Lecture 5: The Untyped \(\lambda \)-Calculus
Syntax and basic examples

Polyvios Pratikakis

Computer Science Department, University of Crete

Type Systems and Programming Languages
Motivation

- Common programming languages are complex
 - ANSI C99: 538 pages
 - ANSI C++: 714 pages
 - Java 2.0: 505 pages

- Not ideal for teaching and understanding principles of languages and program analysis

- Ideal: a “core language” with
 - Essential features enough to express all computation
 - No redundancy: encode extra features as “syntactic sugar”
Lambda Calculus

- Core language for sequential programming
- Can express all computation
 - Still extremely simple and minimal
 - Can encode many extensions as syntactic sugar
- Easy to extend with additional features
- Simple to understand
 - Whole definition in one slide
- ...and fits in a can!
 - http://alum.wpi.edu/~tfraser/Software/Arduino/lambdacan.html
History

- Invented in the 1930s by Alonzo Church (1903-1995)
- Princeton Mathematician
- Lectures on λ-calculus published in 1941
- Also known for
 - Church’s Thesis:
 - “Every effectively calculable (decidable) function can be expressed by recursive functions”
 - i.e. can be computed by λ-calculus
 - Church’s Theorem:
 - The first order logic is undecidable
Syntax

- Simple syntax:

 \[e ::= x \quad \text{Variables} \]
 \[\mid \lambda x.e \quad \text{Function definition} \]
 \[\mid e\,e \quad \text{Function application} \]

- Functions are the only language construct
 - The argument is a function
 - The result is a function
 - Functions of functions are *higher-order*
Semantics

To evaluate the term \((\lambda x.e_1) \ e_2\)
 - Replace every \(x\) in \(e_1\) with \(e_2\)
 - Written as \(e_1[e_2/x]\), pronounced “\(e_1\) with \(e_2\) for \(x\)”
 - Also written \(e_1[x \mapsto e_2]\)
 - Evaluate the resulting term
 - Return the result

Formally called “\(\beta\)-reduction”
 - \((\lambda x.e_1) \ e_2 \rightarrow_\beta e_1[e_2/x]\)
 - A term that can be \(\beta\)-reduced is a “redex”
 - We omit \(\beta\) when obvious
Convenient assumptions

- Syntactic sugar for declarations
 - let $x = e_1$ in e_2 really means $(\lambda x. e_2) \ e_1$

- Scope of λ extends as far to the right as possible
 - $\lambda x. \lambda y. x \ y$ is $\lambda x. (\lambda y. (x \ y))$

- Function application is left-associative
 - $x \ y \ z$ means $(x \ y) \ z$
Scoping and parameter passing

- β-reduction is not yet well-defined:
 - $(\lambda x. e_1) e_2 \rightarrow e_1[e_2/x]$
 - There might be many x defined in e_1

- Example
 - Consider the program
 - let $x = a$ in
 - let $y = \lambda z. x$ in
 - let $x = b$ in
 - $y \ x$
 - Which x is bound to a, and which to b?
Static (Lexical) Scope

- Variable refers to closest definition
- We can rename variables to avoid confusion:
 let \(x = a \) in
 let \(y = \lambda z.x \) in
 let \(w = b \) in
 \(y \ w \)
- Renaming variables without changing the program meaning is called “\(\alpha \)-conversion”
Free/bound variables

- The set of free variables of a term is

 \[FV(x) = x \]
 \[FV(\lambda x. e) = FV(e) \setminus \{x\} \]
 \[FV(e_1 e_2) = FV(e_1) \cup FV(e_2) \]

- A term \(e \) is closed if \(FV(e) = \emptyset \)

- A variable that is not free is bound
α-conversion

- Terms are equivalent up to renaming of bound variables
 - $\lambda x. e = \lambda y. e[y/x]$ if $y \notin FV(e)$
 - Used to avoid having duplicate variables, capturing during substitution
 - This is called α-conversion, used implicitly
Substitution

