Lecture 8: Types and Type Rules

Polyvios Pratikakis

Computer Science Department, University of Crete

Type Systems and Programming Languages

Based on slides by Jeff Foster, UMD
The need for types

- Consider the lambda calculus terms:
 - \(\text{false} = \lambda x. \lambda y. x \)
 - \(0 = \lambda x. \lambda y. x \) (Scott encoding)

- Everything is encoded using functions
 - One can easily misuse combinators
 - \(\text{false} 0, \text{or if } 0 \text{ then } \ldots, \text{etc...} \)
 - It’s no better than assembly language!
Type system

- A *type system* is some mechanism for distinguishing good programs from bad
 - Good programs are *well typed*
 - Bad programs are ill typed or not typeable

- Examples:
 - $0 + 1$ is well typed
 - $\text{false} + 0$ is ill typed: booleans cannot be added to numbers
 - $1 + (\text{if true then } 0 \text{ else false})$ is ill typed: cannot add a boolean to an integer

- This time: types for simple arithmetic (Lecture 4)
A definition

“A type system is a tractable syntactic method for proving the absence of certain program behaviors by classifying phrases according to the kinds of values they compute.”

– Benjamin Pierce, Types and Programming Languages
Recall simple arithmetic

\[
\begin{align*}
 t & ::= \text{true} \\
 & \quad | \text{false} \\
 & \quad | 0 \\
 & \quad | \text{succ } t \\
 & \quad | \text{pred } t \\
 & \quad | \text{iszero } t \\
 & \quad | \text{if } t \text{ then } t \text{ else } t \\

 v & ::= \text{true} \\
 & \quad | \text{false} \\
 & \quad | \text{nv} \\

 \text{nv} & ::= 0 \\
 & \quad | \text{succ } \text{nv}
\end{align*}
\]
Semantics

\[
\begin{align*}
\text{iszero } 0 & \rightarrow \text{true} \\
\text{iszero } t & \rightarrow \text{iszero } t' \\
\text{iszero } (\text{succ } v) & \rightarrow \text{false} \\
\text{succ } t & \rightarrow \text{succ } t' \\
\text{pred } 0 & \rightarrow 0 \\
\text{pred } t & \rightarrow \text{pred } t' \\
\text{pred } (\text{succ } v) & \rightarrow v \\
\begin{array}{l}
\text{if true then } t_1 \text{ else } t_2 \rightarrow t_1 \\
\text{if false then } t_1 \text{ else } t_2 \rightarrow t_2
\end{array}
\end{align*}
\]
Types: approximation of result

- Classify terms into types:
 - A term t has type T: its result will be a boolean/natural
 - Written $t : T$ (sometimes $t \in T$)
 - Computed *statically*: without running the program
 - Statical typing is *conservative*: might reject good programs

- For this language we need two types, $T ::= \text{Bool} \mid \text{Nat}$

- Examples:
 - if true then 0 else succ 0 : Nat, always produces a number
 - iszero (succ (pred 0)) : Bool, always produces a boolean
 - But: if true then false else succ 0 does not have a static type
The typing relation

- Define a relation “:” to assign types to terms
- Mathematically, “:” is a partial binary relation between the set E of all possible programs, and the set T, (here $\{Bool, Nat\}$) of all possible types
- Can describe this using sets:
 - **Language**: a set E of all possible terms
 - **Type language**: a set T of all possible types
 - **Typing relation**: a partial relation “:” $\subseteq E \times T$
 - **Well-formed terms**: a set $WF \subseteq E$ of terms that don’t get stuck during evaluation
 - **Well-typed terms**: a set $WT \subseteq E$ of terms that have a type
The typing relation (cont’d)

- When \(\mathcal{W}_T \subseteq \mathcal{W}_F \), the type system is *sound*
- When \(\mathcal{W}_F \subseteq \mathcal{W}_T \), the type system is *complete*
- Usually, we can’t have both: undecidable
- Traditionally, type-systems worry about *soundness*
 - i.e: no accepted program can go wrong
- ...but might reject some correct programs
Inductive: the *smallest* set \mathcal{E} such that

- $\{\text{true, false}\} \in \mathcal{E}$
- If $t_1 \in \mathcal{E}$ then $\{\text{succ } t_1, \text{pred } t_1, \text{iszero } t_1\} \in \mathcal{E}$
- etc.

By inference rules, e.g:

\[
\frac{t \in \mathcal{E}}{\text{iszero } t \in \mathcal{E}}
\]

By construction:

- $S_0 = \emptyset$
- $S_{i+1} = \{\text{true, false, 0}\} \cup \text{succ } t, \text{pred } t, \text{iszero } t \mid t \in S_i \cup \ldots$
- $\mathcal{E} = \bigcup_i S_i$
Same thing for typing relation

- **Inductive**: The *smallest* relation such that
 - $0 : Nat$ holds
 - If $t : Nat$ holds, then $\text{succ } t : Nat$ also holds
 - etc.

