CS546

Introduction to Type Theory and Static Analysis

Lecture 4

Untyped Arithmetic

Polyvios Pratikakis

Abstract Syntax

• Abstract: a description of the AST, hides parsing details

t ::= true false if t then t else t 0 succ t pred t iszero t

- Constant terms true, false, 0 are *values*
- A language is the set of all possible terms

Language Definitions

• Inductive definition:

The language is the set ${\mathcal T}{\rm of}$ terms such that

- * {true, false, 0} are in ${\mathcal T}$
- if t1 is in ${\mathcal T}$ then {succ t1, pred t1, iszero t1} are also in ${\mathcal T}$
- if t1, t2 and t3 are in T, then {if t1 then t2 else t3} is also in T
- * Nothing else is in ${\mathcal T}$

Language Definitions (cont'd)

 Definition by inference rules Axiom: rule with no premises true $\in \mathcal{T}$ false $\in \mathcal{T}$ $0 \in \mathcal{T}$ Above the line: premises <u>t1 ∈ T</u> <u>t1 ∈ T</u> succ t1 $\in \mathcal{T}$ pred t1 $\in \mathcal{T}$ iszero t $1 \in T$ Below the line: conclusion Inference rule $\underline{t1 \in \mathcal{T}} \quad \underline{t2 \in \mathcal{T}} \quad \underline{t3 \in \mathcal{T}}$ if t1 then t2 else t3 $\in \mathcal{T}$

Language Definitions (cont'd)

- Definition by construction
 Define set S(i)
 - S(0) = Ø
 - S(i+1) = {true, false, 0}
 U {succ t1, pred t1, iszero t1 | t1 ∈ S(i)}
 U {if t1 then t2 else t3 | t1, t2, t3 ∈ S(i)}
 - $S = \bigcup S(i)$, for all i

- OCaml data types are nice for AST description
 type term =
 - TmTrue
 - TmFalse
 - TmIf of term * term * term
 - TmZero
 - TmSucc of term
 - TmPred of term
 - TmIsZero of term
- Quite close to the abstract grammar

Defining Inductive Properties

- The set of constants in a program
 - Consts(true) $= \{true\}$ Consts(false) $= \{false\}$ Consts(0) $= \{0\}$ Consts(succ t1)= Consts(t1)Consts(pred t1)= Consts(t1)Consts(iszero t1)= Consts(t1)Consts(if t1 then t2 else t3) = Consts(t1) \cup Consts(t2) \cup Consts(t3)
- Inductive definition
 - base cases for values
 - inductive cases based on *smaller* terms

```
   Data types are inductive, just pattern match!

let rec consts = function
    TmTrue -> [TmTrue]
    TmFalse -> [TmFalse]
    TmIf(t1,t2,t3) ->
       (consts t1) @ (consts t2) @ (consts t3)
    TmZero -> [TmZero]
    TmSucc(t1)
    TmPred(t1)
    TmIsZero(t1) -> consts t1
```

• Will calculate a list of all the constants in the term

Another Inductive Definition

• The size of a term

size(true)	= 1
size(false)	= 1
size(0)	= 1
size(succ t1)	= size(t1) + 1
size(pred t1)	= size(t1) + 1
size(iszero t1)	= size(t1) + 1
size(if t1 then t2 else t3)	= size(t1) + size(t2) + size(t3) + 1

Counts the nodes in the AST

- Again, straightforward with pattern matching let rec size = function TmTrue TmFalse TmZero -> 1 TmIf(t1,t2,t3) -> (size t1) + (size t2) + (size t3) + 1TmSucc(t1) TmPred(t1) $TmIsZero(t1) \rightarrow (size t1) + 1$
- Looks familiar?

