Lecture 6: The Untyped Lambda Calculus
Semantics and Implementation

Polyvios Pratikakis

Computer Science Department, University of Crete

Type Systems and Programming Languages
Last class

- Lambda calculus, cf. 1930s
 - Simple, core language: everything is a function
 - Can express all computation
 - Can encode complex language features as syntactic sugar
 - Simple semantics, one instruction: function application
Defined in one slide

- **Syntax:**

\[
\begin{align*}
e & ::= x \quad \text{Variables} \\
& \quad | \quad \lambda x.e \quad \text{Function definition} \\
& \quad | \quad e \, e \quad \text{Function application}
\end{align*}
\]

- **Nondeterministic small-step semantics:**

\[
\begin{align*}
(\lambda x.e_1) \, e_2 & \rightarrow e_1[x \mapsto e_2] \\
\frac{e \rightarrow e'}{(\lambda x.e) \rightarrow (\lambda x.e')}
\end{align*}
\]

\[
\begin{align*}
e_1 & \rightarrow e'_1 \\
\frac{e_1 \, e_2 \rightarrow e'_1 \, e_2}{e_1 \, e_2}
\end{align*}
\]

\[
\begin{align*}
e_2 & \rightarrow e'_2 \\
\frac{e_1 \, e_2 \rightarrow e_1 \, e'_2}{e_1 \, e_2}
\end{align*}
\]
Fun with encodings

- Church integers: $\lambda s.\lambda z.\langle\text{apply } s \text{ on } z \text{ for } n \text{ times}\rangle$
- Booleans: $\text{true} = \lambda t.\lambda f.t$ and $\text{false} = \lambda t.\lambda f.f$
- Pairs: $(a, b) = \lambda p.p\ a\ b$
- In general, encode data as a function that takes an action, and applies it on the data
- How about lists?
 - $[] = \lambda f.\lambda n.n$
 - $a :: b = \lambda a.\lambda b.\lambda f.\lambda n.f\ a\ (b\ f\ n)$
- Examples:
 - Predecessor function
 - Addition and subtraction
 - Check a list for empty
 - Head and tail function for lists
Example: Predecessor function for ints

- We want \(\text{pred } 0 \) to evaluate to 0, \(\text{pred } 1 \) to 0, \(\text{pred } 2 \) to 1, etc.
- Remove one application of \(s \) from the chain \(s(s(s \ldots (s z)) \)
- Unfortunately not very easy for Church integers
- Solution: rebuild the given number up to the previous number
 - Similar to encoding of integers: base, inductive case
 - Use pairs of predecessor, number: \((\text{pred } n, n)\)
 - Base case, or “zero”—start with \(\text{pred } 0 \), which is 0:
 - \(\star \) \(zz = (0, 0) \)
 - Inductive case, or “successor”—construct the next pair \((n, \text{succ } n)\) from the previous \((\text{pred } n, n)\)
 - \(\star \) \(ss = \lambda p. (\text{snd } p, (\text{succ } (\text{snd } p))) \)
 - \(\text{pred } m \) is the first item of the \(m \)-th pair
 - \(\star \) \(\text{pred } = \lambda m. (\text{fst } (m ss zz)) \)
Example: plus and minus

- Plus: given two numbers m and n, construct a number $m + n$
 - Replace zero in m with n: \(\text{plus} = \lambda m . \lambda n . \lambda s . \lambda z . n \; s \; (m \; s \; z) \)
- Minus is a bit more complex
- $m - n$: apply \text{pred} on m, n times
 - But, n takes a function s and a z and applies s on z for n times
 - Just call it with $s = \text{pred}$, and $z = m$
 - \(\text{minus} = \lambda m . \lambda n . n \; \text{pred} \; m \)
 - Will apply \text{pred} on m for n times: \(m - n \)
Terminology reminder

- **Combinator, or closed term**: a term with no free variables
- **Normal form**: a term that cannot be reduced further
 - Normal form of a term is unique
 - Does not always exist, a term may run forever
 - Is not always reached, depending on evaluation order
- A **redex** is a subterm that can be reduced: \((\lambda x. e) \ e'\)
- Equivalent terms **up to \(\alpha\)-conversion**: they can be made equal by renaming bound variables
- Substitution \(e[e'/x]\) or \(e[x \mapsto e']\): replace all occurrences of \(x\) in \(e\) by \(e'\).
 - **Capture-avoiding**: \(e'\) does not have free variables that become bound because of substitution
 - Always possible, using \(\alpha\)-conversion to rename variables
Evaluation strategies

- Full β-reduction: nondeterministic semantics
- Normal order: always reduce leftmost, outermost redex
- Call-by-name (lazy): no reductions under λ, only at the top-level
 - Call-by-need (used in haskell): remember term substitutions and replace all copies of an evaluated term in the AST with the value
 - Instead of AST: abstract syntax graph
- Call-by-value (eager): reduce only outermost redexes where the argument is a value
Lazy semantics

- Small-step:

 \[
 (\lambda x. e_1) \ e_2 \rightarrow e_1[x \mapsto e_2]
 \]

 \[
 e_1 \rightarrow e'_1
 \]

 \[
 e_1 \ e_2 \rightarrow e'_1 \ e_2
 \]

- Big-step:

 \[
 (\lambda x. e) \downarrow (\lambda x. e)
 \]

 \[
 e_1 \downarrow (\lambda x. e) \quad e[x \mapsto e_2] \downarrow e'
 \]

 \[
 e_1 \ e_2 \downarrow e'
 \]
Eager semantics

- Define values as:

 \[v ::= \lambda x.e \]

- Small-step:

 \[
 \frac{e_1 \rightarrow e'_1}{e_1 \ e_2 \rightarrow e'_1 \ e_2} \quad \frac{e_2 \rightarrow e'_2}{\nu \ e_2 \rightarrow \nu \ e'_2} \quad \frac{(\lambda x.e) \ \nu \rightarrow e[x \mapsto \nu]}{(\nu \ e) \rightarrow (\nu \ e')}
 \]

- Big-step:

 \[
 \frac{e_1 \downarrow (\lambda x.e)}{(\lambda x.e) \downarrow (\lambda x.e)} \quad \frac{e_2 \downarrow \nu_2}{e[x \mapsto \nu_2] \downarrow \nu} \quad \frac{e_1 \ e_2 \downarrow \nu}{e_1 \ e_2 \downarrow \nu}
 \]
In code

- All so far is syntax driven: look at the syntax, decide which rule to apply
- The same for all helper function definitions: $FV(e)$, $subst(e, x, e')$, etc.
- OCaml datatypes and pattern matching helps with that
- The abstract syntax tree:

```ocaml
type exp =
  | Var of string
  | Fun of string * exp
  | App of exp * exp
```

```
e ::= Exppressions
  x Variables
  | λx.e Function definition
  | e e Function application
```