Lecture 8: Types and Type Rules

Polyvios Pratikakis

Computer Science Department, University of Crete

Type Systems and Programming Languages

Based on slides by Jeff Foster, UMD

1/19

< A

The need for types

- Consider the lambda calculus terms:
 - false = $\lambda x. \lambda y. x$
 - $0 = \lambda x \cdot \lambda y \cdot x$ (Scott encoding)
- Everything is encoded using functions
 - One can easily misuse combinators
 - ★ false 0, or if 0 then ..., etc...
 - It's no better than assembly language!

Type system

- A *type system* is some mechanism for distinguishing good programs from bad
 - Good programs are well typed
 - Bad programs are ill typed or not typeable
- Examples:
 - ▶ 0+1 is well typed
 - false + 0 is ill typed: booleans cannot be added to numbers
 - ▶ 1 + (if true then 0 else false) is ill typed: cannot add a boolean to an integer
- This time: types for simple arithmetic (Lecture 4)

A definition

"A type system is a tractable syntactic method for proving the absence of certain program behaviors by classifying phrases according to the kinds of values they compute."

- Benjamin Pierce, Types and Programming Languages

Recall simple arithmetic

э

Pratikakis (CSD)

< □ > < 同 > < 回 > < 回 > < 回 >

Semantics

iszero $0 \rightarrow$	true isz	$rac{t ightarrow t'}{ ext{vero} t ightarrow ext{iszero} t'}$
v is a num. iszero (succ v	$\dot{v} \rightarrow false$	$\frac{t \to t'}{\text{succ } t \to \text{succ } t'}$
pred $0 \rightarrow 0$ p	$rac{t ightarrow t'}{ ext{ored} \ t ightarrow ext{pred} \ t}$	$\frac{v \text{ is a num. value}}{\text{pred (succ } v) \rightarrow v}$
if true then t_1 else t_2	$t \rightarrow t_1$ i	f false then t_1 else $t_2 ightarrow t_2$
$rac{t ightarrow t'}{ ext{ if } t ext{ then } t_1 ext{ else } t_2 ightarrow ext{if } t' ext{ then } t_1 ext{ else } t_2}$		
		(日) (명) (일) (일)

Types: approximation of result

- Classify terms into types:
 - A term *t* has type *T*: its result *will* be a boolean/natural
 - Written t : T (sometimes $t \in T$)
 - Computed statically: without running the program
 - Statical typing is conservative: might reject good programs
- For this language we need two types, $T ::= Bool \mid Nat$
- Examples:
 - if true then 0 else succ 0 : Nat, always produces a number
 - ▶ iszero (succ (pred 0)) : *Bool*, always produces a boolean
 - \blacktriangleright But: if true then false else succ 0 does not have a static type

The typing relation

- Define a relation ":" to assign types to terms
- Mathematically, ":" is a partial binary relation between the set \mathcal{E} of all possible programs, and the set \mathcal{T} , (here $\{Bool, Nat\}$) of all possible types
- Can describe this using sets:
 - Language: a set & of all possible terms
 - ► *Type language*: a set T of all possible types
 - Typing relation: a partial relation ":" $\subseteq \mathcal{E} \times \mathcal{T}$
 - ▶ Well-formed terms: a set $WF \subseteq E$ of terms that don't get stuck during evaluation
 - Well-typed terms: a set $WT \subseteq \mathcal{E}$ of terms that have a type

The typing relation (cont'd)

- \bullet When $\mathcal{WT}\subseteq \mathcal{WF}\text{, the type system is }\textit{sound}$
- When $\mathcal{WF} \subseteq \mathcal{WT}$, the type system is *complete*
- Usually, we can't have both: undecidable
- Traditionally, type-systems worry about soundness
 - I.e: no accepted program can go wrong
- ...but might reject some correct programs

Back to language definitions

• Inductive: the smallest set \mathcal{E} such that

•
$$\{$$
true, false $\} \in \mathcal{E}$

- If $t_1 \in \mathcal{E}$ then {succ t_1 , pred t_1 , iszero t_1 } $\in \mathcal{E}$
- etc.
- By inference rules, e.g:

$$t \in \mathcal{E}$$
iszero $t \in \mathcal{E}$

By construction:

Same thing for typing relation

• Inductive: The smallest relation : such that

- ▶ 0 : Nat holds
- ▶ If *t* : *Nat* holds, then succ *t* : *Nat* also holds
- etc.
- By inference rules:

 $\frac{t:Nat}{\mathsf{succ}\ t:Nat}$

• By construction:

