Lecture 5: The Untyped λ-Calculus
Syntax and basic examples

Polyvios Pratikakis

Computer Science Department, University of Crete

Type Systems and Programming Languages
Motivation

- Common programming languages are complex
 - ANSI C99: 538 pages
 - ANSI C++: 714 pages
 - Java 2.0: 505 pages

- Not ideal for teaching and understanding principles of languages and program analysis

- Ideal: a “core language” with
 - Essential features enough to express all computation
 - No redundancy: encode extra features as “syntactic sugar”
Lambda Calculus

- Core language for sequential programming
- Can express all computation
 - Still extremely simple and minimal
 - Can encode many extensions as syntactic sugar
- Easy to extend with additional features
- Simple to understand
 - Whole definition in one slide
- ...and fits in a can!
 - http://alum.wpi.edu/~tfraser/Software/Arduino/lambdacan.html
Invented in the 1930s by Alonzo Church (1903-1995)
Princeton Mathematician
Lectures on λ-calculus published in 1941
Also known for
 - Church’s Thesis:
 - “Every effectively calculable (decidable) function can be expressed by recursive functions”
 - i.e. can be computed by λ-calculus
 - Church’s Theorem:
 - The first order logic is undecidable
Syntax

- Simple syntax:

 \[e ::= x \quad \text{Variables} \]
 \[\mid \lambda x.e \quad \text{Function definition} \]
 \[\mid e e \quad \text{Function application} \]

- Functions are the only language construct
 - The argument is a function
 - The result is a function
 - Functions of functions are higher-order
To evaluate the term \((\lambda x.e_1)\ e_2\)
- Replace every \(x\) in \(e_1\) with \(e_2\)
 - Written as \(e_1[e_2/x]\), pronounced “\(e_1\) with \(e_2\) for \(x\)”
 - Also written \(e_1[x \mapsto e_2]\)
- Evaluate the resulting term
- Return the result

Formally called “\(\beta\)-reduction”
- \((\lambda x.e_1)\ e_2 \rightarrow_\beta e_1[e_2/x]\)
- A term that can be \(\beta\)-reduced is a “redex”
- We omit \(\beta\) when obvious
Convenient assumptions

- Syntactic sugar for declarations
 - $\text{let } x = e_1 \text{ in } e_2$ really means $(\lambda x. e_2)\ e_1$

- Scope of λ extends as far to the right as possible
 - $\lambda x. \lambda y. x\ y$ is $\lambda x. (\lambda y. (x\ y))$

- Function application is left-associative
 - $x\ y\ z$ means $(x\ y)\ z$
Scoping and parameter passing

- \(\beta \)-reduction is not yet well-defined:
 - \((\lambda x. e_1) \ e_2 \rightarrow e_1[e_2/x]\)
 - There might be many \(x\) defined in \(e_1\)

- Example
 - Consider the program
 let \(x = a\) in
 let \(y = \lambda z. x\) in
 let \(x = b\) in
 \(y \ x\)
 - Which \(x\) is bound to \(a\), and which to \(b\)?
Static (Lexical) Scope

- Variable refers to closest definition
- We can rename variables to avoid confusion:

 \[
 \begin{align*}
 \text{let } x &= a \text{ in} \\
 \text{let } y &= \lambda z. x \text{ in} \\
 \text{let } w &= b \text{ in} \\
 y \ w
 \end{align*}
 \]

- Renaming variables without changing the program meaning is called “\(\alpha\)-conversion”
Free/bound variables

- The set of free variables of a term is

\[
FV(x) = x \\
FV(\lambda x. e) = FV(e) \setminus \{x\} \\
FV(e_1 e_2) = FV(e_1) \cup FV(e_2)
\]

- A term \(e \) is closed if \(FV(e) = \emptyset \)
- A variable that is not free is bound
\(\alpha\)-conversion

- Terms are equivalent up to renaming of bound variables
 - \(\lambda x. e = \lambda y. e[y/x] \text{ if } y \notin FV(e)\)
 - Used to avoid having duplicate variables, capturing during substitution
 - This is called \(\alpha\)-conversion, used implicitly
Substitution

