Lecture 5: The Untyped λ -Calculus Syntax and basic examples

Polyvios Pratikakis

Computer Science Department, University of Crete

Type Systems and Programming Languages

1/36

Pratikakis (CSD)

Untyped λ -calculus

Motivation

• Common programming languages are complex

- ANSI C99: 538 pages
- ► ANSI C++: 714 pages
- Java 2.0: 505 pages
- Not ideal for teaching and understanding principles of languages and program analysis
- Ideal: a "core language" with
 - Essential features enough to express all computation
 - No redundancy: encode extra features as "syntactic sugar"

Lambda Calculus

- Core language for sequential programming
- Can express all computation
 - Still extremely simple and minimal
 - Can encode many extensions as syntactic sugar
- Easy to extend with additional features
- Simple to understand
 - Whole definition in one slide

History

- Invented in the 1930s by Alonzo Church (1903-1995)
- Princeton Mathematician
- Lectures on λ -calculus published in 1941
- Also known for
 - Church's Thesis:
 - "Every effectively calculable (decidable) function can be expressed by recursive functions"
 - ★ i.e. can be computed by λ -calculus
 - Church's Theorem:
 - ★ The first order logic is undecidable

Syntax

• Simple syntax:

- Functions are the only language construct
 - The argument is a function
 - The result is a function
 - Functions of functions are higher-order

5/36

Pratikakis (CSD)

Semantics

• To evaluate the term $(\lambda x.e_1) e_2$

- Replace every x in e₁ with e₂
 - * Written as $e_1[e_2/x]$, pronounced " e_1 with e_2 for x"
 - ★ Also written $e_1[x \mapsto e_2]$
- Evaluate the resulting term
- Return the result
- Formally called "β-reduction"
 - $\blacktriangleright (\lambda x. e_1) e_2 \rightarrow_\beta e_1[e_2/x]$
 - A term that can be β-reduced is a "redex"
 - We omit β when obvious

Pratikakis (CSD)

Convenient assumptions

- Syntactic sugar for declarations
 - let $x = e_1$ in e_2 really means $(\lambda x.e_2) e_1$
- Scope of λ extends as far to the right as possible

• $\lambda x.\lambda y.x y$ is $\lambda x.(\lambda y.(x y))$

- Function application is left-associative
 - x y z means (x y) z

Scoping and parameter passing

• β -reduction is not yet well-defined:

- $(\lambda x.e_1) e_2 \rightarrow e_1[e_2/x]$
- There might be many x defined in e₁
- Example
 - Consider the program

let
$$x = a$$
 in
let $y = \lambda z.x$ in
let $x = b$ in
 $y x$

Which x is bound to a, and which to b?

Static (Lexical) Scope

- Variable refers to closest definition
- We can rename variables to avoid confusion: let x = a in let y = λz.x in let w = b in y w
- \bullet Renaming variables without changing the program meaning is called " $\alpha\text{-conversion}$ "

• The set of *free variables* of a term is

$$\begin{array}{rcl} FV(x) &=& x\\ FV(\lambda x.e) &=& FV(e) \setminus \{x\}\\ FV(e_1 \ e_2) &=& FV(e_1) \cup FV(e_2) \end{array}$$

- A term *e* is *closed* if $FV(e) = \emptyset$
- A variable that is not free is bound

α -conversion

- Terms are equivalent up to renaming of bound variables
 - $\lambda x.e = \lambda y.e[y/x]$ if $y \notin FV(e)$
 - Used to avoid having duplicate variables, capturing during substitution
 - This is called α -conversion, used implicitly

Substitution

• Formal definition

$$\begin{array}{rcl} x[e/x] &=& e\\ y[e/x] &=& y & \text{when } x \neq y\\ (e_1 \ e_2)[e/x] &=& (e_1[e/x] \ e_2[e/x])\\ (\lambda y.e_1)[e/x] &=& \lambda y.(e_1[e/x]) & \text{when } y \neq x \text{ and } y \notin FV(e) \end{array}$$

Example

•
$$(\lambda x. y x) x =_{\alpha} (\lambda w. y w) x \rightarrow_{\beta} y x$$

• We omit writing α -conversion

э

ヨト・イヨト

Functions with many arguments

- We can't yet write functions with many arguments
 - For example, two arguments: $\lambda(x, y).e$
- Solution: take the arguments, one at a time (like we do in OCaml)
 - λx.λy.e
 - A function that takes x and returns another function that takes y and returns e
 - $(\lambda x.\lambda y.e) \ a \ b \to (\lambda y.e[a/x]) \ b \to e[a/x][b/y]$
 - This is called Currying
 - Can represent any number of arguments

13/36

< ロ > < 同 > < 回 > < 回 >

Representing booleans

- true = $\lambda x . \lambda y . x$
- false = $\lambda x. \lambda y. y$
- if a then b else c = a b c
- For example:
 - ▶ if true then *b* else $c \rightarrow (\lambda x.\lambda y.x) \ b \ c \rightarrow (\lambda y.b) \ c \rightarrow b$
 - ▶ if false then *b* else $c \rightarrow (\lambda x.\lambda y.y)$ *b* $c \rightarrow (\lambda y.y)$ $c \rightarrow c$