- **By inference rules**:

 $\frac{t : Nat}{\text{succ } t : Nat}$

- **By construction**:

 - $T_0 = \emptyset$
 - $T_{i+1} = \{0 : Nat\} \cup \{\text{succ } t : Nat | (t : Nat) \in T_i\} \cup \ldots$
 - $T = \bigcup_i T_i$
Type system

- **[T-TRUE]**

 \[t : \text{Bool} \]

- **[T-FALSE]**

 \[f : \text{Bool} \]

- **[T-IF]**
 \[
 \frac{t_1 : \text{Bool} \quad t_2 : T \quad t_3 : T}{\text{if } t_1 \text{ then } t_2 \text{ else } t_3 : T}
 \]

- **[T-ZERO]**
 \[
 \frac{}{0 : \text{Nat}}
 \]

- **[T-SUCC]**
 \[
 \frac{}{\text{succ} \, t : \text{Nat}}
 \]

- **[T-PRED]**
 \[
 \frac{}{\text{pred} \, t : \text{Nat}}
 \]

- **[T-ISZERO]**
 \[
 \frac{}{\text{iszero} \, t : \text{Bool}}
 \]
Inversion lemma

- Typing relation is the *smallest* relation produced by the rules
- And is syntax-driven (deterministic)
- So we can invert it (inversion lemma):
 - The only way to type true is \([T-\text{True}]\), with type \(\text{Bool}\)
 - The only way to type false is \([T-\text{False}]\), with type \(\text{Bool}\)
 - If there is a typing if \(t_1\) then \(t_2\) else \(t_3\) : \(T\) then the only way to create it is \([T-\text{If}]\), where \(t_1 : \text{Bool}\), \(t_2 : T\) and \(t_3 : T\)
 - etc, for the other syntactic forms
- Proof follows from the definition of typing
- Makes inference rules go backwards:
 - Given the conclusion, the premises must have been true (there is no other way to reach that conclusion)
- Practically, it describes the algorithm to construct a typing
In OCaml

- Grammar (Lec. 4):

```ocaml
type term =
  True
|  False
|  If of term ∗ term ∗ term
|  Zero
|  Succ of term
|  Pred of term
|  IsZero of term
```

- Type language:

```ocaml
type typ = TNat | TBool
```
let rec typecheck : term -> typ = function
 | True | False -> TBool
 | If (t1, t2, t3) when typecheck t1 = TBool ->
 let typ2 = typecheck t2 in
 let typ3 = typecheck t3 in
 if (typ2 = typ3) then typ2
 else failwith "type error"
 | Zero -> TNat
 | Succ t | Pred t when (typecheck t) = TNat -> TNat
 | IsZero t when (typecheck t) = TNat -> TBool
 | _ -> failwith "type error"
Progress theorem

- If $t : T$ then either t is a value, or there exists t' such that $t \rightarrow t'$
- Proof by induction on t
 - Base cases (simple values): true, false, 0, trivially true
 - Inductive cases: assume sub-terms are either values or can step
 - Case succ t: if t is a value then succ t is a value, otherwise $t \rightarrow t'$, therefore succ $t \rightarrow$ succ t' using the fourth semantic rule
 - Case pred t: from inversion, we know $t : Nat$. If t is a value it cannot be true or false. So, we can always take a step from pred 0 or pred (succ v). If t is not a value, t takes a step, and pred $t \rightarrow$ pred t'
 - ...similarly for the other cases
Preservation theorem

- If $t : T$ and $t \rightarrow t'$ then $t' : T$
- Proof by induction on $t \rightarrow t'$ (each semantic rule)
 - First rule (base case) $\text{iszero } 0 \rightarrow \text{true}$: From inversion lemma on $\text{iszero } 0 : T$, we get that its type must be Bool, which is also the type of true from $[T\text{-TRUE}]
 - Second rule (inductive case) $\text{iszero } t \rightarrow \text{iszero } t'$: From inversion lemma on $\text{iszero } t : T$ we get $T = \text{Bool}$ and also $t : \text{Nat}$. From induction hypothesis we have $t \rightarrow t'$. Apply inductively on $t : \text{Nat}$ and $t \rightarrow t'$, to get $t' : \text{Nat}$. Then $\text{iszero } t' : \text{Bool}$ follows from $[T\text{-ISZERO}]
 - Similarly for other base and inductive cases
Soundness

So far:
- Progress: If $t : T$, then either t is a value, or there exists t' such that $t \rightarrow t'$
- Preservation: If $t : T$ and $t \rightarrow t'$ then $t' : T$

Putting these together, we get soundness
- If $t : T$ then either there exists a value v such that $t \rightarrow^* v$ or t doesn't terminate

What does this mean?
- “Well-typed programs don’t go wrong”
- Evaluation never gets stuck

This language will always terminate
- Proof by induction on term size (defined in Lec. 4)
- If $t \rightarrow t'$ then $\text{size}(t') < \text{size}(t)$
Next time

- The same, only for λ-calculus
 - The function type
 - What happens with variables?
 - What happens with substitution?