- Formal definition

\[
\begin{align*}
x[e/x] &= e \\
y[e/x] &= y & \text{when } x \neq y \\
(e_1 e_2)[e/x] &= (e_1[e/x] e_2[e/x]) \\
(\lambda y.e_1)[e/x] &= \lambda y.(e_1[e/x]) & \text{when } y \neq x \text{ and } y \notin FV(e)
\end{align*}
\]

- Example

\begin{itemize}
 \item \((\lambda x.y x) x =_{\alpha} (\lambda w.y w) x \rightarrow_{\beta} y x\)
 \item We omit writing \(\alpha\)-conversion
\end{itemize}
Functions with many arguments

- We can’t yet write functions with many arguments
 - For example, two arguments: \(\lambda(x, y).e \)
- Solution: take the arguments, one at a time (like we do in OCaml)
 - \(\lambda x.\lambda y.e \)
 - A function that takes \(x \) and returns another function that takes \(y \) and returns \(e \)
 - \((\lambda x.\lambda y.e)\ a\ b \rightarrow (\lambda y.e[a/x])\ b \rightarrow e[a/x][b/y]\)
 - This is called Currying
 - Can represent any number of arguments
Representing booleans

- $\text{true} = \lambda x. \lambda y. x$
- $\text{false} = \lambda x. \lambda y. y$
- if a then b else $c = a \, b \, c$
- For example:
 - if true then b else c $\rightarrow (\lambda x. \lambda y. x) \, b \, c$ $\rightarrow (\lambda y. b) \, c$ $\rightarrow b$
 - if false then b else c $\rightarrow (\lambda x. \lambda y. y) \, b \, c$ $\rightarrow (\lambda y. y) \, c$ $\rightarrow c$
Combinators

- Any closed term is also called a *combinator*
 - true and false are combinators
- Other popular combinators:
 - \(I = \lambda x. x \)
 - \(K = \lambda x. \lambda y. x \)
 - \(S = \lambda x. \lambda y. \lambda z. x \, z \, (y \, z) \)
 - We can define calculi in terms of combinators
 - The SKI-calculus
 - SKI-calculus is also Turing-complete
Encoding pairs

- $(a, b) = \lambda x. \text{if } x \text{ then } a \text{ else } b$
- $\text{fst} = \lambda p.p \text{ true}$
- $\text{snd} = \lambda p.p \text{ false}$

Then

- $\text{fst} (a, b) \rightarrow \ldots \rightarrow a$
- $\text{snd} (a, b) \rightarrow \ldots \rightarrow b$
Natural numbers (Church)

- $0 = \lambda s.\lambda z.z$
- $1 = \lambda s.\lambda z.s\ z$
- $2 = \lambda s.\lambda z.s\ (s\ z)$
- i.e. $n = \lambda s.\lambda z.(\text{apply } s\ n\ \text{times to } z)$
- $\text{succ } = \lambda n.\lambda s.\lambda z.s\ (n\ s\ z)$
- $\text{iszero } = \lambda n.n\ (\lambda s.\text{false})\ \text{true}$
Natural numbers (Scott)

- $0 = \lambda x.\lambda y.x$
- $1 = \lambda x.\lambda y.y\ 0$
- $2 = \lambda x.\lambda y.y\ 1$
- i.e. $n = \lambda x.\lambda y.y\ (n - 1)$
- $\text{succ} = \lambda z.\lambda x.\lambda y.y\ z$
- $\text{pred} = \lambda z.z\ 0\ (\lambda x.x)$
- $\text{iszero} = \lambda z.z\ \text{true}\ (\lambda x.\text{false})$
Nondeterministic semantics

\[
\begin{align*}
(\lambda x. e_1) \ e_2 & \rightarrow e_1[e_2/x] \\
\hline
e_1 & \rightarrow e'_1 \\
\hline
e_1 \ e_2 & \rightarrow e'_1 \ e_2
\end{align*}
\]

\[
\begin{align*}
e & \rightarrow e' \\
\hline
(\lambda x. e) & \rightarrow (\lambda x. e') \\
\hline
\end{align*}
\]

\[
\begin{align*}
\hline
e_2 & \rightarrow e'_2 \\
\hline
e_1 \ e_2 & \rightarrow e_1 \ e'_2
\end{align*}
\]

