Lecture 9: The Simply Typed λ-Calculus

Polyvios Pratikakis

Computer Science Department, University of Crete

Type Systems and Programming Languages
Last time

- A type system: a way to recognize only well-behaved programs
 - Statically, without running the program
 - Conservative: might reject programs that run OK

- Defined inductively, using inference rules
 - Here called *type rules*
 - Used to define a typing relation between terms and types
 - Only terms that have a type are accepted
 - All bad programs are not accepted

- Can be proved
 - Progress: a well typed program is not stuck
 - Preservation: a well typed program is still well-typed after a step
Function types

- Going to the λ-calculus
 - What happens with functions?
- Let’s add a type for functions: \rightarrow
 - $\lambda x.e : \rightarrow$
 - Too simple: $\lambda x.0$ and $\lambda x.\lambda y.\text{true}$ have the same type \rightarrow
 - What happens when we call both?

- Solution: function type needs to say more about the function
 - What is the function expecting: argument type
 - What does the function return: result type
 - These can recursively be anything
Function types (cont’d)

- Extend *type language*

\[T ::= \ldots | T \rightarrow T \]

- E.g. \(\text{Bool} \rightarrow \text{Bool} \): a function that takes a boolean and returns a boolean
- \((\text{Bool} \rightarrow \text{Bool}) \rightarrow \text{Bool} \) a function that takes another function on booleans, and returns a boolean

- Now \(\rightarrow \) is a *type constructor*:
 - A function in the type grammar
 - Takes two other types and constructs a new type

- \(\rightarrow \) is right-associative, for readability
 - \(\text{Bool} \rightarrow \text{Bool} \rightarrow \text{Bool} \) means \(\text{Bool} \rightarrow (\text{Bool} \rightarrow \text{Bool}) \)
Typing relation

- To assign a type to a term $\lambda x. e$ we need to know what x will be when it is applied.

- Two ways to find the type of the argument:
 - Require a user annotation $\lambda x : T . e$
 - Analyze the whole program, find where $\lambda x . e$ is applied and find the type of the actual argument passed to x.
 - We will see the first.

- To compute the result type, compute the type of the body e, assuming x has type T:

\[
\frac{x : T \vdash e : T'}{\vdash (\lambda x : T . e) : (T \rightarrow T')}
\]
Typing relation (cont’d)

- We change the typing relation from \(e : T \) to \(\Gamma \vdash e : T \)
 - Also called a typing *judgement*
 - \(\Gamma \) is a set of assumptions, \(x : T, y : T', \ldots \) assigning types to variables
 - Also called a *typing context* or *type environment*
 - In \(\Gamma \vdash e : T \), \(e \) has type \(T \) under the empty set of assumptions

- Generalized type rule:

\[
\begin{align*}
\Gamma, x : T_1 &\vdash e_2 : T_2 \\
\hline
\Gamma &\vdash \lambda x : T_1. e_2 : T_1 \rightarrow T_2
\end{align*}
\]

- Ensure all variables in \(\Gamma \) are distinct
 - Might need \(\alpha \)-renaming of bound variables
 - But always possible
Typing relation (cont’d)

- The rule for typing a variable x follows
- A variable has whatever type it has in the assumptions
 \[
 \frac{x : T \in \Gamma}{\Gamma \vdash x : T}
 \]
- If it is not in the assumptions the program is not well-typed
- Follows: open terms are not well typed in an empty environment
Typing relation (cont’d)

- Last syntactic case: function application
- To have \(e_1 \) \(e_2 \) have a type
 - \(e_1 \) must have a function type \(T \rightarrow T' \)
 - \(e_2 \) must have the same type as the function argument \(T \)
 - The whole term will have the same type as the result of the function \(T' \)
- The type rule

\[
\frac{\Gamma \vdash e_1 : T \rightarrow T' \quad \Gamma \vdash e_2 : T}{\Gamma \vdash e_1 \ e_2 : T'}
\]
All together

Term language \(e ::= e \; e \mid \lambda x. e \mid x \)

