Lecture 9: The Simply Typed A-Calculus

Polyvios Pratikakis
Computer Science Department, University of Crete

Type Systems and Programming Languages

Pratikakis (CSD) The Simply Typed A-Calculus CS546, 2024-2025 1/21

Last time

@ A type system: a way to recognize only well-behaved programs
» Statically, without running the program
» Conservative: might reject programs that run OK

@ Defined inductively, using inference rules

Here called type rules

» Used to define a typing relation between terms and types

» Only terms that have a type are accepted

> All bad programs are not accepted

v

@ Can be proved

> Progress: a well typed program is not stuck
> Preservation: a well typed program is still well-typed after a step

Pratikakis (CSD) The Simply Typed A-Calculus CS546, 2024-2025 2/21

Function types

@ Going to the A-calculus
» What happens with functions?
@ Let’s add a type for functions: —

> Ax.e:—
» Too simple: Ax.0 and Ax.\y.true have the same type —
» What happens when we call both?

@ Solution: function type needs to say more about the function
» What is the function expecting: argument type
» What does the function return: result type
» These can recursively be anything

Pratikakis (CSD) The Simply Typed A-Calculus CS546, 2024-2025 3/21

Function types (cont'd)

o Extend type language

Ti=...|T—>T

» E.g. Bool— Bool: a function that takes a boolean and returns a
boolean
» (Bool — Bool) — Bool a function that takes another function on
booleans, and returns a boolean
o Now — is a type constructor:
» A function in the type grammar
» Takes two other types and constructs a new type
@ — is right-associative, for readability
» Bool — Bool — Bool means Bool — (Bool — Bool)

Pratikakis (CSD) The Simply Typed A-Calculus CS546, 2024-2025 4/21

Typing relation

@ To assign a type to a term Ax.e we need to know what x will be when
it is applied
@ Two ways to find the type of the argument
» Require a user annotation Ax: T.e
> Analyze the whole program, find where Ax.e is applied and find the
type of the actual argument passed to x
> We will see the first
@ To compute the result type, compute the type of the body e,
assuming x has type T:

x: The: T
F(Ax:Te):(T—T)

Pratikakis (CSD) The Simply Typed A-Calculus CS546, 2024-2025 5/21

Typing relation (cont'd)

@ We change the typing relation frome: Ttol'Fe: T
» Also called a typing judgement

» I is a set of assumptions, x: T,y: T,... assigning types to variables
> Also called a typing context or type environment

» Inte: T, e has type T under the empty set of assumptions
o Generalized type rule:

F,X:Tll—egtTQ
Fl—)\X:Tl.eQ:Tl—>T2

@ Ensure all variables in I are distinct

» Might need a-renaming of bound variables
» But always possible

Pratikakis (CSD) The Simply Typed A-Calculus CS546, 2024-2025 6/21

Typing relation (cont'd)

@ The rule for typing a variable x follows
@ A variable has whatever type it has in the assumptions
x: Tel
'kEx: T
e If it is not in the assumptions the program is not well-typed
@ Follows: open terms are not well typed in an empty environment

Pratikakis (CSD) The Simply Typed A-Calculus CS546, 2024-2025 7/21

Typing relation (cont'd)

@ Last syntactic case: function application
@ To have e e have a type

» e; must have a function type T— T’
» e must have the same type as the function argument T
» The whole term will have the same type as the result of the function T’

@ The type rule

I'Fe: T—=T ThFe:T
I'Fe e: T

Pratikakis (CSD) The Simply Typed A-Calculus CS546, 2024-2025 8/21

All together

Term language e = ee| Axe|x
Type language T = T—T
P'x:Tike: Ty x:TeTl
A T s T s T, VTR T

I'Fe:T—=T Tke:T
I'Fee: T

[T-ArP]

@ Not enough!
o Type language is empty: only has inductive case
@ We need a base type

@ Use Bool from last time

Pratikakis (CSD) The Simply Typed A-Calculus CS546, 2024-2025 9/21

Fixed: Add booleans

Term language e eel| Axel|x

true | false | if e then eelse e

Values v Ax.e | true | false
Type language T == T — T| Bool
[reaesd I—F)\: :: TTeZ TQT; T—2> T v LS
IT'Fe:T—>T I' - ey : Bool
[T-arr] Pli—:lezegz :TT’ [r-1r] Fli—l;f ‘Z :tP?-en ef eﬁs:?’e; :TT
[T-TruUE] [T-FaLsE]

T' I true : Bool I' + false : Bool

Pratikakis (CSD) The Simply Typed A-Calculus CS546, 2024-2025 10/21

Semantics (eager, small-step)

