Lecture 5: The Untyped λ-Calculus
Syntax and basic examples

Polyvios Pratikakis

Computer Science Department, University of Crete

Type Systems and Programming Languages
Motivation

- Common programming languages are complex
 - ANSI C99: 538 pages
 - ANSI C++: 714 pages
 - Java 2.0: 505 pages

- Not ideal for teaching and understanding principles of languages and program analysis

- Ideal: a “core language” with
 - Essential features enough to express all computation
 - No redundancy: encode extra features as “syntactic sugar”
Lambda Calculus

- Core language for sequential programming
- Can express all computation
 - Still extremely simple and minimal
 - Can encode many extensions as syntactic sugar
- Easy to extend with additional features
- Simple to understand
 - Whole definition in one slide
History

- Invented in the 1930s by Alonzo Church (1903-1995)
- Princeton Mathematician
- Lectures on λ-calculus published in 1941
- Also known for
 - Church’s Thesis:
 - “Every effectively calculable (decidable) function can be expressed by recursive functions”
 - i.e. can be computed by λ-calculus
 - Church’s Theorem:
 - The first order logic is undecidable
Syntax

- Simple syntax:

\[
e ::= x \quad \text{Variables} \\
| \quad \lambda x.e \quad \text{Function definition} \\
| \quad e \, e \quad \text{Function application}
\]

- Functions are the only language construct
 - The argument is a function
 - The result is a function
 - Functions of functions are higher-order
Semantics

- To evaluate the term \((\lambda x. e_1) \ e_2\)
 - Replace every \(x\) in \(e_1\) with \(e_2\)
 - Written as \(e_1[e_2/x]\), pronounced “\(e_1\) with \(e_2\) for \(x\)”
 - Also written \(e_1[x \mapsto e_2]\)
 - Evaluate the resulting term
 - Return the result

- Formally called “\(\beta\)-reduction”
 - \((\lambda x. e_1) \ e_2 \rightarrow_\beta e_1[e_2/x]\)
 - A term that can be \(\beta\)-reduced is a “redex”
 - We omit \(\beta\) when obvious
Convenient assumptions

- Syntactic sugar for declarations
 - let $x = e_1$ in e_2 really means $(\lambda x. e_2) \ e_1$

- Scope of λ extends as far to the right as possible
 - $\lambda x. \lambda y. x \ y$ is $\lambda x. (\lambda y. (x \ y))$

- Function application is left-associative
 - $x \ y \ z$ means $(x \ y) \ z$
Scoping and parameter passing

- \(\beta \)-reduction is not yet well-defined:
 - \((\lambda x. e_1) \ e_2 \rightarrow e_1[e_2/x]\)
 - There might be many \(x \) defined in \(e_1 \)

- Example
 - Consider the program
 - let \(x = a \) in
 - let \(y = \lambda z. \ x \) in
 - let \(x = b \) in
 - \(y \ x \)
 - Which \(x \) is bound to \(a \), and which to \(b \)?
Static (Lexical) Scope

- Variable refers to closest definition
- We can rename variables to avoid confusion:

 \[
 \begin{align*}
 &\text{let } x = a \text{ in} \\
 &\text{let } y = \lambda z. x \text{ in} \\
 &\text{let } w = b \text{ in} \\
 &y w
 \end{align*}
 \]

- Renaming variables without changing the program meaning is called “\(\alpha\)-conversion”
Free/bound variables

- The set of *free variables* of a term is

 \[
 \begin{align*}
 FV(x) & = x \\
 FV(\lambda x. e) & = FV(e) \setminus \{x\} \\
 FV(e_1 e_2) & = FV(e_1) \cup FV(e_2)
 \end{align*}
 \]

- A term \(e \) is *closed* if \(FV(e) = \emptyset \)

- A variable that is not free is *bound*
\(\alpha \)-conversion

- Terms are equivalent up to renaming of bound variables
 - \(\lambda x.e = \lambda y.e[y/x] \) if \(y \notin FV(e) \)
 - Used to avoid having duplicate variables, capturing during substitution
 - This is called \(\alpha \)-conversion, used implicitly
Substitution