Type language \(T ::= T \to T \)

\[
\frac{\Gamma, x : T_1 \vdash e_2 : T_2}{\Gamma \vdash \lambda x : T_1. e_2 : T_1 \to T_2}
\]

\[
\frac{\Gamma \vdash x : T \in \Gamma}{\Gamma \vdash x : T}
\]

\[
\frac{\Gamma \vdash e_1 : T \to T' \quad \Gamma \vdash e_2 : T}{\Gamma \vdash e_1 \; e_2 : T'}
\]

- Not enough!
- Type language is empty: only has inductive case
- We need a base type
- Use \textit{Bool} from last time
Term language \[e ::= e \; e \mid \lambda x. e \mid x \mid \text{true} \mid \text{false} \mid \text{if } e \text{ then } e \text{ else } e \]

Values \[v ::= \lambda x. e \mid \text{true} \mid \text{false} \]

Type language \[T ::= T \rightarrow T \mid \text{Bool} \]

\[
\begin{align*}
\text{[T-Abs]} & \quad \frac{\Gamma, x : T_1 \vdash e_2 : T_2}{\Gamma \vdash \lambda x : T_1 . e_2 : T_1 \rightarrow T_2} & \text{[T-VAR]} & \quad \frac{x : T \in \Gamma}{\Gamma \vdash x : T} \\
\text{[T-App]} & \quad \frac{\Gamma \vdash e_1 : T \rightarrow T'}{\Gamma \vdash e_1 \; e_2 : T'} & \text{[T-If]} & \quad \frac{\Gamma \vdash e_1 : \text{Bool} \quad \Gamma \vdash e_3 : T}{\Gamma \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 : T} \\
\text{[T-True]} & \quad \frac{\Gamma \vdash \text{true} : \text{Bool}}{\Gamma \vdash \text{false} : \text{Bool}} & \text{[T-False]} & \quad \frac{\Gamma \vdash \text{false} : \text{Bool}}{}
\end{align*}
\]
Semantics (eager, small-step)

\[
\begin{align*}
\text{[E-APP]} & : (\lambda x : T.e) \nu \rightarrow e[\nu/x] \\
\text{[E-APP1]} & : e_1 \rightarrow e'_1 \\
& \quad e_1 \ e_2 \rightarrow e'_1 \ e_2 \\
\text{[E-APP2]} & : e_2 \rightarrow e'_2 \\
& \quad \nu \ e_2 \rightarrow \nu \ e'_2 \\
\text{[E-IF]} & : e_1 \rightarrow e'_1 \\
& \quad \text{if } e_1 \text{ then } e_2 \text{ else } e_3 \rightarrow \text{if } e'_1 \text{ then } e_2 \text{ else } e_3 \\
\text{[E-IF-TRUE]} & : \text{if true then } e_2 \text{ else } e_3 \rightarrow e_2 \\
\text{[E-IF-FALSE]} & : \text{if false then } e_2 \text{ else } e_3 \rightarrow e_3
\end{align*}
\]
Examples

\[x : \text{Bool} \in x : \text{Bool} \]
\[x : \text{Bool} \vdash x : \text{Bool} \]
\[\vdash (\lambda x : \text{Bool}.x) : \text{Bool} \rightarrow \text{Bool} \]
\[\vdash \text{true} : \text{Bool} \]
\[\vdash (\lambda x : \text{Bool}.x) \text{ true} : \text{Bool} \]

\[\vdash \text{true} : \text{Bool} \]
\[\vdash (\lambda x : \text{Bool}.\text{true}) : \text{Bool} \rightarrow \text{Bool} \]
\[D_3 : \vdash (\lambda x : \text{Bool}.\text{false}) : \text{Bool} \rightarrow \text{Bool} \]
\[\vdash \text{if true then } (\lambda x : \text{Bool}.\text{true}) \text{ else } (\lambda x : \text{Bool}.\text{false}) : \text{Bool} \rightarrow \text{Bool} \]

\[D_3 : \]
\[\vdash x : \text{Bool} \vdash \text{false} : \text{Bool} \]
\[\vdash (\lambda x : \text{Bool}.\text{false}) : \text{Bool} \rightarrow \text{Bool} \]
Inversion lemma