Yet Another Inductive Definition

• A term t is a numerical value

isnumerical(true)	=false
isnumerical(false)	= false
isnumerical(0)	= true
isnumerical(succ t1)	= isnumerical(t1)
isnumerical(pred t1)	= isnumerical(t1)
isnumerical(iszero t1)	= false
isnumerical(if t1 then	t2 else t3) = false

- Implement in OCaml?
- The property isvalue(t) is similar

Inductive Proofs

- Given an inductive definition of terms t, prove property P(t) for all possible terms t
 - Basically, case analysis on the grammar of t
- Ordinary induction
 - Show P(t) holds for base cases
 - Assuming P(t') for n terms t1..tn, show P(t) for every inductive case constructing a term t from t1..tn
- Structural induction
 - Assuming P(t') for all immediate subterms t' of t, show P(t)
- Complete induction
 - Assuming P(t) holds for all terms t' that are smaller than t (not just immediate subterms), prove P(t)

Semantics

- Enough about syntax
- What does a program mean?
 - What does a programming language mean?
- Formal semantics of a programming language:

A mathematical description of all possible computations of all possible programs

- Three main approaches to semantics
 - Denotational
 - Operational
 - Axiomatic

Denotational Semantics

- Define the meaning by translation to another language with known meaning
 - Equivalent to compilation
 - Defined as an interpretation function from terms to elements in a mathmatical domain (numbers, functions, etc)
 - Abstract away details of computation
- Example: [t] is the meaning of term t
 - [0] = 0
 - [succ t] = [t] + 1
 - [pred t] = [t] 1
 - [if t1 then t2 else t3] = [t2], when [t1] is true, [t3] otherwise
 - etc.

Axiomatic Semantics

- Define the meaning of syntax using axioms
 - Invariants, properties/predicates that hold at each program point
 - Preconditions: properties that hold before execution of a term
 - Postconditions: properties that hold after evaluation of a term (if it terminates)
- Based on predicate logic
- Used to prove the correctness of programs
- Examples:
 - {true} x := 5 {!x = 5}

• {x <> 0}
$$z = y/x \{z = y/x, x <> 0\}$$

Operational Semantics

- Define an abstract machine that evaluates the program
 - Equivalent to an interpreter
 - Usually by term rewriting
- Machine states are just terms of the language
 - Can include other terms outside the program language e.g. terms in a language that describes memory contents
- Small-step operational semantics
 - Computation is a transition function that takes a machine state and returns the next state (executes one step of computation)
 - t \rightarrow t' means term t takes a step and becomes term t'
- Big-step operational semantics
 - Computation is a transition from a machine state that includes a term, to a machine state where the term is evaluated to a resulting value
 - t \rightarrow v means term t evaluates to v
 - Describes terminating executions

Operational Semantics (cont'd)

• A small-step semantics for our terms

	<u> </u>	I	<u>v is a numerical value</u>		
iszero 0 → true	iszero t1 \rightarrow iszero t1'		iszero(succ v) \rightarrow false		
pred 0 \rightarrow 0	$\frac{t1 \rightarrow t1}{\text{pred t1} \rightarrow \text{pr}}$	ed t1'	<u>v is a numerical value</u> pred(succ(v)) → v		
		t1	. → t1'		
if false then t1 else t2 \rightarrow t2		if t1 then if t1' the	if t1 then t2 else t3 → if t1' then t2 else t3		
		t1	_ → t1'		
if true then t1 else t	2 → t1	succ t1	\rightarrow succ t1'		

• Each rule defines a pattern in the AST, and how to evaluate it

```
let rec step = function
 TmlsZero(TmZero) -> TmTrue
TmlsZero(TmSucc v) when (isnumerical v) -> TmFalse
TmlsZero(t1) -> let t1' = step t1 in TmlsZero(t1')
| TmPred(TmZero) -> TmZero
| TmPred(TmSucc(v)) when (isnumerical v) -> v
| TmPred(t1) -> TmPred(step t1)
| Tmlf(TmTrue, t1, t2) -> t1
| Tmlf(TmFalse, t1, t2) -> t2
| Tmlf(t1, t2, t3) -> Tmlf(step t1, t2, t3) |
| TmSucc(t1) -> TmSucc(step t1)
-> failwith "runtime error"
```

That's the interpreter!

Next time

• The lambda calculus: a very simple language

 $t ::= x | \lambda x.t | t t$

- One kind of value, functions $\lambda x.t$ with one argument \boldsymbol{x}
- One instruction, function application t t