangle \rightarrow \langle M' \mid e'_1 \rangle
\]

\[
\langle M \mid e_1 := e_2 \rangle \rightarrow \langle M' \mid e'_1 := e_2 \rangle
\]

\[
\langle M \mid e \rangle \rightarrow \langle M' \mid e' \rangle
\]

\[
\langle M \mid v := e \rangle \rightarrow \langle M' \mid v := e' \rangle
\]

\[
\langle M \mid l := v \rangle \rightarrow \langle M[l \mapsto v] \mid () \rangle
\]

Pratikakis (CSD)

Memory and References

CS546, 2018-2019
To prove type soundness, we need (as before) progress and preservation.

But, the run-time language includes locations l.

What is the type of a location?

- It depends on the value it points to in the store (incorrect):

$$\Gamma \vdash M(l) : T$$

$$\Gamma \vdash \Gamma \vdash l : \text{Ref } T$$

The store becomes part of the typing relation: $\Gamma; M \vdash e : T$.

Typing locations (not yet correctly):

$$\Gamma; M \vdash M(l) : T$$

$$\Gamma; M \vdash M(l) : T$$

$$\Gamma; M \vdash l : \text{Ref } T$$
Store typing (cont’d)

- What happens when the store has a cycle?
 - Typing doesn’t terminate: bad!
- Instead, use \textit{store typing} Σ, a map from locations to types
- Now, typing relation depends on Σ: $\Gamma; \Sigma \vdash e : T$
- Typing locations (correctly):
 \[
 \frac{\Sigma(l) = T}{\Gamma; \Sigma \vdash l : \text{Ref } T}\]
- The other rules are simple to extend: just pass Σ up recursively
- To type original program, use empty Σ: no pointers allowed in the original program text

Pratikakis (CSD)
Memory and References
CS546, 2018-2019
Typing, finally

\[
\begin{align*}
[T-\text{ABS}] & \quad \frac{\Gamma, x : T; \Sigma \vdash e : T'}{\Gamma; \Sigma \vdash (\lambda x: T. e) : T \rightarrow T'} \\
[T-\text{VAR}] & \quad \frac{x : T \in \Gamma}{\Gamma; \Sigma \vdash x : T} \\
[T-\text{APP}] & \quad \frac{\Gamma; \Sigma \vdash e_1 : T \rightarrow T' \quad \Gamma; \Sigma \vdash e_2 : T}{\Gamma; \Sigma \vdash e_1 \ e_2 : T'} \\
[T-\text{UNIT}] & \quad \frac{x : T \in \Gamma}{\Gamma; \Sigma \vdash () : \text{Unit}} \\
[T-\text{REF}] & \quad \frac{\Gamma; \Sigma \vdash e : T}{\Gamma; \Sigma \vdash \text{ref} \ e : \text{Ref} \ T} \\
[T-\text{DEREF}] & \quad \frac{\Gamma; \Sigma \vdash e : \text{Ref} \ T}{\Gamma; \Sigma \vdash \text{!} \ e : T} \\
[T-\text{ASSIGN}] & \quad \frac{\Gamma; \Sigma \vdash e_1 : \text{Ref} \ T \quad \Gamma; \Sigma \vdash e_2 : T}{\Gamma; \Sigma \vdash e_1 := e_2 : \text{Unit}} \\
[T-\text{LOC}] & \quad \frac{\Gamma; \Sigma \vdash l : \text{Ref} \ T}{\Gamma; \Sigma \vdash \Sigma(l) = T} \\
\end{align*}
\]
Store typing, finally

To state and prove soundness (progress and preservation) we need to link M and Σ:

- A store M is *well-typed* in context Γ under store typing Σ, written $\Gamma; \Sigma \vdash M$, if
 - $\text{dom}(M) = \text{dom}(\Sigma)$ and
 - $\Gamma; \Sigma \vdash M(l) : \Sigma(l)$ for all $l \in \text{dom}(M)$
Preservation theorem

- If a well-typed program takes a step, it is still well-typed:
 - If
 - $\Gamma; \Sigma \vdash e : T$,
 - $\Gamma; \Sigma \vdash M$ and
 - $\langle M | e \rangle \rightarrow \langle M' | e' \rangle$
 - then, for some $\Sigma' \supseteq \Sigma$,
 - $\Gamma; \Sigma' \vdash e' : T$ and
 - $\Gamma; \Sigma' \vdash M'$

- We prove as before by induction on the evaluation derivation.
- But first, we need a few auxiliary lemmas
Preservation theorem (cont’d)

- Prove the substitution lemma:
 If $\Gamma, x : T; \Sigma \vdash e : T'$ and $\Gamma; \Sigma \vdash v : T$ then $\Gamma; \Sigma \vdash e[v/x] : T'$.

- Prove we can update values in the store (keeping the same type):
 If $\Gamma; \Sigma \vdash M, \Sigma(l) = T$ and $\Gamma; \Sigma \vdash v : T$, then $\Gamma; \Sigma \vdash M[l \mapsto v]$.

- Prove weakening for stores, we can always add stuff to the store:
 If $\Gamma; \Sigma \vdash e : T$ and $\Sigma' \supseteq \Sigma$, then $\Gamma; \Sigma' \vdash e : T$.

Pratikakis (CSD)
Progress theorem

- A closed, well-typed program is either a value, or it can take a step: If $\emptyset, \Sigma \vdash e : T$, then either e is a value, or for any store M for which $\emptyset; \Sigma \vdash M$, there are some e' and M' such that $\langle M \mid e \rangle \rightarrow \langle M' \mid e' \rangle$.
- Proof as before, by induction on typing derivations.
- Need to extend the canonical forms lemma with the cases for $Unit$ and $Ref T$.