Type system

$$\begin{bmatrix} T-TRUE \end{bmatrix} \quad \begin{bmatrix} t & Bool \\ t & t & t \\ t & t & t \\ \end{bmatrix} \begin{bmatrix} T-TRUE \end{bmatrix} \quad \begin{bmatrix} t & 1 & Bool \\ t & t & t \\ t & t & t \\ t & t & t \\ \end{bmatrix} \begin{bmatrix} T-TRUE \end{bmatrix} \quad \begin{bmatrix} t & 1 & Bool \\ t & t & t \\ t & t & t \\ t & t & t \\ \end{bmatrix} \begin{bmatrix} T-TRUE \end{bmatrix} \quad \begin{bmatrix} t & Nat \\ T-TRUE \end{bmatrix} \quad \begin{bmatrix} T-TRUE \end{bmatrix} \quad \begin{bmatrix} t & Nat \\ T-TRUE \end{bmatrix} \quad \begin{bmatrix} t$$

12/19

æ

Inversion lemma

- Typing relation is the *smallest* relation produced by the rules
- And is syntax-driven (deterministic)
- So we can invert it (inversion lemma):
 - ▶ The only way to type true is [T-TRUE], with type Bool
 - ▶ The only way to type false is [T-FALSE], with type Bool
 - ▶ If there is a typing if t₁ then t₂ else t₃ : T then the only way to create it is [T-IF], where t₁ : Bool, t₂ : T and t₃ : T
 - etc, for the other syntactic forms
- Proof follows from the definition of typing
- Makes inference rules go backwards:
 - Given the conclusion, the premises must have been true (there is no other way to reach that conclusion)
- Practically, it describes the algorithm to construct a typing

< ロ > < 同 > < 回 > < 回 >

In OCaml

```
• Grammar (Lec. 4):
```

```
type term =
   True
   False
   If of term * term * term
   Zero
   Succ of term
   Pred of term
   IsZero of term
```

• Type language:

```
type typ = TNat | TBool
```


э

< □ > < □ > < □ > < □ > < □ > < □ >

Type checking

```
let rec typecheck : term -> typ = function
True | False -> TBool
| If(t1, t2, t3) when typecheck t1 = TBool ->
    let typ2 = typecheck t2 in
    let typ3 = typecheck t3 in
    if (typ2 = typ3) then typ2
    else failwith "type error"
| Zero -> TNat
| Succ t | Pred t when (typecheck t) = TNat -> TNat
| IsZero t when (typecheck t) = TNat -> TBool
| _ -> failwith "type error"
```


< □ > < □ > < □ > < □ > < □ > < □ >

Progress theorem

- If t: T then either t is a value, or there exists t' such that $t \to t'$
- Proof by induction on t
 - ▶ Base cases (simple values): true, false, 0, trivially true
 - Inductive cases: assume sub-terms are either values or can step
 - ★ Case succ t: if t is a value then succ t is a value, otherwise $t \rightarrow t'$, therefore succ $t \rightarrow$ succ t' using the fourth semantic rule
 - ★ Case pred t: from inversion, we know t : Nat. If t is a value it cannot be true or false. So, we can always take a step from pred 0 or pred (succ v). If t is not a value, t takes a step, and pred t → pred t'
 - \star ...similarly for the other cases

Preservation theorem

- If t: T and $t \rightarrow t'$ then t': T
- Proof by induction on $t \rightarrow t'$ (each semantic rule)
 - ► First rule (base case) iszero 0 → true: From inversion lemma on iszero 0 : *T*, we get that its type must be *Bool*, which is also the type of true from [T-TRUE]
 - Second rule (inductive case) iszero t → iszero t': From inversion lemma on iszero t : T we get T = Bool and also t : Nat. From induction hypothesis we have t → t'. Apply inductively on t : Nat and t → t', to get t' : Nat. Then iszero t' : Bool follows from [T-IsZERO]
 - Similarly for other base and inductive cases

Soundness

- So far:
 - Progress: If t : T, then either t is a value, or there exists t' such that $t \to t'$
 - Preservation: If t : T and $t \to t'$ then t' : T
- Putting these together, we get *soundness*
 - If t : T then either there exists a value v such that t →* v or t doesn't terminate
- What does this mean?
 - "Well-typed programs don't go wrong"
 - Evaluation never gets stuck
- This language will always terminate
 - Proof by induction on term size (defined in Lec. 4)
 - If $t \to t'$ then size(t') < size(t)

Next time

- The same, only for λ -calculus
 - The function type
 - What happens with variables?
 - What happens with substitution?