- **Formal definition**

\[
\begin{align*}
x[e/x] &= e \\
y[e/x] &= y & \text{when } x \neq y \\
(e_1\ e_2)[e/x] &= (e_1[e/x]\ e_2[e/x]) \\
(\lambda y.\ e_1)[e/x] &= \lambda y.(e_1[e/x]) & \text{when } y \neq x \text{ and } y \notin FV(e)
\end{align*}
\]

- **Example**

 - \((\lambda x.\ y\ x)\ x =_\alpha (\lambda w.\ y\ w)\ x \rightarrow_\beta y\ x\)

 - We omit writing \(\alpha\)-conversion
Functions with many arguments

- We can’t yet write functions with many arguments
 - For example, two arguments: \(\lambda(x, y).e \)
- Solution: take the arguments, one at a time (like we do in OCaml)
 - \(\lambda x. \lambda y.e \)
 - A function that takes \(x \) and returns another function that takes \(y \) and returns \(e \)
 - \((\lambda x. \lambda y.e) \ a \ b \rightarrow (\lambda y.e[a/x]) \ b \rightarrow e[a/x][b/y] \)
 - This is called Currying
 - Can represent any number of arguments
Representing booleans

- true = \lambda x. \lambda y. x
- false = \lambda x. \lambda y. y
- if a then b else c = a \ b \ c

For example:
- if true then b else c → (\lambda x. \lambda y. x) \ b \ c → (\lambda y. b) \ c → b
- if false then b else c → (\lambda x. \lambda y. y) \ b \ c → (\lambda y. y) \ c → c
Combinators

- Any closed term is also called a *combinator*
 - true and false are combinators
- Other popular combinators:
 - $I = \lambda x. x$
 - $K = \lambda x. \lambda y. x$
 - $S = \lambda x. \lambda y. \lambda z. x \ z \ (y \ z)$
 - We can define calculi in terms of combinators
 - The SKI-calculus
 - SKI-calculus is also Turing-complete
Encoding pairs

- \((a, b) = \lambda x.\text{if } x \text{ then } a \text{ else } b\)
- \(\text{fst} = \lambda p.p \text{ true}\)
- \(\text{snd} = \lambda p.p \text{ false}\)
- Then
 - \(\text{fst}(a, b) \rightarrow \ldots \rightarrow a\)
 - \(\text{snd}(a, b) \rightarrow \ldots \rightarrow b\)
Natural numbers (Church)

- $0 = \lambda s.\lambda z.z$
- $1 = \lambda s.\lambda z.s\ z$
- $2 = \lambda s.\lambda z.s\ (s\ z)$
- i.e. $n = \lambda s.\lambda z.\langle\text{apply}\ s\ n\ \text{times to}\ z\rangle$
- $\text{succ} = \lambda n.\lambda s.\lambda z.s\ (n\ s\ z)$
- $\text{iszero} = \lambda n.n\ (\lambda s.\text{false})\ \text{true}$
Natural numbers (Scott)

- $0 = \lambda x.\lambda y.x$
- $1 = \lambda x.\lambda y.y\ 0$
- $2 = \lambda x.\lambda y.y\ 1$
- i.e. $n = \lambda x.\lambda y.y\ (n - 1)$
- $\text{succ} = \lambda z.\lambda x.\lambda y.y\ z$
- $\text{pred} = \lambda z.z\ 0\ (\lambda x.x)$
- $\text{iszero} = \lambda z.z\ \text{true}\ (\lambda x.\text{false})$
Nondeterministic semantics

\[(\lambda x. e_1) e_2 \rightarrow e_1[e_2/x]\]

\[e \rightarrow e'\]

\[\lambda x. e \rightarrow \lambda x. e'\]

\[e_1 \rightarrow e'_1\]

\[e_2 \rightarrow e'_2\]

\[e_1 e_2 \rightarrow e'_1 e_2\]

\[e_1 e_2 \rightarrow e_1 e'_2\]

