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Abstract Syntax

● Abstract: a description of the AST, hides parsing details
t ::=

     true

     false

     if t then t else t

     0

     succ t

     pred t

     iszero t

● Constant terms true, false, 0 are values

● A language is the set of all possible terms



  

Language Definitions

● Inductive definition:

The language is the set T of terms such that

● {true, false, 0} are in T
● if t1 is in T, then {succ t1, pred t1, iszero t1} are also in 

T
● if t1, t2 and t3 are in T, then {if t1 then t2 else t3} is 

also in T
● Nothing else is in T



  

Language Definitions (cont'd)

● Definition by inference rules

      t1 ∊ T      
succ t1 ∊ T

true ∊ T false ∊ T 0 ∊ T

      t1 ∊ T      
pred t1 ∊ T

      t1 ∊ T      
iszero t1 ∊ T

      t1 ∊ T    t2 ∊ T    t3 ∊ T      
if t1 then t2 else t3 ∊ T

Axiom: 
rule with no premises

Inference rule

Above the line:
premises

Below the line:
conclusion



  

Language Definitions (cont'd)

● Definition by construction

Define set S(i)
● S(0) = ∅
● S(i+1) = {true, false, 0}

          ∪ {succ t1, pred t1, iszero t1 | t1 ∊ S(i)}

          ∪ {if t1 then t2 else t3 | t1, t2, t3 ∊ S(i)}
● S = ⋃ S(i), for all i



  

In OCaml

● OCaml data types are nice for AST description

type term =

    TmTrue

  | TmFalse

  | TmIf of term * term * term

  | TmZero

  | TmSucc of term

  | TmPred of term

  | TmIsZero of term
● Quite close to the abstract grammar



  

Defining Inductive Properties

● The set of constants in a program
Consts(true)                                = {true}

Consts(false)                               = {false}

Consts(0)                                        = {0}

Consts(succ t1)                           = Consts(t1)

Consts(pred t1)                           = Consts(t1)

Consts(iszero t1)                      = Consts(t1)

Consts(if t1 then t2 else t3) = Consts(t1) ∪ Consts(t2) ∪ 
Consts(t3)

● Inductive definition
● base cases for values
● inductive cases based on smaller terms



  

In OCaml

● Data types are inductive, just pattern match!

let rec consts = function

    TmTrue -> [TmTrue]

  | TmFalse -> [TmFalse]

  | TmIf(t1,t2,t3) ->

      (consts t1) @ (consts t2) @ (consts t3)

  | TmZero -> [TmZero]

  | TmSucc(t1)

  | TmPred(t1)

  | TmIsZero(t1) -> consts t1
● Will calculate a list of all the constants in the term



  

Another Inductive Definition

● The size of a term
size(true)                                     = 1

size(false)                                    = 1

size(0)                                             = 1

size(succ t1)                                = size(t1) + 1

size(pred t1)                                = size(t1) + 1

size(iszero t1)                           = size(t1) + 1

size(if t1 then t2 else t3) = size(t1) + size(t2) + size(t3) + 1

● Counts the nodes in the AST



  

In OCaml

● Again, straightforward with pattern matching

let rec size = function

    TmTrue

  | TmFalse

  | TmZero -> 1

  | TmIf(t1,t2,t3) ->

      (size t1) + (size t2) + (size t3) + 1

  | TmSucc(t1)

  | TmPred(t1)

  | TmIsZero(t1) -> (size t1) + 1
● Looks familiar?



  

Yet Another Inductive Definition

● A term t is a numerical value
isnumerical(true)                        = false

isnumerical(false)                      = false

isnumerical(0)                            = true

isnumerical(succ t1)                  = isnumerical(t1)

isnumerical(pred t1)                  = isnumerical(t1)

isnumerical(iszero t1)              = false

isnumerical(if t1 then t2 else t3) = false

● Implement in OCaml?
● The property isvalue(t) is similar



  

Inductive Proofs

● Given an inductive definition of terms t, prove property P(t) for 
all possible terms t
● Basically, case analysis on the grammar of t

● Ordinary induction
● Show P(t) holds for base cases
● Assuming P(t') for n terms t1..tn, show P(t) for every inductive case 

constructing a term t from t1..tn
● Structural induction

● Assuming P(t') for all immediate subterms t' of t, show P(t)
● Complete induction

● Assuming P(t) holds for all terms t' that are smaller than t (not just 
immediate subterms), prove P(t)



  

Semantics

● Enough about syntax
● What does a program mean?

