
Lecture 9: The Simply Typed λ-Calculus

Polyvios Pratikakis

Computer Science Department, University of Crete

Type Systems and Programming Languages

Pratikakis (CSD) The Simply Typed λ-Calculus CS546, 2024-2025 1 / 21

Last time

A type system: a way to recognize only well-behaved programs
▶ Statically, without running the program
▶ Conservative: might reject programs that run OK

Defined inductively, using inference rules
▶ Here called type rules
▶ Used to define a typing relation between terms and types
▶ Only terms that have a type are accepted
▶ All bad programs are not accepted

Can be proved
▶ Progress: a well typed program is not stuck
▶ Preservation: a well typed program is still well-typed after a step

Pratikakis (CSD) The Simply Typed λ-Calculus CS546, 2024-2025 2 / 21

Function types

Going to the λ-calculus
▶ What happens with functions?

Let’s add a type for functions: →
▶ λx.e :→
▶ Too simple: λx.0 and λx.λy.true have the same type →
▶ What happens when we call both?

Solution: function type needs to say more about the function
▶ What is the function expecting: argument type
▶ What does the function return: result type
▶ These can recursively be anything

Pratikakis (CSD) The Simply Typed λ-Calculus CS546, 2024-2025 3 / 21

Function types (cont’d)

Extend type language

T ::= . . . | T → T

▶ E.g. Bool → Bool: a function that takes a boolean and returns a
boolean

▶ (Bool → Bool) → Bool a function that takes another function on
booleans, and returns a boolean

Now → is a type constructor:
▶ A function in the type grammar
▶ Takes two other types and constructs a new type

→ is right-associative, for readability
▶ Bool → Bool → Bool means Bool → (Bool → Bool)

Pratikakis (CSD) The Simply Typed λ-Calculus CS546, 2024-2025 4 / 21

Typing relation

To assign a type to a term λx.e we need to know what x will be when
it is applied
Two ways to find the type of the argument

▶ Require a user annotation λx : T.e
▶ Analyze the whole program, find where λx.e is applied and find the

type of the actual argument passed to x
▶ We will see the first

To compute the result type, compute the type of the body e,
assuming x has type T:

x : T ⊢ e : T′

⊢ (λx : T.e) : (T → T′)

Pratikakis (CSD) The Simply Typed λ-Calculus CS546, 2024-2025 5 / 21

Typing relation (cont’d)

We change the typing relation from e : T to Γ ⊢ e : T
▶ Also called a typing judgement
▶ Γ is a set of assumptions, x : T, y : T′, . . . assigning types to variables
▶ Also called a typing context or type environment
▶ In ⊢ e : T, e has type T under the empty set of assumptions

Generalized type rule:

Γ, x : T1 ⊢ e2 : T2

Γ ⊢ λx : T1.e2 : T1 → T2

Ensure all variables in Γ are distinct
▶ Might need α-renaming of bound variables
▶ But always possible

Pratikakis (CSD) The Simply Typed λ-Calculus CS546, 2024-2025 6 / 21

Typing relation (cont’d)

The rule for typing a variable x follows
A variable has whatever type it has in the assumptions

x : T ∈ Γ
Γ ⊢ x : T

If it is not in the assumptions the program is not well-typed
Follows: open terms are not well typed in an empty environment

Pratikakis (CSD) The Simply Typed λ-Calculus CS546, 2024-2025 7 / 21

Typing relation (cont’d)

Last syntactic case: function application
To have e1 e2 have a type

▶ e1 must have a function type T → T′

▶ e2 must have the same type as the function argument T
▶ The whole term will have the same type as the result of the function T′

The type rule

Γ ⊢ e1 : T → T′ Γ ⊢ e2 : T
Γ ⊢ e1 e2 : T′

Pratikakis (CSD) The Simply Typed λ-Calculus CS546, 2024-2025 8 / 21

All together

Term language e ::= e e | λx.e | x
Type language T ::= T → T

[T-Abs]
Γ, x : T1 ⊢ e2 : T2

Γ ⊢ λx : T1.e2 : T1 → T2
[T-Var] x : T ∈ Γ

Γ ⊢ x : T

[T-App]
Γ ⊢ e1 : T → T′ Γ ⊢ e2 : T

Γ ⊢ e1 e2 : T′

Not enough!
Type language is empty: only has inductive case
We need a base type
Use Bool from last time

Pratikakis (CSD) The Simply Typed λ-Calculus CS546, 2024-2025 9 / 21

Fixed: Add booleans

Term language e ::= e e | λx.e | x
| true | false | if e then e else e

Values v ::= λx.e | true | false
Type language T ::= T → T | Bool

[T-Abs]
Γ, x : T1 ⊢ e2 : T2

Γ ⊢ λx : T1.e2 : T1 → T2
[T-Var] x : T ∈ Γ

Γ ⊢ x : T

[T-App]

Γ ⊢ e1 : T → T′

Γ ⊢ e2 : T
Γ ⊢ e1 e2 : T′ [T-If]

Γ ⊢ e1 : Bool
Γ ⊢ e2 : T Γ ⊢ e3 : T

Γ ⊢ if e1 then e2 else e3 : T

[T-True]
Γ ⊢ true : Bool [T-False]

Γ ⊢ false : Bool

Pratikakis (CSD) The Simply Typed λ-Calculus CS546, 2024-2025 10 / 21

Semantics (eager, small-step)

[E-App]
(λx : T.e) v → e[v/x]