Question: why are these rules non-deterministic?
Example

- We can apply reduction anywhere in the term
 - \((\lambda x. (\lambda y. y) \times ((\lambda z. w) \times x)) \rightarrow \lambda x. (x ((\lambda z. w) x) \rightarrow \lambda x. x w\)
 - \((\lambda x. (\lambda y. y) \times ((\lambda z. w) \times x)) \rightarrow \lambda x. (\lambda y. y) \times w \rightarrow \lambda x. x w\)

- Does the order of evaluation matter?
The Church-Rosser Theorem

- **Lemma (The Diamond Property):**
 - If $a \rightarrow b$ and $a \rightarrow c$, then there exists d such that $b \rightarrow^* d$ and $c \rightarrow^* d$

- **Church-Rosser theorem:**
 - If $a \rightarrow^* b$ and $a \rightarrow^* c$, then there exists d such that $b \rightarrow^* d$ and $c \rightarrow^* d$
 - Proof by diamond property

- Church-Rosser also called *confluence*
Normal form

- A term is in *normal form* if it cannot be reduced
 - Examples: $\lambda x.x$, $\lambda x.\lambda y.z$
- By the Church-Rosser theorem, every term reduces to at most one normal form
 - Only for pure lambda calculus with non-deterministic evaluation
- Notice that for function application, the argument need not be in normal form
\(\beta\)-equivalence

- Let \(\equiv_\beta\) be the reflexive, symmetric, transitive closure of \(\to\)
 - E.g., \((\lambda x.x) y \to y \leftarrow (\lambda z.\lambda w.z) y y\) so all three are \(\beta\)-equivalent
- If \(a \equiv_\beta b\), then there exists \(c\) such that \(a \to^* c\) and \(b \to^* c\)
 - Follows from Church-Rosser theorem
- In particular, if \(a \equiv_\beta b\) and both are normal forms, then they are equal
Not every term has a normal form

- Consider
 - $\Delta = \lambda x.x x$
 - Then $\Delta \Delta \rightarrow \Delta \Delta \rightarrow \cdots$

- In general, *self application* leads to loops

- ...which is good if we want recursion
Fixpoint combinator

- Also called a paradoxical combinator
 - $Y = \lambda f. (\lambda x. f (x x)) (\lambda x. f (x x))$
 - There are many versions of this combinator
- Then, $Y F =_\beta F (Y F)$
 - $Y F = (\lambda f. (\lambda x. f (x x)) (\lambda x. f (x x))) F$
 - $\rightarrow (\lambda x. F (x x)) (\lambda x. F (x x))$
 - $\rightarrow F ((\lambda x. F (x x)) (\lambda x. F (x x)))$
 - $\leftarrow F (Y F)$
Example

- \(\text{fact}(n) = \text{if } (n = 0) \text{ then } 1 \text{ else } n \times \text{fact}(n - 1) \)
- Let \(G = \lambda f. \lambda n. \text{if } (n = 0) \text{ then } 1 \text{ else } n \times f(n - 1) \)
- \(Y \ G \ 1 \ =_\beta \ G \ (Y \ G) \ 1 \)
 \[\begin{align*}
 &= \beta \ (\lambda f. \lambda n. \text{if } (n = 0) \text{ then } 1 \text{ else } n \times f(n - 1)) \ (Y \ G) \ 1 \\
 &= \beta \ \text{if } (1 = 0) \text{ then } 1 \text{ else } 1 \times ((Y \ G) \ 0) \\
 &= \beta \ 1 \times ((Y \ G) \ 0) \\
 &= \beta \ 1 \times (G \ (Y \ G) \ 0) \\
 &= \beta \ 1 \times (\lambda f. \lambda n. \text{if } (n = 0) \text{ then } 1 \text{ else } n \times f(n - 1)) \ (Y \ G) \ 0) \\
 &= \beta \ 1 \times (\text{if } (0 = 0) \text{ then } 1 \text{ else } 0 \times ((Y \ G) \ 0)) \\
 &= \beta \ 1 \times 1 = 1
 \end{align*} \]
In other words