● What does a programming language mean?
● Formal semantics of a programming language:

A mathematical description of all possible 
computations of all possible programs

● Three main approaches to semantics
● Denotational
● Operational
● Axiomatic



  

Denotational Semantics

● Define the meaning by translation to another language with 
known meaning
● Equivalent to compilation
● Defined as an interpretation function from terms to elements in a 

mathmatical domain (numbers, functions, etc)
● Abstract away details of computation

● Example: [t] is the meaning of term t
● [0] = 0
● [succ t] = [t] + 1
● [pred t] = [t] - 1
● [if t1 then t2 else t3] = [t2], when [t1] is true, [t3] otherwise
● etc.



  

Axiomatic Semantics

● Define the meaning of syntax using axioms
● Invariants, properties/predicates that hold at each program point
● Preconditions: properties that hold before execution of a term
● Postconditions: properties that hold after evaluation of a term (if 

it terminates)
● Based on predicate logic
● Used to prove the correctness of programs
● Examples:

● {true} x := 5 {!x = 5}
● {x <> 0} z = y/x {z = y/x, x <> 0}

●

   {P and x=5} t2 {Q}    {P and x<>5} t3 {Q}   
{P} if x=5 then t2 else t3 {Q}



  

Operational Semantics

● Define an abstract machine that evaluates the program
● Equivalent to an interpreter
● Usually by term rewriting

● Machine states are just terms of the language
● Can include other terms outside the program language e.g. terms in a language that 

describes memory contents
● Small-step operational semantics

● Computation is a transition function that takes a machine state and returns the next 
state (executes one step of computation)

● t → t' means term t takes a step and becomes term t'
● Big-step operational semantics

● Computation is a transition from a machine state that includes a term, to a machine 
state where the term is evaluated to a resulting value

● t → v means term t evaluates to v
● Describes terminating executions



  

Operational Semantics (cont'd)

● A small-step semantics for our terms

          t1 → t1'          
succ t1 → succ t1'

                      
pred 0 → 0

  v is a numerical value  
pred(succ(v)) → v

          t1 → t1'          
pred t1 → pred t1'

                            
iszero 0 → true

   v is a numerical value   
iszero(succ v) → false

             t1 → t1'             
iszero t1 → iszero t1'

                                              
if true then t1 else t2 → t1

                                              
if false then t1 else t2 → t2

             t1 → t1'            
if t1 then t2 else t3 →
if t1' then t2 else t3



  

In OCaml

● Each rule defines a pattern in the AST, and how to evaluate it

let rec step = function

    TmIsZero(TmZero) -> TmTrue

  | TmIsZero(TmSucc v) when (isnumerical v) -> TmFalse

  | TmIsZero(t1) -> let t1' = step t1 in TmIsZero(t1')

  | TmPred(TmZero) -> TmZero

  | TmPred(TmSucc(v)) when (isnumerical v) -> v

  | TmPred(t1) -> TmPred(step t1)

  | TmIf(TmTrue, t1, t2) -> t1

  | TmIf(TmFalse, t1, t2) -> t2

  | TmIf(t1, t2, t3) -> TmIf(step t1, t2, t3)

  | TmSucc(t1) -> TmSucc(step t1)

  | _ -> failwith “runtime error”
● That's the interpreter!



  

Next time

● The lambda calculus: a very simple language

t ::= x | λx.t | t tx.t | t t
● One kind of value, functions λx.t | t tx.t with one 

argument x
● One instruction, function application t t
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