Lecture 6: The Untyped Lambda Calculus
Semantics and Implementation

Polyvios Pratikakis

Computer Science Department, University of Crete

Type Systems and Programming Languages
• Lambda calculus, cf. 1930s
 ▶ Simple, core language: everything is a function
 ▶ Can express all computation
 ▶ Can encode complex language features as syntactic sugar
 ▶ Simple semantics, one instruction: function application
Defined in one slide

- **Syntax:**

 \[e ::= x \text{ Variables} \]

 \[\mid \lambda x. e \text{ Function definition} \]

 \[\mid e \ e \text{ Function application} \]

- **Nondeterministic small-step semantics:**

 \[
 \frac{(\lambda x. e_1) \ e_2 \rightarrow e_1[x \leftarrow e_2]}{e \rightarrow e'}
 \]

 \[
 \frac{(\lambda x. e) \rightarrow (\lambda x. e')}{e_1 \rightarrow e'_1}
 \frac{e_2 \rightarrow e'_2}{e_1 \ e_2 \rightarrow e'_1 \ e'_2}
 \]
Fun with encodings

- Church integers: $\lambda s.\lambda z.\langle \text{apply } s \text{ on } z \text{ for } n \text{ times}\rangle$
- Booleans: $\text{true} = \lambda t.\lambda f.t$ and $\text{false} = \lambda t.\lambda f.f$
- Pairs: $(a, b) = \lambda p.p \ a \ b$
- In general, encode data as a function that takes an action, and applies it on the data
- How about lists?
 - $[] = \lambda f.\lambda n.n$
 - $a::b = \lambda a.\lambda b.\lambda f.\lambda n.f\ a\ (b\ f\ n)$
- Examples:
 - Predecessor function
 - Addition and subtraction
 - Check a list for empty
 - Head and tail function for lists
Example: Predecessor function for ints

- We want pred 0 to evaluate to 0, pred 1 to 0, pred 2 to 1, etc.
- Remove one application of s from the chain \(s(s(s\ldots(s \, z)) \)
- Unfortunately not very easy for Church integers
- Solution: rebuild the given number up to the previous number
 - Similar to encoding of integers: base, inductive case
 - Use pairs of predecessor, number: \((\text{pred } n, n)\)
 - Base case, or “zero”—start with pred 0, which is 0:
 - \([zz] = (0, 0)\)
 - Inductive case, or “successor”—construct the next pair \((n, \text{succ } n)\) from the previous \((\text{pred } n, n)\)
 - \([ss] = \lambda p.(\text{snd } p, (\text{succ } (\text{snd } p))\)
 - pred \(m\) is the first item of the \(m\)-th pair
 - \([\text{pred } = \lambda m. (\text{fst } (m \, ss \, zz))]\)
Example: plus and minus

- **Plus**: given two numbers \(m \) and \(n \), construct a number \(m + n \)
 - Replace zero in \(m \) with \(n \): \(\text{plus} = \lambda m.\lambda n.\lambda s.\lambda z. n \, s \, (m \, s \, z) \)

- **Minus** is a bit more complex
- \(m - n \): apply \(\text{pred} \) on \(m \), \(n \) times
 - But, \(n \) takes a function \(s \) and a \(z \) and applies \(s \) on \(z \) for \(n \) times
 - Just call it with \(s = \text{pred} \), and \(z = m \):
 - \(\text{minus} = \lambda m.\lambda n. n \, \text{pred} \, m \)
 - Will apply \(\text{pred} \) on \(m \) for \(n \) times: \(m - n \)
Terminology reminder

- **Combinator**, or **closed term**: a term with no free variables
- **Normal form**: a term that cannot be reduced further
 - Normal form of a term is unique
 - Does not always exist, a term may run forever
 - Is not always reached, depending on evaluation order

- A **redex** is a subterm that can be reduced: \((\lambda x. e) \ e'\)

- Equivalent terms **up to \(\alpha\)-conversion**: they can be made equal by renaming bound variables

- Substitution \(e[e'/x]\) or \(e[x \mapsto e']\): replace all occurrences of \(x\) in \(e\) by \(e'\).
 - **Capture-avoiding**: \(e'\) does not have free variables that become bound because of substitution
 - Always possible, using \(\alpha\)-conversion to rename variables
Evaluation strategies

- Full β-reduction: nondeterministic semantics
- Normal order: always reduce leftmost, outermost redex
- Call-by-name (lazy): no reductions under λ, only at the top-level
 - Call-by-need (used in haskell): remember term substitutions and replace all copies of an evaluated term in the AST with the value
 - Instead of AST: abstract syntax graph
- Call-by-value (eager): reduce only outermost redexes where the argument is a value
Lazy semantics

- Small-step:
 \[
 (\lambda x.e_1)
 e_2
 \to
 e_1[x \mapsto e_2]
 \]

 \[
 e_1 \to e'_1

 e_1
 e_2
 \to
 e'_1
 e_2
 \]

- Big-step:
 \[
 (\lambda x.e)
 \downarrow
 (\lambda x.e)
 \]

 \[
 e_1
 \downarrow
 (\lambda x.e)

 e[x \mapsto e_2]
 \downarrow
 e' \]

 \[
 e_1
 e_2
 \downarrow
 e' \]
Eager semantics

- Define values as:
 \[v ::= \lambda x.e \]

- Small-step:
 \[
 \begin{align*}
 e_1 \rightarrow e'_1 \\
 e_2 \rightarrow e'_2 \\
 \vdash e_1 \ e_2 \rightarrow e'_1 \ e'_2 \\
 v \ e_2 \rightarrow v \ e'_2 \\
 (\lambda x.e) \ v \rightarrow e[x \mapsto v]
 \end{align*}
 \]

- Big-step:
 \[
 \begin{align*}
 \lambda x.e \downarrow (\lambda x.e) \\
 e_1 \downarrow (\lambda x.e) \\
 e_2 \downarrow v_2 \\
 e[x \mapsto v_2] \downarrow v \\
 e_1 \ e_2 \downarrow v
 \end{align*}
 \]
In code

- All so far is syntax driven: look at the syntax, decide which rule to apply
- The same for all helper function definitions: \(FV(e) \), \(subst(e, x, e') \), etc.
- OCaml datatypes and pattern matching helps with that
- The abstract syntax tree:

```ocaml
type exp =
  | Var of string
  | Fun of string * exp
  | App of exp * exp

e ::= 
  | Expessions
  | x Variables
  | \( \lambda x.e \) Function definition
  | e e Function application
```