Question: why are these rules non-deterministic?
Example

- We can apply reduction anywhere in the term
 - $(\lambda x.(\lambda y.y) \times ((\lambda z.w) \times x)) \rightarrow \lambda x.(x ((\lambda z.w) \times x) \rightarrow \lambda x.x w$
 - $(\lambda x.(\lambda y.y) \times ((\lambda z.w) \times x)) \rightarrow \lambda x.(\lambda y.y) \times w \rightarrow \lambda x.x w$

- Does the order of evaluation matter?
The Church-Rosser Theorem

- Lemma (The Diamond Property):
 - If \(a \to b \) and \(a \to c \), then there exists \(d \) such that \(b \to^* d \) and \(c \to^* d \)

- Church-Rosser theorem:
 - If \(a \to^* b \) and \(a \to^* c \), then there exists \(d \) such that \(b \to^* d \) and \(c \to^* d \)
 - Proof by diamond property

- Church-Rosser also called confluence
Normal form

- A term is in *normal form* if it cannot be reduced
 - Examples: \(\lambda x.x \), \(\lambda x.\lambda y.z \)
- By the Church-Rosser theorem, every term reduces to at most one normal form
 - Only for pure lambda calculus with non-deterministic evaluation
- Notice that for function application, the argument need not be in normal form
Let \equiv_β be the reflexive, symmetric, transitive closure of \to

- E.g., $(\lambda x.x) \ y \to y \leftarrow (\lambda z.\lambda w.z) \ y \ y$ so all three are β-equivalent

- If $a \equiv_\beta b$, then there exists c such that $a \to^* c$ and $b \to^* c$
 - Follows from Church-Rosser theorem

- In particular, if $a \equiv_\beta b$ and both are normal forms, then they are equal
Not every term has a normal form

- Consider
 - \[\Delta = \lambda x.x \]
 - Then \(\Delta \Delta \rightarrow \Delta \Delta \rightarrow \cdots \)

- In general, self application leads to loops

- …which is good if we want recursion
Fixpoint combinator

- Also called a paradoxical combinator
 - \[Y = \lambda f. (\lambda x. f (x x)) (\lambda x. f (x x)) \]
 - There are many versions of this combinator

- Then, \[Y F =_\beta F (Y F) \]
 - \[Y F = (\lambda f. (\lambda x. f (x x)) (\lambda x. f (x x))) F \]
 - \[\rightarrow (\lambda x. F (x x)) (\lambda x. F (x x)) \]
 - \[\rightarrow F (((\lambda x. F (x x)) (\lambda x. F (x x)))) \]
 - \[\leftarrow F (Y F) \]
Example

- \(\text{fact}(n) = \text{if } (n = 0) \text{ then } 1 \text{ else } n \times \text{fact}(n - 1) \)
- Let \(G = \lambda f. \lambda n. \text{if } (n = 0) \text{ then } 1 \text{ else } n \times f(n - 1) \)
- \(YG1 = \beta G(YG)1 \)
 - \(= \beta (\lambda f. \lambda n. \text{if } (n = 0) \text{ then } 1 \text{ else } n \times f(n - 1)) (YG)1 \)
 - \(= \beta \text{if } (1 = 0) \text{ then } 1 \text{ else } 1 \times ((YG)0) \)
 - \(= \beta 1 \times ((YG)0) \)
 - \(= \beta 1 \times (G(YG)0) \)
 - \(= \beta 1 \times (\lambda f. \lambda n. \text{if } (n = 0) \text{ then } 1 \text{ else } n \times f(n - 1)) (YG)0 \)
 - \(= \beta 1 \times (\text{if } (0 = 0) \text{ then } 1 \text{ else } 0 \times ((YG)0)) \)
 - \(= \beta 1 \times 1 = 1 \)
In other words

- The Y combinator “unrolls” or “unfolds” its argument an infinite number of times
 - $Y \ G = G \ (Y \ G) = G \ (G \ (Y \ G)) = G \ (G \ (G \ (Y \ G))) = \ldots$
 - G needs to have a “base case” to ensure termination

