

CS546
Introduction to Type Theory and Static Analysis

Lecture 4

Untyped Arithmetic

Polyvios Pratikakis

Abstract Syntax

● Abstract: a description of the AST, hides parsing details
t ::=

 true

 false

 if t then t else t

 0

 succ t

 pred t

 iszero t

● Constant terms true, false, 0 are values

● A language is the set of all possible terms

Language Definitions

● Inductive definition:

The language is the set T of terms such that

● {true, false, 0} are in T
● if t1 is in T, then {succ t1, pred t1, iszero t1} are also in

T
● if t1, t2 and t3 are in T, then {if t1 then t2 else t3} is

also in T
● Nothing else is in T

Language Definitions (cont'd)

● Definition by inference rules

 t1 ∊ T
succ t1 ∊ T

true ∊ T false ∊ T 0 ∊ T

 t1 ∊ T
pred t1 ∊ T

 t1 ∊ T
iszero t1 ∊ T

 t1 ∊ T t2 ∊ T t3 ∊ T
if t1 then t2 else t3 ∊ T

Axiom:
rule with no premises

Inference rule

Above the line:
premises

Below the line:
conclusion

Language Definitions (cont'd)

● Definition by construction

Define set S(i)
● S(0) = ∅
● S(i+1) = {true, false, 0}

 ∪ {succ t1, pred t1, iszero t1 | t1 ∊ S(i)}

 ∪ {if t1 then t2 else t3 | t1, t2, t3 ∊ S(i)}
● S = ⋃ S(i), for all i

In OCaml

● OCaml data types are nice for AST description

type term =

 TmTrue

 | TmFalse

 | TmIf of term * term * term

 | TmZero

 | TmSucc of term

 | TmPred of term

 | TmIsZero of term
● Quite close to the abstract grammar

Defining Inductive Properties

● The set of constants in a program
Consts(true) = {true}

Consts(false) = {false}

Consts(0) = {0}

Consts(succ t1) = Consts(t1)

Consts(pred t1) = Consts(t1)

Consts(iszero t1) = Consts(t1)

Consts(if t1 then t2 else t3) = Consts(t1) ∪ Consts(t2) ∪
Consts(t3)

● Inductive definition
● base cases for values
● inductive cases based on smaller terms

In OCaml

● Data types are inductive, just pattern match!

let rec consts = function

 TmTrue -> [TmTrue]

 | TmFalse -> [TmFalse]

 | TmIf(t1,t2,t3) ->

 (consts t1) @ (consts t2) @ (consts t3)

 | TmZero -> [TmZero]

 | TmSucc(t1)

 | TmPred(t1)

 | TmIsZero(t1) -> consts t1
● Will calculate a list of all the constants in the term

Another Inductive Definition

● The size of a term
size(true) = 1

size(false) = 1

size(0) = 1

size(succ t1) = size(t1) + 1

size(pred t1) = size(t1) + 1

size(iszero t1) = size(t1) + 1

size(if t1 then t2 else t3) = size(t1) + size(t2) + size(t3) + 1

● Counts the nodes in the AST

In OCaml

● Again, straightforward with pattern matching

let rec size = function

 TmTrue

 | TmFalse

 | TmZero -> 1

 | TmIf(t1,t2,t3) ->

 (size t1) + (size t2) + (size t3) + 1

 | TmSucc(t1)

 | TmPred(t1)

 | TmIsZero(t1) -> (size t1) + 1
● Looks familiar?