14/36

Pratikakis (CSD)

< □ > < □ > < □ > < □ > < □ > < □ >

Combinators

- Any closed term is also called a combinator
 - true and false are combinators
- Other popular combinators:
 - $I = \lambda x.x$
 - $K = \lambda x . \lambda y . x$
 - $S = \lambda x \cdot \lambda y \cdot \lambda z \cdot x z (y z)$
 - We can define calculi in terms of combinators
 - ★ The SKI-calculus
 - ★ SKI-calculus is also Turing-complete

15/36

Pratikakis (CSD)

Encoding pairs

- $(a, b) = \lambda x$.if x then a else b
- fst $= \lambda p.p$ true
- snd $= \lambda p.p$ false
- Then
 - ▶ fst $(a, b) \rightarrow ... \rightarrow a$
 - ▶ snd $(a, b) \rightarrow ... \rightarrow b$

16/36

イロト イヨト イヨト イヨト

Natural numbers (Church)

- $0 = \lambda s. \lambda z. z$
- $1 = \lambda s. \lambda z. s z$
- $2 = \lambda s. \lambda z. s (s z)$
- i.e. $n = \lambda s. \lambda z. \langle \text{apply } s \ n \text{ times to } z \rangle$
- succ = $\lambda n. \lambda s. \lambda z. s (n s z)$
- iszero $= \lambda n.n (\lambda s.false)$ true

17/36

- 4 回 ト 4 ヨ ト 4 ヨ ト

Natural numbers (Scott)

- $0 = \lambda x . \lambda y . x$
- $1 = \lambda x . \lambda y . y 0$
- $2 = \lambda x . \lambda y . y 1$
- i.e. $n = \lambda x \cdot \lambda y \cdot y (n-1)$
- succ = $\lambda z. \lambda x. \lambda y. y z$
- pred = $\lambda z.z 0 (\lambda x.x)$
- iszero $= \lambda z.z$ true ($\lambda x.$ false)

< □ > < □ > < □ > < □ > < □ > < □ >

Nondeterministic semantics

$$\begin{array}{c} \begin{array}{c} e \rightarrow e' \\ \hline (\lambda x.e_1) \ e_2 \rightarrow e_1[e_2/x] \\ \hline \hline e_1 \rightarrow e'_1 \\ \hline e_1 \ e_2 \rightarrow e'_1 \ e_2 \end{array} & \begin{array}{c} e \rightarrow e' \\ \hline (\lambda x.e) \rightarrow (\lambda x.e') \\ \hline e_2 \rightarrow e'_2 \\ \hline e_1 \ e_2 \rightarrow e_1 \ e'_2 \end{array}$$

Question: why are these rules non-deterministic?

19/36

Pratikakis (CSD)

Untyped λ -calculus

Example

- We can apply reduction anywhere in the term
 - $(\lambda x.(\lambda y.y) \times ((\lambda z.w) \times) \rightarrow \lambda x.(x ((\lambda z.w) \times) \rightarrow \lambda x.x w))$
 - ► $(\lambda x.(\lambda y.y) \times ((\lambda z.w) \times) \rightarrow \lambda x.(\lambda y.y) \times w \rightarrow \lambda x.x w$
- Does the order of evaluation matter?

20/36

- (日)

The Church-Rosser Theorem

• Lemma (The Diamond Property):

• If $a \to b$ and $a \to c$, then there exists d such that $b \to^* d$ and $c \to^* d$

- Church-Rosser theorem:
 - If $a \rightarrow^* b$ and $a \rightarrow^* c$, then there exists d such that $b \rightarrow^* d$ and $c \rightarrow^* d$
 - Proof by diamond property
- Church-Rosser also called confluence

Normal form

- A term is in normal form if it cannot be reduced
 - Examples: $\lambda x.x$, $\lambda x.\lambda y.z$
- By the Church-Rosser theorem, every term reduces to at most one normal form
 - Only for pure lambda calculus with non-deterministic evaluation
- Notice that for function application, the argument need not be in normal form

β -equivalence

- Let $=_{\beta}$ be the reflexive, symmetric, transitive closure of \rightarrow
 - ▶ E.g., $(\lambda x.x) \ y \rightarrow y \leftarrow (\lambda z.\lambda w.z) \ y \ y$ so all three are β -equivalent
- If $a =_{\beta} b$, then there exists c such that $a \rightarrow^{*} c$ and $b \rightarrow^{*} c$
 - Follows from Church-Rosser theorem

• In particular, if $a =_{\beta} b$ and both are normal forms, then they are equal

Not every term has a normal form

- Consider
 - $\Delta = \lambda x.x x$
 - Then $\Delta \Delta \rightarrow \Delta \Delta \rightarrow \cdots$
- In general, self application leads to loops
- ...which is good if we want recursion