[E-Arr] (Ax: T.e) v— e[v/X

e — € e — €.
! [E-App2] — 2
e1 e — € e

[E-Aprpr1]
ves — vé

e1—>e’1

[E-IF] — ,
if e then e; else e3 — if €] then e; else e3

[E-Ir-TRUE] —
if true then e, else e3 — &9

E-IF-FALSE| —;
[] if false then e; else e3 — e3

Pratikakis (CSD) The Simply Typed A-Calculus CS546, 2024-2025 11/21

Examples

x: Bool € x: Bool
x: Booll x: Bool
F (Ax: Bool.x) : Bool — Bool F true : Bool

F (Ax: Bool.x) true : Bool

x: Bool - true : Bool

 true : Bool F (Ax: Bool.true) : Bool — Bool
Ds : F (Ax: Boolfalse) : Bool — Bool

F if true then (Ax: Bool.true) else (Ax : Bool.false) : Bool — Bool

x : Booll- false : Bool

D3 :
F (Ax : Bool.false) : Bool — Bool

Pratikakis (CSD) The Simply Typed A-Calculus CS546, 2024-2025 12/21

Inversion lemma

@ Inversion of the typing relation

» fI'Fx: Tthenx: Tel
» If ' (Ax: Ty.e) : T then there is a T, such that T=T; — T, and

F,XZT1|_61T2
» If ' e; ey : T then thereisa T suchthatT'~e; : T — T and
I'Fey: T

» If '+ true: T then T = Bool

» If '+ false: T then T = Bool

» IfI'Fifeg theneyelsees: Tthen ' e : Booland '+ ey : T and
I'keg: T

@ Proof follows from the definition of typing

Pratikakis (CSD) The Simply Typed A-Calculus CS546, 2024-2025 13/21

Canonical forms

@ We can reason about values based on their type

» If v has type Bool then it is either true or false
» If vhastype T— T then v= (Ax: T.e)

@ Proof by case analysis on the syntax of v

Pratikakis (CSD) The Simply Typed A-Calculus CS546, 2024-2025 14 /21

Progress theorem

o If - e: T then either e is a value, or it can take a step e — € to some

el

@ Proof like last time

o Differences:

» Variable case can never happen (- x: T is impossible)

» Lambda case is a value

» Application case: apply lemma recursively to e1, e
* If e1 is not a value, then apply [E-App1]
* If e; is a value and ey isn't, apply [E-Aprp2]
* If they are both values, apply inversion lemma and canonical form to

e1, and then [E-App]

Pratikakis (CSD) The Simply Typed A-Calculus CS546, 2024-2025 15/21

Permutation lemma

o IfI"'+e: Tand I is a permutation of I', then IV - e: T
@ Proof is straightforward by inductionon I' -e: T

o Case analysis:

» For each typing rule

Apply inductively on premises (if any)

Reapply typing rule to construct judgement with T

Remember all variables in T are different (ensured by a-renaming terms
when necessary)

v vyy

Pratikakis (CSD) The Simply Typed A-Calculus CS546, 2024-2025 16 /21

Weakening lemma

o IfT’'Fe:Tand x¢ dom(T'), then T,x: T He: T
@ Proof by induction on I' e : T (as above)

o Intuitively: we can add irrelevant declarations around a term without
affecting its type

Pratikakis (CSD) The Simply Typed A-Calculus CS546, 2024-2025 17/21

Substitution lemma

o Ifx: The:Tand 'k ¢€: T, thenT - el€/x]: T
@ Proof by inductionon I, x: T'Fe: T
» Case analysis on typing relation (for each type rule)
» For most cases, simply apply inductively on premises and then reapply
the same type rule to reconstruct the wanted conclusion
» Except two cases: Variable and Lambda

Pratikakis (CSD) The Simply Typed A-Calculus CS546, 2024-2025 18/21

Substitution lemma (cont'd)

@ In case the term is a variable
> If the variable is the one replaced, the wanted conclusion is given in the
assumption
» If not, construct the wanted conclusion using [T-Vag]

@ In case the term is a Lambda
» We cannot apply the lemma inductively on the premises, they have
different environments
We must bring the two environments to the same form first
Use permutation on premise
Use weakening on second assumption
We can now apply the lemma inductively and reconstruct the
conclusion using [T-Ags]

vV vyVvYy

Pratikakis (CSD) The Simply Typed A-Calculus CS546, 2024-2025 19/21

Preservation theorem

o IfT+e: Tande— € thenT € : T

@ Proof by induction on e — € (each semantic rule)

@ Uses the substitution lemma for the S-reduction in [E-App]

> Intuitively, 8-reduction replaces all occurrences of a variable x in e with

e/

» Similarly, substitution lemma replaces all typings of x (using [T-Vag]) in
the typing of e, with the typing of ¢
» Might have to adjust the environments using weakening

Pratikakis (CSD) The Simply Typed A-Calculus CS546, 2024-2025 20/21

Next time

@ Implementing the type-system in OCaml

Pratikakis (CSD) The Simply Typed A-Calculus

