CS546
Introduction to Type Theory and Static Analysis

Lecture 4

Untyped Arithmetic
Abstract Syntax

- Abstract: a description of the AST, hides parsing details

\[
\begin{align*}
t ::=& \ \\
& \quad \text{true} \\
& \quad \text{false} \\
& \quad \text{if } t \text{ then } t \text{ else } t \\
& \quad 0 \\
& \quad \text{succ } t \\
& \quad \text{pred } t \\
& \quad \text{iszero } t
\end{align*}
\]

- Constant terms true, false, 0 are values

- A language is the set of all possible terms
Language Definitions

• Inductive definition:

The language is the set \mathcal{T} of terms such that

• {$true, false, 0$} are in \mathcal{T}

• if t_1 is in \mathcal{T}, then {$succ\ t_1, pred\ t_1, iszero\ t_1$} are also in \mathcal{T}

• if t_1, t_2 and t_3 are in \mathcal{T}, then {$if\ t_1\ then\ t_2\ else\ t_3$} is also in \mathcal{T}

• Nothing else is in \mathcal{T}
Language Definitions (cont'd)

- Definition by inference rules

\[
\text{true} \in \mathcal{T} \\
\text{false} \in \mathcal{T} \\
0 \in \mathcal{T} \\
\text{succ } t_1 \in \mathcal{T} \\
\text{pred } t_1 \in \mathcal{T} \\
\text{iszero } t_1 \in \mathcal{T} \\
\text{if } t_1 \text{ then } t_2 \text{ else } t_3 \in \mathcal{T}
\]

Axiom: rule with no premises

Above the line: premises

Below the line: conclusion

Inference rule
Language Definitions (cont'd)

• Definition by construction

Define set $S(i)$

• $S(0) = \emptyset$
• $S(i+1) = \{\text{true, false, 0}\}$
 $\cup \{\text{succ } t_1, \text{ pred } t_1, \text{ iszero } t_1 \mid t_1 \in S(i)\}$
 $\cup \{\text{if } t_1 \text{ then } t_2 \text{ else } t_3 \mid t_1, t_2, t_3 \in S(i)\}$
• $S = \bigcup S(i)$, for all i
In OCaml

- OCaml data types are nice for AST description

```ocaml
type term =
  TmTrue
| TmFalse
| TmIf of term * term * term
| TmZero
| TmSucc of term
| TmPred of term
| TmIsZero of term
```

- Quite close to the abstract grammar
Defining Inductive Properties

- The set of constants in a program

 \[
 \begin{align*}
 \text{Consts}(\text{true}) &= \{\text{true}\} \\
 \text{Consts}(\text{false}) &= \{\text{false}\} \\
 \text{Consts}(0) &= \{0\} \\
 \text{Consts}(\text{succ \ t1}) &= \text{Consts}(\text{t1}) \\
 \text{Consts}(\text{pred \ t1}) &= \text{Consts}(\text{t1}) \\
 \text{Consts}(\text{iszero \ t1}) &= \text{Consts}(\text{t1}) \\
 \text{Consts}(\text{if \ t1 \ then \ t2 \ else \ t3}) &= \text{Consts}(\text{t1}) \cup \text{Consts}(\text{t2}) \cup \text{Consts}(\text{t3})
 \end{align*}
 \]

- Inductive definition

 - base cases for values
 - inductive cases based on \textit{smaller} terms
In OCaml

- Data types are inductive, just pattern match!

```ocaml
let rec consts = function
    | TmTrue -> [TmTrue]
    | TmFalse -> [TmFalse]
    | TmIf(t1,t2,t3) ->
        (consts t1) @ (consts t2) @ (consts t3)
    | TmZero -> [TmZero]
    | TmSucc(t1)
    | TmPred(t1)
    | TmIsZero(t1) -> consts t1
```

- Will calculate a list of all the constants in the term
Another Inductive Definition

- The size of a term

 \[
 \begin{align*}
 \text{size}(true) & = 1 \\
 \text{size}(false) & = 1 \\
 \text{size}(0) & = 1 \\
 \text{size}(\text{succ } t1) & = \text{size}(t1) + 1 \\
 \text{size}(\text{pred } t1) & = \text{size}(t1) + 1 \\
 \text{size}(\text{iszero } t1) & = \text{size}(t1) + 1 \\
 \text{size}(\text{if } t1 \text{ then } t2 \text{ else } t3) & = \text{size}(t1) + \text{size}(t2) + \text{size}(t3) + 1
 \end{align*}
 \]

- Counts the nodes in the AST
In OCaml

- Again, straightforward with pattern matching

```ocaml
let rec size = function
    TmTrue |
    TmFalse |
    TmZero -> 1 |
    TmIf(t1, t2, t3) ->
        (size t1) + (size t2) + (size t3) + 1 |
    TmSucc(t1) |
    TmPred(t1) |
    TmIsZero(t1) -> (size t1) + 1
```

- Looks familiar?
Yet Another Inductive Definition

• A term t is a numerical value
 - isnumerical(true) = false
 - isnumerical(false) = false
 - isnumerical(0) = true
 - isnumerical(succ t1) = isnumerical(t1)
 - isnumerical(pred t1) = isnumerical(t1)
 - isnumerical(iszero t1) = false
 - isnumerical(if t1 then t2 else t3) = false

• Implement in OCaml?