- **Formal definition**

\[
\begin{align*}
x[e/x] &= e \\
y[e/x] &= y & \text{when } x \neq y \\
(e_1 \ e_2)[e/x] &= (e_1[e/x] \ e_2[e/x]) \\
(\lambda y.e_1)[e/x] &= \lambda y.(e_1[e/x]) & \text{when } y \neq x \text{ and } y \notin FV(e)
\end{align*}
\]

- **Example**
 - \((\lambda x. y \ x) \ x =_\alpha (\lambda w. y \ w) \ x \rightarrow_\beta y \ x\)
 - We omit writing \(\alpha\)-conversion
We can’t yet write functions with many arguments

- For example, two arguments: \(\lambda(x, y).e \)

Solution: take the arguments, one at a time (like we do in OCaml)

- \(\lambda x.\lambda y.e \)
- A function that takes \(x \) and returns another function that takes \(y \) and returns \(e \)
- \((\lambda x.\lambda y.e) \ a \ b \to (\lambda y.e[a/x]) \ b \to e[a/x][b/y] \)
- This is called *Currying*
- Can represent any number of arguments
Representing booleans

- true = \(\lambda x. \lambda y. x \)
- false = \(\lambda x. \lambda y. y \)
- if \(a \) then \(b \) else \(c \) = \(a \ b \ c \)
- For example:
 - if true then \(b \) else \(c \) → (\(\lambda x. \lambda y. x \)) \(b \ c \) → (\(\lambda y. b \)) \(c \) → \(b \)
 - if false then \(b \) else \(c \) → (\(\lambda x. \lambda y. y \)) \(b \ c \) → (\(\lambda y. y \)) \(c \) → \(c \)
Combinators

- Any closed term is also called a *combinator*
 - true and false are combinators
- Other popular combinators:
 - $I = \lambda x . x$
 - $K = \lambda x . \lambda y . x$
 - $S = \lambda x . \lambda y . \lambda z . x \ z \ (y \ z)$
 - We can define calculi in terms of combinators
 - The SKI-calculus
 - SKI-calculus is also Turing-complete
Encoding pairs

\[(a, b) = \lambda x. \text{if } x \text{ then } a \text{ else } b \]
\[\text{fst} = \lambda p. p \text{ true} \]
\[\text{snd} = \lambda p. p \text{ false} \]
Then
\[\triangleright \text{fst} \ (a, b) \rightarrow \ldots \rightarrow a \]
\[\triangleright \text{snd} \ (a, b) \rightarrow \ldots \rightarrow b \]
Natural numbers (Church)

- \(0 = \lambda s.\lambda z.z\)
- \(1 = \lambda s.\lambda z.s\ z\)
- \(2 = \lambda s.\lambda z.s\ (s\ z)\)
- i.e. \(n = \lambda s.\lambda z.\langle\text{apply } s\ n\ \text{times to } z\rangle\)
- \(\text{succ } = \lambda n.\lambda s.\lambda z.s\ (n\ s\ z)\)
- \(\text{iszero } = \lambda n.n\ (\lambda s.\text{false})\ \text{true}\)
Natural numbers (Scott)

- $0 = \lambda x.\lambda y.x$
- $1 = \lambda x.\lambda y.y\ 0$
- $2 = \lambda x.\lambda y.y\ 1$
- i.e. $n = \lambda x.\lambda y.y\ (n - 1)$
- $\text{succ} = \lambda z.\lambda x.\lambda y.y\ z$
- $\text{pred} = \lambda z.\ 0\ (\lambda x.x)$
- $\text{iszero} = \lambda z.\ 0\ (\lambda x.\text{false})$
Nondeterministic semantics

\[
\begin{align*}
\frac{(\lambda x. e_1) \ e_2 \to e_1[e_2/x]}{e \to e'} & \quad (\lambda x. e) \to (\lambda x. e') \\
\frac{e_1 \to e_1'}{e_1 \ e_2 \to e_1' \ e_2} & \quad \frac{e_2 \to e_2'}{e_1 \ e_2 \to e_1 \ e_2'}
\end{align*}
\]