- The Y combinator “unrolls” or “unfolds” its argument an infinite number of times
 - $Y \ G = G \ (Y \ G) = G \ (G \ (Y \ G)) = G \ (G \ (G \ (Y \ G))) = \ldots$
 - G needs to have a “base case” to ensure termination

- But, only works because we follow call-by-name
 - Different combinator(s) for call-by-value
 - $Z = \lambda f. (\lambda x. f (\lambda y. x \ x \ y)) \ (\lambda x. f (\lambda y. x \ x \ y))$
 - Why is this a fixed-point combinator? How does its difference from Y work for call-by-value?
Why encodings

- It’s fun!
- Shows that the language is expressive
- In practice, we add constructs as language primitives
 - More efficient
 - Much easier to analyze the program, avoid mistakes
 - Our encodings of 0 and true are the same, we may want to avoid mixing them, for clarity
Lazy and eager evaluation

- Our non-deterministic reduction rule is fine for theory, but awkward to implement
- Two deterministic strategies:
 - **Lazy**: Given $(\lambda x.e_1) e_2$, do not evaluate e_2 if e_1 does not need x anywhere
 - Also called left-most, call-by-name, call-by-need, applicative, normal-order evaluation (with slightly different meanings)
 - **Eager**: Given $(\lambda x.e_1) e_2$, always evaluate e_2 to a normal form, before applying the function
 - Also called call-by-value
Lazy operational semantics

\[(\lambda x. e_1) \to^l (\lambda x. e_1)\]
\[e_1 \to^l \lambda x. e \quad e[e_2/x] \to^l e'\]
\[e_1 \quad e_2 \to^l e'\]

- The rules are deterministic, *big-step*
 - The right-hand side is reduced “all the way”
- The rules do not reduce under \(\lambda\)
- The rules are normalizing:
 - If \(a\) is closed and there is a normal form \(b\) such that \(a \to^* b\), then \(a \to^l d\) for some \(d\)
Eager (big-step) semantics

$$(\lambda x. e_1) \rightarrow^e (\lambda x. e_1)$$

$e_1 \rightarrow^e \lambda x. e$

$e_2 \rightarrow^e e'$

$e'[x/x] \rightarrow^e e''$

$e_1 e_2 \rightarrow^e e''$

- This big-step semantics is also deterministic and does not reduce under λ
- But is not normalizing!
 - Example: let $x = \Delta \Delta$ in $(\lambda y.y)$
Eager Fixpoint

- The Y combinator works for lazy semantics
 - \[Y = \lambda f. (\lambda x. f (x \ x)) (\lambda x. f (x \ x)) \]

- The Z combinator does the same for eager (call-by-value) semantics
 - \[Z = \lambda f. (\lambda x. f (\lambda y. x \ x \ y)) (\lambda x. f (\lambda y. x \ x \ y)) \]
 - Why doesn’t the Y combinator work for call-by-value?
 - Why does Z do the same thing for call-by-value?
Lazy vs eager in practice

- Lazy evaluation (call by name, call by need)
 - Has some nice theoretical properties
 - Terminates more often
 - Lets you play some tricks with “infinite” objects
 - Main example: Haskell

- Eager evaluation (call by value)
 - Is generally easier to implement efficiently
 - Blends more easily with side-effects
 - Main examples: Most languages (C, Java, ML, …)
Functional programming

- The λ calculus is a prototypical functional programming language
 - Higher-order functions (lots!)
 - No side-effects
- In practice, many functional programming languages are not “pure”: they permit side-effects
 - But you’re supposed to avoid them...
Functional programming today

- Two main camps
 - Haskell – Pure, lazy functional language; no side-effects
 - ML (SML, OCaml) – Call-by-value, with side-effects
- Old, still around: Lisp, Scheme
 - Disadvantage/feature: no static typing
Influence of functional programming

- Functional ideas move to other languages
 - Garbage collection was designed for Lisp; now most new languages use GC
 - Generics in C++/Java come from ML polymorphism, or Haskell type classes
 - Higher-order functions and closures (used in Ruby, exist in C#, proposed to be in Java soon) are everywhere in functional languages
 - Many object-oriented abstraction principles come from ML’s module system
 - ...