[E-App1]
e1 → e′1

e1 e2 → e′1 e2
[E-App2]

e2 → e′2
v e2 → v e′2

[E-If]
e1 → e′1

if e1 then e2 else e3 → if e′1 then e2 else e3

[E-If-True] if true then e2 else e3 → e2

[E-If-False] if false then e2 else e3 → e3

Pratikakis (CSD) The Simply Typed λ-Calculus CS546, 2024-2025 11 / 21

Examples

x : Bool ∈ x : Bool
x : Bool ⊢ x : Bool

⊢ (λx : Bool.x) : Bool → Bool ⊢ true : Bool
⊢ (λx : Bool.x) true : Bool

⊢ true : Bool
x : Bool ⊢ true : Bool

⊢ (λx : Bool.true) : Bool → Bool
D3 : ⊢ (λx : Bool.false) : Bool → Bool

⊢ if true then (λx : Bool.true) else (λx : Bool.false) : Bool → Bool

D3 :
x : Bool ⊢ false : Bool

⊢ (λx : Bool.false) : Bool → Bool

Pratikakis (CSD) The Simply Typed λ-Calculus CS546, 2024-2025 12 / 21

Inversion lemma

Inversion of the typing relation
▶ If Γ ⊢ x : T then x : T ∈ Γ
▶ If Γ ⊢ (λx : T1.e) : T then there is a T2 such that T = T1 → T2 and

Γ, x : T1 ⊢ e : T2

▶ If Γ ⊢ e1 e2 : T then there is a T′ such that Γ ⊢ e1 : T′ → T and
Γ ⊢ e2 : T′

▶ If Γ ⊢ true : T then T = Bool
▶ If Γ ⊢ false : T then T = Bool
▶ If Γ ⊢ if e1 then e2 else e3 : T then Γ ⊢ e1 : Bool and Γ ⊢ e2 : T and

Γ ⊢ e3 : T
Proof follows from the definition of typing

Pratikakis (CSD) The Simply Typed λ-Calculus CS546, 2024-2025 13 / 21

Canonical forms

We can reason about values based on their type
▶ If v has type Bool then it is either true or false
▶ If v has type T → T′ then v = (λx : T.e)

Proof by case analysis on the syntax of v

Pratikakis (CSD) The Simply Typed λ-Calculus CS546, 2024-2025 14 / 21

Progress theorem

If ⊢ e : T then either e is a value, or it can take a step e → e′ to some
e′

Proof like last time
Differences:

▶ Variable case can never happen (⊢ x : T is impossible)
▶ Lambda case is a value
▶ Application case: apply lemma recursively to e1, e2

⋆ If e1 is not a value, then apply [E-App1]
⋆ If e1 is a value and e2 isn’t, apply [E-App2]
⋆ If they are both values, apply inversion lemma and canonical form to

e1, and then [E-App]

Pratikakis (CSD) The Simply Typed λ-Calculus CS546, 2024-2025 15 / 21

Permutation lemma

If Γ ⊢ e : T and Γ′ is a permutation of Γ, then Γ′ ⊢ e : T
Proof is straightforward by induction on Γ ⊢ e : T
Case analysis:

▶ For each typing rule
▶ Apply inductively on premises (if any)
▶ Reapply typing rule to construct judgement with Γ′

▶ Remember all variables in Γ are different (ensured by α-renaming terms
when necessary)

Pratikakis (CSD) The Simply Typed λ-Calculus CS546, 2024-2025 16 / 21

Weakening lemma

If Γ ⊢ e : T and x /∈ dom (Γ), then Γ, x : T′ ⊢ e : T
Proof by induction on Γ ⊢ e : T (as above)
Intuitively: we can add irrelevant declarations around a term without
affecting its type

Pratikakis (CSD) The Simply Typed λ-Calculus CS546, 2024-2025 17 / 21

Substitution lemma

If Γ, x : T′ ⊢ e : T and Γ ⊢ e′ : T′, then Γ ⊢ e[e′/x] : T
Proof by induction on Γ, x : T′ ⊢ e : T

▶ Case analysis on typing relation (for each type rule)
▶ For most cases, simply apply inductively on premises and then reapply

the same type rule to reconstruct the wanted conclusion
▶ Except two cases: Variable and Lambda

Pratikakis (CSD) The Simply Typed λ-Calculus CS546, 2024-2025 18 / 21

Substitution lemma (cont’d)

In case the term is a variable
▶ If the variable is the one replaced, the wanted conclusion is given in the

assumption
▶ If not, construct the wanted conclusion using [T-Var]

In case the term is a Lambda
▶ We cannot apply the lemma inductively on the premises, they have

different environments
▶ We must bring the two environments to the same form first
▶ Use permutation on premise
▶ Use weakening on second assumption
▶ We can now apply the lemma inductively and reconstruct the

conclusion using [T-Abs]

Pratikakis (CSD) The Simply Typed λ-Calculus CS546, 2024-2025 19 / 21

Preservation theorem

If Γ ⊢ e : T and e → e′ then Γ ⊢ e′ : T
Proof by induction on e → e′ (each semantic rule)
Uses the substitution lemma for the β-reduction in [E-App]

▶ Intuitively, β-reduction replaces all occurrences of a variable x in e with
e′

▶ Similarly, substitution lemma replaces all typings of x (using [T-Var]) in
the typing of e, with the typing of e′

▶ Might have to adjust the environments using weakening

Pratikakis (CSD) The Simply Typed λ-Calculus CS546, 2024-2025 20 / 21

Next time

Implementing the type-system in OCaml

Pratikakis (CSD) The Simply Typed λ-Calculus CS546, 2024-2025 21 / 21