• The property isvalue(t) is similar
Inductive Proofs

- Given an inductive definition of terms \(t \), prove property \(P(t) \) for all possible terms \(t \)
 - Basically, case analysis on the grammar of \(t \)
- Ordinary induction
 - Show \(P(t) \) holds for base cases
 - Assuming \(P(t') \) for \(n \) terms \(t_1..t_n \), show \(P(t) \) for every inductive case constructing a term \(t \) from \(t_1..t_n \)
- Structural induction
 - Assuming \(P(t') \) for all immediate subterms \(t' \) of \(t \), show \(P(t) \)
- Complete induction
 - Assuming \(P(t) \) holds for all terms \(t' \) that are smaller than \(t \) (not just immediate subterms), prove \(P(t) \)
Semantics

- Enough about syntax
- What does a program mean?
 - What does a programming language mean?
- Formal semantics of a programming language:
 A mathematical description of all possible computations of all possible programs
- Three main approaches to semantics
 - Denotational
 - Operational
 - Axiomatic
Denotational Semantics

- Define the meaning by translation to another language with known meaning
 - Equivalent to compilation
 - Defined as an interpretation function from terms to elements in a mathematical domain (numbers, functions, etc)
 - Abstract away details of computation
- Example: $[t]$ is the meaning of term t
 - $[0] = 0$
 - $[\text{succ } t] = [t] + 1$
 - $[\text{pred } t] = [t] - 1$
 - $[\text{if } t1 \text{ then } t2 \text{ else } t3] = [t2]$, when $[t1]$ is true, $[t3]$ otherwise
 - etc.
Axiomatic Semantics

- Define the meaning of syntax using axioms
 - Invariants, properties/predicates that hold at each program point
 - Preconditions: properties that hold before execution of a term
 - Postconditions: properties that hold after evaluation of a term (if it terminates)
- Based on predicate logic
- Used to prove the correctness of programs
- Examples:
 - \{true\} \(x := 5\) \(!x = 5\)
 - \{x \geq 0\} x = 5 \(\forall x \geq 0\) t2 \{Q\} \(\forall x \geq 0\) t3 \(\{Q\}\)
 - \{P\} if \(x = 5\) then t2 else t3 \(\{Q\}\)
Operational Semantics

- Define an abstract machine that evaluates the program
 - Equivalent to an interpreter
 - Usually by term rewriting
- Machine states are just terms of the language
 - Can include other terms outside the program language e.g. terms in a language that describes memory contents
- Small-step operational semantics
 - Computation is a transition function that takes a machine state and returns the next state (executes one step of computation)
 - $t \rightarrow t'$ means term t takes a step and becomes term t'
- Big-step operational semantics
 - Computation is a transition from a machine state that includes a term, to a machine state where the term is evaluated to a resulting value
 - $t \rightarrow v$ means term t evaluates to v
 - Describes terminating executions
Operational Semantics (cont'd)

- A small-step semantics for our terms

\[
\begin{align*}
\text{iszero } 0 & \rightarrow \text{true} & \\
\text{pred } 0 & \rightarrow 0 & \\
\text{if false then } t_1 \text{ else } t_2 & \rightarrow t_2 & \\
\text{if true then } t_1 \text{ else } t_2 & \rightarrow t_1 & \\
\text{iszero } t_1 & \rightarrow \text{iszero } t_1' & \\
\text{pred } t_1 & \rightarrow \text{pred } t_1' & \\
\text{iszero } \text{succ } v & \rightarrow \text{false} & \\
\text{pred } \text{succ}(v) & \rightarrow v & \\
\text{if true then } t_1 \text{ else } t_2 \text{ else } t_3 & \rightarrow \\
\text{if } t_1' \text{ then } t_2 \text{ else } t_3 & & \\
\text{succ } t_1 & \rightarrow \text{succ } t_1' & \\
\end{align*}
\]
In OCaml

- Each rule defines a pattern in the AST, and how to evaluate it

 let rec step = function
 TmIsZero(TmZero) -> TmTrue
 | TmIsZero(TmSucc v) when (isnumerical v) -> TmFalse
 | TmIsZero(t1) -> let t1' = step t1 in TmIsZero(t1')
 | TmPred(TmZero) -> TmZero
 | TmPred(TmSucc(v)) when (isnumerical v) -> v
 | TmPred(t1) -> TmPred(step t1)
 | TmIf(TmTrue, t1, t2) -> t1
 | TmIf(TmFalse, t1, t2) -> t2
 | TmIf(t1, t2, t3) -> TmIf(step t1, t2, t3)
 | TmSucc(t1) -> TmSucc(step t1)
 | _ -> failwith "runtime error"

- That's the interpreter!
Next time

• The lambda calculus: a very simple language
 \[t ::= x \mid \lambda x. t \mid t \; t \]

• One kind of value, functions \(\lambda x. t \) with one argument \(x \)

• One instruction, function application \(t \; t \)