- But, only works because we follow call-by-name
 - Different combinator(s) for call-by-value
 - $Z = \lambda f. (\lambda x. f (\lambda y. x x y)) (\lambda x. f (\lambda y. x x y))$
 - Why is this a fixed-point combinator? How does its difference from Y work for call-by-value?
Why encodings

- It’s fun!
- Shows that the language is expressive
- In practice, we add constructs as language primitives
 - More efficient
 - Much easier to analyze the program, avoid mistakes
 - Our encodings of 0 and true are the same, we may want to avoid mixing them, for clarity
Lazy and eager evaluation

- Our non-deterministic reduction rule is fine for theory, but awkward to implement

- Two deterministic strategies:
 - **Lazy**: Given \((\lambda x. e_1) \ e_2\), do not evaluate \(e_2\) if \(e_1\) does not need \(x\) anywhere
 - Also called left-most, call-by-name, call-by-need, applicative, normal-order evaluation (with slightly different meanings)
 - **Eager**: Given \((\lambda x. e_1) \ e_2\), always evaluate \(e_2\) to a normal form, before applying the function
 - Also called call-by-value
Lazy operational semantics

\[
\begin{align*}
(\lambda x. e_1) & \rightarrow^l (\lambda x. e_1) \\
 e_1 & \rightarrow^l \lambda x. e \quad e[e_2/x] & \rightarrow^l e' \\
 e_1 \ e_2 & \rightarrow^l e'
\end{align*}
\]

- The rules are deterministic, \textit{big-step}
 - The right-hand side is reduced “all the way”
- The rules do not reduce under \(\lambda \)
- The rules are normalizing:
 - If \(a \) is closed and there is a normal form \(b \) such that \(a \rightarrow^* b \), then \(a \rightarrow^l d \) for some \(d \)
Eager (big-step) semantics

\[
\begin{align*}
(\lambda x. e_1) &\rightarrow^e (\lambda x. e_1) \\
\frac{e_1 \rightarrow^e \lambda x. e \quad e_2 \rightarrow^e e' \quad e[e'/x] \rightarrow^e e''}{e_1 \ e_2 \rightarrow^e e''}
\end{align*}
\]

- This big-step semantics is also deterministic and does not reduce under λ
- But is not normalizing!
 - Example: let $x = \Delta \ \Delta$ in $(\lambda y.y)$
Eager Fixpoint

- The Y combinator works for lazy semantics
 - $Y = \lambda f. (\lambda x. f (x x)) (\lambda x. f (x x))$

- The Z combinator does the same for eager (call-by-value) semantics
 - $Z = \lambda f. (\lambda x. f (\lambda y. x x y)) (\lambda x. f (\lambda y. x x y))$
 - Why doesn’t the Y combinator work for call-by-value?
 - Why does Z do the same thing for call-by-value?
Lazy vs eager in practice

- Lazy evaluation (call by name, call by need)
 - Has some nice theoretical properties
 - Terminates more often
 - Lets you play some tricks with “infinite” objects
 - Main example: Haskell

- Eager evaluation (call by value)
 - Is generally easier to implement efficiently
 - Blends more easily with side-effects
 - Main examples: Most languages (C, Java, ML, …)
Functional programming

- The λ calculus is a prototypical functional programming language
 - Higher-order functions (lots!)
 - No side-effects
- In practice, many functional programming languages are not “pure”: they permit side-effects
 - But you’re supposed to avoid them…
Functional programming today

- Two main camps
 - Haskell – Pure, lazy functional language; no side-effects
 - ML (SML, OCaml) – Call-by-value, with side-effects
- Old, still around: Lisp, Scheme
 - Disadvantage/feature: no static typing
Influence of functional programming

- Functional ideas move to other languages
 - Garbage collection was designed for Lisp; now most new languages use GC
 - Generics in C++/Java come from ML polymorphism, or Haskell type classes
 - Higher-order functions and closures (used in Ruby, exist in C#, proposed to be in Java soon) are everywhere in functional languages
 - Many object-oriented abstraction principles come from ML’s module system
 - …