Fixpoint combinator

Also called a paradoxical combinator

•
$$Y = \lambda f(\lambda x.f(x x)) (\lambda x.f(x x))$$

- There are many versions of this combinator
- Then, $YF =_{\beta} F(YF)$
 - $Y F = (\lambda f.(\lambda x.f(x x)) (\lambda x.f(x x))) F$
 - $\blacktriangleright \rightarrow (\lambda x.F(x x)) \ (\lambda x.F(x x))$
 - $\blacktriangleright \rightarrow F\left(\left(\lambda x.F\left(x\,x\right)\right)\,\left(\lambda x.F\left(x\,x\right)\right)\right)$
 - $\blacktriangleright \leftarrow F(YF)$

25 / 36

(4) (日本)

Example

26 / 36

2

< ロ > < 回 > < 回 > < 回 > < 回 >

In other words

- The Y combinator "unrolls" or "unfolds" its argument an infinite number of times
 - $\bullet \ Y G = G (Y G) = G (G (Y G)) = G (G (G (Y G))) = \dots$
 - *G* needs to have a "base case" to ensure termination
- But, only works because we follow call-by-name
 - Different combinator(s) for call-by-value
 - $\blacktriangleright Z = \lambda f(\lambda x.f(\lambda y.x x y)) (\lambda x.f(\lambda y.x x y))$
 - Why is this a fixed-point combinator? How does its difference from Y work for call-by-value?

Why encodings

- It's fun!
- Shows that the language is expressive
- In practice, we add constructs as language primitives
 - More efficient
 - Much easier to analyze the program, avoid mistakes
 - Our encodings of 0 and true are the same, we may want to avoid mixing them, for clarity

Lazy and eager evaluation

- Our non-deterministic reduction rule is fine for theory, but awkward to implement
- Two deterministic strategies:
 - ► Lazy: Given (\u03c0 x.e_1) e_2, do not evaluate e_2 if e_1 does not need x anywhere
 - Also called left-most, call-by-name, call-by-need, applicative, normal-order evaluation (with slightly different meanings)
 - ► *Eager*: Given ($\lambda x.e_1$) e_2 , always evaluate e_2 to a normal form, before applying the function
 - ★ Also called call-by-value

Lazy operational semantics

$$(\lambda x.e_1) \to (\lambda x.e_1)$$

$$e_1 \to \lambda x.e \quad e[e_2/x] \to e'$$

$$e_1 \quad e_2 \to e'$$

- The rules are deterministic, *big-step*
 - The right-hand side is reduced "all the way"
- The rules do not reduce under λ
- The rules are normalizing:
 - If a is closed and there is a normal form b such that a →* b, then a →^l d for some d

Eager (big-step) semantics

$$(\lambda x.e_1) \to^e (\lambda x.e_1)$$

$$e_1 \to^e \lambda x.e \quad e_2 \to^e e' \quad e[e'/x] \to^e e''$$

$$e_1 \quad e_2 \to^e e''$$

- \bullet This big-step semantics is also deterministic and does not reduce under λ
- But is not normalizing!
 - Example: let $x = \Delta \Delta$ in $(\lambda y.y)$

Eager Fixpoint

- The Y combinator works for lazy semantics
 - $Y = \lambda f.(\lambda x.f(x x))(\lambda x.f(x x))$
- The Z combinator does the same for eager (call-by-value) semantics
 - $\blacktriangleright Z = \lambda f.(\lambda x.f(\lambda y.x x y))(\lambda x.f(\lambda y.x x y))$
 - Why doesn't the Y combinator work for call-by-value?
 - Why does Z do the same thing for call-by-value?

・ 何 ト ・ ヨ ト ・ ヨ ト

Lazy vs eager in practice

• Lazy evaluation (call by name, call by need)

- Has some nice theoretical properties
- Terminates more often
- Lets you play some tricks with "infinite" objects
- Main example: Haskell
- Eager evaluation (call by value)
 - Is generally easier to implement efficiently
 - Blends more easily with side-effects
 - Main examples: Most languages (C, Java, ML, ...)

Functional programming

- The λ calculus is a prototypical functional programming language
 - Higher-order functions (lots!)
 - No side-effects
- In practice, many functional programming languages are not "pure": they permit side-effects
 - But you're supposed to avoid them...

Functional programming today

- Two main camps
 - Haskell Pure, lazy functional language; no side-effects
 - ML (SML, OCaml) Call-by-value, with side-effects
- Old, still around: Lisp, Scheme
 - Disadvantage/feature: no static typing

Influence of functional programming

- Functional ideas move to other langauges
 - Garbage collection was designed for Lisp; now most new languages use GC
 - ► Generics in C++/Java come from ML polymorphism, or Haskell type classes
 - ► Higher-order functions and closures (used in Ruby, exist in C#, Java, C++) are everywhere in functional languages
 - Many object-oriented abstraction principles come from ML's module system