Question: why are these rules non-deterministic?
Example

- We can apply reduction anywhere in the term
 - $(\lambda x. (\lambda y.y) \ x \ ((\lambda z.w) \ x)) \rightarrow \lambda x.(x \ ((\lambda z.w) \ x)) \rightarrow \lambda x.x \ w$
 - $(\lambda x. (\lambda y.y) \ x \ ((\lambda z.w) \ x)) \rightarrow \lambda x.(\lambda y.y) \ x \ w \rightarrow \lambda x.x \ w$

- Does the order of evaluation matter?
The Church-Rosser Theorem

- **Lemma (The Diamond Property):**
 - If \(a \rightarrow b \) and \(a \rightarrow c \), then there exists \(d \) such that \(b \rightarrow^* d \) and \(c \rightarrow^* d \)

- **Church-Rosser theorem:**
 - If \(a \rightarrow^* b \) and \(a \rightarrow^* c \), then there exists \(d \) such that \(b \rightarrow^* d \) and \(c \rightarrow^* d \)
 - Proof by diamond property

- **Church-Rosser also called confluence**
Normal form

- A term is in *normal form* if it cannot be reduced
 - Examples: \(\lambda x.x, \lambda x.\lambda y.z \)

- By the Church-Rosser theorem, every term reduces to at most one normal form
 - Only for pure lambda calculus with non-deterministic evaluation

- Notice that for function application, the argument need not be in normal form
Let \equiv_β be the reflexive, symmetric, transitive closure of \to
 - E.g., $(\lambda x.x)\ y \to y \leftarrow (\lambda z.\lambda w.z)\ y\ y$ so all three are β-equivalent
- If $a \equiv_\beta b$, then there exists c such that $a \to^* c$ and $b \to^* c$
 - Follows from Church-Rosser theorem
- In particular, if $a \equiv_\beta b$ and both are normal forms, then they are equal
Not every term has a normal form

- Consider
 - $\Delta = \lambda x.x x$
 - Then $\Delta \Delta \rightarrow \Delta \Delta \rightarrow \cdots$

- In general, *self application* leads to loops
- ...which is good if we want recursion
Fixpoint combinator

- Also called a paradoxical combinator
 - \(Y = \lambda f. (\lambda x. f (x x)) (\lambda x. f (x x)) \)
 - There are many versions of this combinator

- Then, \(Y F \equiv \beta F (Y F) \)
 - \(Y F = (\lambda f. (\lambda x. f (x x)) (\lambda x. f (x x))) F \)
 - \(\rightarrow (\lambda x. F (x x)) (\lambda x. F (x x)) \)
 - \(\rightarrow F ((\lambda x. F (x x)) (\lambda x. F (x x))) \)
 - \(\leftarrow F (Y F) \)
Example

- \(\text{fact}(n) = \text{if } (n = 0) \text{ then } 1 \text{ else } n \ast \text{fact}(n - 1) \)
- Let \(G = \lambda f. \lambda n. \text{if } (n = 0) \text{ then } 1 \text{ else } n \ast f(n - 1) \)
- \(Y \, G \, 1 =_\beta G \, (Y \, G) \, 1 \)
 - \(=_\beta (\lambda f. \lambda n. \text{if } (n = 0) \text{ then } 1 \text{ else } n \ast f(n - 1)) \, (Y \, G) \, 1 \)
 - \(=_\beta \text{if } (1 = 0) \text{ then } 1 \text{ else } 1 \ast ((Y \, G) \, 0) \)
 - \(=_\beta 1 \ast ((Y \, G) \, 0) \)
 - \(=_\beta 1 \ast (G \, (Y \, G) \, 0) \)
 - \(=_\beta 1 \ast (\lambda f. \lambda n. \text{if } (n = 0) \text{ then } 1 \text{ else } n \ast f(n - 1)) \, (Y \, G) \, 0) \)
 - \(=_\beta 1 \ast (\text{if } (0 = 0) \text{ then } 1 \text{ else } 0 \ast ((Y \, G) \, 0)) \)
 - \(=_\beta 1 \ast 1 = 1 \)
In other words

- The Y combinator “unrolls” or “unfolds” its argument an infinite number of times
 - $Y G = G (Y G) = G (G (Y G)) = G (G (G (Y G))) = \ldots$
 - G needs to have a “base case” to ensure termination