Yet Another Inductive Definition

● A term t is a numerical value
isnumerical(true) = false

isnumerical(false) = false

isnumerical(0) = true

isnumerical(succ t1) = isnumerical(t1)

isnumerical(pred t1) = isnumerical(t1)

isnumerical(iszero t1) = false

isnumerical(if t1 then t2 else t3) = false

● Implement in OCaml?
● The property isvalue(t) is similar

Inductive Proofs

● Given an inductive definition of terms t, prove property P(t) for
all possible terms t
● Basically, case analysis on the grammar of t

● Ordinary induction
● Show P(t) holds for base cases
● Assuming P(t') for n terms t1..tn, show P(t) for every inductive case

constructing a term t from t1..tn
● Structural induction

● Assuming P(t') for all immediate subterms t' of t, show P(t)
● Complete induction

● Assuming P(t) holds for all terms t' that are smaller than t (not just
immediate subterms), prove P(t)

Semantics

● Enough about syntax
● What does a program mean?

● What does a programming language mean?
● Formal semantics of a programming language:

A mathematical description of all possible
computations of all possible programs

● Three main approaches to semantics
● Denotational
● Operational
● Axiomatic

Denotational Semantics

● Define the meaning by translation to another language with
known meaning
● Equivalent to compilation
● Defined as an interpretation function from terms to elements in a

mathmatical domain (numbers, functions, etc)
● Abstract away details of computation

● Example: [t] is the meaning of term t
● [0] = 0
● [succ t] = [t] + 1
● [pred t] = [t] - 1
● [if t1 then t2 else t3] = [t2], when [t1] is true, [t3] otherwise
● etc.

Axiomatic Semantics

● Define the meaning of syntax using axioms
● Invariants, properties/predicates that hold at each program point
● Preconditions: properties that hold before execution of a term
● Postconditions: properties that hold after evaluation of a term (if

it terminates)
● Based on predicate logic
● Used to prove the correctness of programs
● Examples:

● {true} x := 5 {!x = 5}
● {x <> 0} z = y/x {z = y/x, x <> 0}

●

 {P and x=5} t2 {Q} {P and x<>5} t3 {Q}
{P} if x=5 then t2 else t3 {Q}

Operational Semantics

● Define an abstract machine that evaluates the program
● Equivalent to an interpreter
● Usually by term rewriting

● Machine states are just terms of the language
● Can include other terms outside the program language e.g. terms in a language that

describes memory contents
● Small-step operational semantics

● Computation is a transition function that takes a machine state and returns the next
state (executes one step of computation)

● t → t' means term t takes a step and becomes term t'
● Big-step operational semantics

● Computation is a transition from a machine state that includes a term, to a machine
state where the term is evaluated to a resulting value

● t → v means term t evaluates to v
● Describes terminating executions

Operational Semantics (cont'd)

● A small-step semantics for our terms

 t1 → t1'
succ t1 → succ t1'

pred 0 → 0

 v is a numerical value
pred(succ(v)) → v

 t1 → t1'
pred t1 → pred t1'

iszero 0 → true

 v is a numerical value
iszero(succ v) → false

 t1 → t1'
iszero t1 → iszero t1'

if true then t1 else t2 → t1

if false then t1 else t2 → t2

 t1 → t1'
if t1 then t2 else t3 →
if t1' then t2 else t3

In OCaml

● Each rule defines a pattern in the AST, and how to evaluate it

let rec step = function

 TmIsZero(TmZero) -> TmTrue

 | TmIsZero(TmSucc v) when (isnumerical v) -> TmFalse

 | TmIsZero(t1) -> let t1' = step t1 in TmIsZero(t1')

 | TmPred(TmZero) -> TmZero

 | TmPred(TmSucc(v)) when (isnumerical v) -> v

 | TmPred(t1) -> TmPred(step t1)

 | TmIf(TmTrue, t1, t2) -> t1

 | TmIf(TmFalse, t1, t2) -> t2

 | TmIf(t1, t2, t3) -> TmIf(step t1, t2, t3)

 | TmSucc(t1) -> TmSucc(step t1)

 | _ -> failwith “runtime error”
● That's the interpreter!

Next time

● The lambda calculus: a very simple language

t ::= x | λx.t | t tx.t | t t
● One kind of value, functions λx.t | t tx.t with one

argument x
● One instruction, function application t t

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