- Inversion of the typing relation
 - If $\Gamma \vdash x : T$ then $x : T \in \Gamma$
 - If $\Gamma \vdash (\lambda x : T_1 . e) : T$ then there is a T_2 such that $T = T_1 \rightarrow T_2$ and $\Gamma, x : T_1 \vdash e : T_2$
 - If $\Gamma \vdash e_1 e_2 : T$ then there is a T' such that $\Gamma \vdash e_1 : T' \rightarrow T$ and $\Gamma \vdash e_2 : T'$
 - If $\Gamma \vdash \text{true} : T$ then $T = \text{Bool}$
 - If $\Gamma \vdash \text{false} : T$ then $T = \text{Bool}$
 - If $\Gamma \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 : T$ then $\Gamma \vdash e_1 : \text{Bool}$ and $\Gamma \vdash e_2 : T$ and $\Gamma \vdash e_3 : T$

- Proof follows from the definition of typing
Canonical forms

- We can reason about values based on their type
 - If \(\nu \) has type \(\text{Bool} \) then it is either true or false
 - If \(\nu \) has type \(T \rightarrow T' \) then \(\nu = (\lambda x : T.e) \)

- Proof by case analysis on the syntax of \(\nu \)
Progress theorem

- If $\vdash e : T$ then either e is a value, or it can take a step $e \rightarrow e'$ to some e'
- Proof like last time
- Differences:
 - Variable case can never happen ($\vdash x : T$ is impossible)
 - Lambda case is a value
 - Application case: apply lemma recursively to e_1, e_2
 - If e_1 is not a value, then apply $[E$-App1$]$
 - If e_1 is a value and e_2 isn’t, apply $[E$-App2$]$
 - If they are both values, apply inversion lemma and canonical form to e_1, and then $[E$-App$]$
Permutation lemma

- If $\Gamma \vdash e : T$ and Γ' is a permutation of Γ, then $\Gamma' \vdash e : T$
- Proof is straightforward by induction on $\Gamma \vdash e : T$
- Case analysis:
 - For each typing rule
 - Apply inductively on premises (if any)
 - Reapply typing rule to construct judgement with Γ'
 - Remember all variables in Γ are different (ensured by α-renaming terms when necessary)
Weakening lemma

- If $\Gamma \vdash e : T$ and $x \notin \text{dom}(\Gamma)$, then $\Gamma, x : T' \vdash e : T$
- Proof by induction on $\Gamma \vdash e : T$ (as above)
- Intuitively: we can add irrelevant declarations around a term without affecting its type
Substitution lemma

- If $\Gamma, x : T' \vdash e : T$ and $\Gamma \vdash e' : T'$, then $\Gamma \vdash e[e'/x] : T$
- Proof by induction on $\Gamma, x : T' \vdash e : T$
 - Case analysis on typing relation (for each type rule)
 - For most cases, simply apply inductively on premises and then reapply the same type rule to reconstruct the wanted conclusion
 - Except two cases: Variable and Lambda
Substitution lemma (cont’d)

- In case the term is a variable
 - If the variable is the one replaced, the wanted conclusion is given in the assumption
 - If not, construct the wanted conclusion using $[T\text{-VAR}]$

- In case the term is a Lambda
 - We cannot apply the lemma inductively on the premises, they have different environments
 - We must bring the two environments to the same form first
 - Use permutation on premise
 - Use weakening on second assumption
 - We can now apply the lemma inductively and reconstruct the conclusion using $[T\text{-ABS}]$
Preservation theorem

- If $\Gamma \vdash e : T$ and $e \rightarrow e'$ then $\Gamma \vdash e' : T$
- Proof by induction on $e \rightarrow e'$ (each semantic rule)
- Uses the substitution lemma for the β-reduction in \[E-App\]
 - Intuitively, β-reduction replaces all occurrences of a variable x in e with e'
 - Similarly, substitution lemma replaces all typings of x (using \[T-VAR\]) in the typing of e, with the typing of e'
 - Might have to adjust the environments using weakening
Next time

- Implementing the type-system in OCaml