- But, only works because we follow call-by-name
 - Different combinator(s) for call-by-value
 - $Z = \lambda f. (\lambda x. f (\lambda y. x x y)) (\lambda x. f (\lambda y. x x y))$
 - Why is this a fixed-point combinator? How does its difference from Y work for call-by-value?
Why encodings

- It’s fun!
- Shows that the language is expressive
- In practice, we add constructs as language primitives
 - More efficient
 - Much easier to analyze the program, avoid mistakes
 - Our encodings of 0 and true are the same, we may want to avoid mixing them, for clarity
Lazy and eager evaluation

- Our non-deterministic reduction rule is fine for theory, but awkward to implement
- Two deterministic strategies:
 - **Lazy**: Given \((\lambda x.e_1) \ e_2\), do not evaluate \(e_2\) if \(e_1\) does not need \(x\) anywhere
 - Also called left-most, call-by-name, call-by-need, applicative, normal-order evaluation (with slightly different meanings)
 - **Eager**: Given \((\lambda x.e_1) \ e_2\), always evaluate \(e_2\) to a normal form, before applying the function
 - Also called call-by-value
Lazy operational semantics

\[
\begin{align*}
(\lambda x.e_1) & \rightarrow^l (\lambda x.e_1) \\
e_1 & \rightarrow^l \lambda x.e \\
e[e_2/x] & \rightarrow^l e'
\end{align*}
\]

\[
e_1 e_2 \rightarrow^l e'
\]

- The rules are deterministic, \textit{big-step}
 - The right-hand side is reduced “all the way”
- The rules do not reduce under \(\lambda \)
- The rules are normalizing:
 - If \(a \) is closed and there is a normal form \(b \) such that \(a \rightarrow^* b \), then \(a \rightarrow^l d \) for some \(d \)
Eager (big-step) semantics

\[
\begin{align*}
(\lambda x. e_1) & \rightarrow^e (\lambda x. e_1) \\
 e_1 & \rightarrow^e \lambda x. e \\
 e_2 & \rightarrow^e e' \\
e'[e'/x] & \rightarrow^e e'' \\
 e_1 \ e_2 & \rightarrow^e e''
\end{align*}
\]

- This big-step semantics is also deterministic and does not reduce under λ
- But is not normalizing!
 - Example: let $x = \Delta \ \Delta$ in $(\lambda y. y)$
Eager Fixpoint

- The Y combinator works for lazy semantics
 - $Y = \lambda f.(\lambda x.f(x x))(\lambda x.f(x x))$

- The Z combinator does the same for eager (call-by-value) semantics
 - $Z = \lambda f.(\lambda x.f(\lambda y.x y))(\lambda x.f(\lambda y.x y))$
 - Why doesn’t the Y combinator work for call-by-value?
 - Why does Z do the same thing for call-by-value?
Lazy vs eager in practice

- Lazy evaluation (call by name, call by need)
 - Has some nice theoretical properties
 - Terminates more often
 - Lets you play some tricks with “infinite” objects
 - Main example: Haskell

- Eager evaluation (call by value)
 - Is generally easier to implement efficiently
 - Blends more easily with side-effects
 - Main examples: Most languages (C, Java, ML, …)
The λ calculus is a prototypical functional programming language
 ▶ Higher-order functions (lots!)
 ▶ No side-effects

In practice, many functional programming languages are not “pure”: they permit side-effects
 ▶ But you’re supposed to avoid them…
Functional programming today

- Two main camps
 - Haskell – Pure, lazy functional language; no side-effects
 - ML (SML, OCaml) – Call-by-value, with side-effects
- Old, still around: Lisp, Scheme
 - Disadvantage/feature: no static typing
Influence of functional programming

- Functional ideas move to other languages
 - Garbage collection was designed for Lisp; now most new languages use GC
 - Generics in C++/Java come from ML polymorphism, or Haskell type classes
 - Higher-order functions and closures (used in Ruby, exist in C#, proposed to be in Java soon) are everywhere in functional languages
 - Many object-oriented abstraction principles come from ML's module system
 - ...

Pratikakis (CSD)