Abstract Syntax

• Abstract: a description of the AST, hides parsing details

 \[
 t ::= \\
 \quad \text{true} \\
 \quad \text{false} \\
 \quad \text{if } t \text{ then } t \text{ else } t \\
 \quad 0 \\
 \quad \text{succ } t \\
 \quad \text{pred } t \\
 \quad \text{iszero } t
 \]

• Constant terms true, false, 0 are \textit{values}

• A language is the set of all possible terms
Language Definitions

• Inductive definition:

The language is the set \mathcal{I} of terms such that

• $\{\text{true, false, 0}\}$ are in \mathcal{I}

• if t_1 is in \mathcal{I}, then $\{\text{succ } t_1, \text{pred } t_1, \text{iszero } t_1\}$ are also in \mathcal{I}

• if t_1, t_2 and t_3 are in \mathcal{I}, then $\{\text{if } t_1 \text{ then } t_2 \text{ else } t_3\}$ is also in \mathcal{I}

• Nothing else is in \mathcal{I}
Language Definitions (cont'd)

• Definition by inference rules

\[
\begin{align*}
\text{true} & \in \mathcal{T} \\
\text{false} & \in \mathcal{T} \\
0 & \in \mathcal{T} \\
\text{succ} \ t_1 & \in \mathcal{T} \\
\text{pred} \ t_1 & \in \mathcal{T} \\
\text{iszero} \ t_1 & \in \mathcal{T} \\
\text{if} \ t_1 \ \text{then} \ t_2 \ \text{else} \ t_3 & \in \mathcal{T}
\end{align*}
\]
Language Definitions (cont'd)

• Definition by construction

Define set $S(i)$

• $S(0) = \emptyset$
• $S(i+1) = \{true, false, 0\} \cup \{\text{succ } t1, \text{ pred } t1, \text{ iszero } t1 \mid t1 \in S(i)\} \cup \{\text{if } t1 \text{ then } t2 \text{ else } t3 \mid t1, t2, t3 \in S(i)\}$
• $S = \bigcup S(i)$, for all i
In OCaml

- OCaml data types are nice for AST description
  ```ocaml
type term =
    TmTrue
  | TmFalse
  | TmIf of term * term * term
  | TmZero
  | TmSucc of term
  | TmPred of term
  | TmIsZero of term
```
- Quite close to the abstract grammar
Defining Inductive Properties

• The set of constants in a program

 \[
 \begin{align*}
 \text{Consts}(\text{true}) & = \{\text{true}\} \\
 \text{Consts}(\text{false}) & = \{\text{false}\} \\
 \text{Consts}(0) & = \{0\} \\
 \text{Consts}(\text{succ } t1) & = \text{Consts}(t1) \\
 \text{Consts}(\text{pred } t1) & = \text{Consts}(t1) \\
 \text{Consts}(\text{iszero } t1) & = \text{Consts}(t1) \\
 \text{Consts}(\text{if } t1 \text{ then } t2 \text{ else } t3) & = \text{Consts}(t1) \cup \text{Consts}(t2) \cup \text{Consts}(t3)
 \end{align*}
 \]

• Inductive definition
 • base cases for values
 • inductive cases based on \textit{smaller} terms
In OCaml

- Data types are inductive, just pattern match!

```ocaml
let rec consts = function
    TmTrue -> [TmTrue]
  | TmFalse -> [TmFalse]
  | TmIf(t1,t2,t3) ->
      (consts t1) @ (consts t2) @ (consts t3)
  | TmZero -> [TmZero]
  | TmSucc(t1) | TmPred(t1)
  | TmIsZero(t1) -> consts t1
```

- Will calculate a list of all the constants in the term
Another Inductive Definition

- The size of a term

 \[\text{size}(\text{true}) = 1 \]

 \[\text{size}(\text{false}) = 1 \]

 \[\text{size}(\text{0}) = 1 \]

 \[\text{size}(\text{succ } t1) = \text{size}(t1) + 1 \]

 \[\text{size}(\text{pred } t1) = \text{size}(t1) + 1 \]

 \[\text{size}(\text{iszero } t1) = \text{size}(t1) + 1 \]

 \[\text{size}(\text{if } t1 \text{ then } t2 \text{ else } t3) = \text{size}(t1) + \text{size}(t2) + \text{size}(t3) + 1 \]

- Counts the nodes in the AST
In OCaml

• Again, straightforward with pattern matching

```ocaml
let rec size = function
  | TmTrue    -> 1
  | TmFalse   -> 1
  | TmZero    -> 1
  | TmIf(t1,t2,t3) ->
    (size t1) + (size t2) + (size t3) + 1
  | TmSucc(t1) -> (size t1) + 1
  | TmPred(t1) -> (size t1) + 1
  | TmIsZero(t1) -> (size t1) + 1
```

• Looks familiar?
Yet Another Inductive Definition

- A term \(t \) is a numerical value

 \[
 \begin{align*}
 \text{isnumerical}(\text{true}) &= \text{false} \\
 \text{isnumerical}(\text{false}) &= \text{false} \\
 \text{isnumerical}(0) &= \text{true} \\
 \text{isnumerical}(\text{succ } t1) &= \text{isnumerical}(t1) \\
 \text{isnumerical}(\text{pred } t1) &= \text{isnumerical}(t1) \\
 \text{isnumerical}(\text{iszero } t1) &= \text{false} \\
 \text{isnumerical}(\text{if } t1 \text{ then } t2 \text{ else } t3) &= \text{false}
 \end{align*}
 \]

- Implement in OCaml?

- The property isvalue(\(t \)) is similar
Inductive Proofs

- Given an inductive definition of terms t, prove property $P(t)$ for all possible terms t
 - Basically, case analysis on the grammar of t
- Ordinary induction
 - Show $P(t)$ holds for base cases
 - Assuming $P(t')$ for n terms $t_1..t_n$, show $P(t)$ for every inductive case constructing a term t from $t_1..t_n$
- Structural induction
 - Assuming $P(t')$ for all immediate subterms t' of t, show $P(t)$
- Complete induction
 - Assuming $P(t)$ holds for all terms t' that are smaller than t (not just immediate subterms), prove $P(t)$
Semantics

• Enough about syntax
• What does a program mean?
 • What does a programming language mean?
• Formal semantics of a programming language:
 A mathematical description of all possible computations of all possible programs
• Three main approaches to semantics
 • Denotational
 • Operational
 • Axiomatic
Denotational Semantics

- Define the meaning by translation to another language with known meaning
 - Equivalent to compilation
 - Defined as an interpretation function from terms to elements in a mathematical domain (numbers, functions, etc)
 - Abstract away details of computation
- Example: \([t]\) is the meaning of term \(t\)
 - \([0] = 0\)
 - \([\text{succ } t] = [t] + 1\)
 - \([\text{pred } t] = [t] - 1\)
 - \([\text{if } t1 \text{ then } t2 \text{ else } t3] = [t2], \text{ when } [t1] \text{ is true, } [t3] \text{ otherwise}\)
 - etc.
Axiomatic Semantics

• Define the meaning of syntax using axioms
 • Invariants, properties/predicates that hold at each program point
 • Preconditions: properties that hold before execution of a term
 • Postconditions: properties that hold after evaluation of a term (if it terminates)

• Based on predicate logic

• Used to prove the correctness of programs

• Examples:
 • $\{\text{true}\} \ x := 5 \ {!x = 5}\$
 • $\{x <> 0\} \ z = y/x \ {z = y/x, x <> 0}\$

 $\{\text{P and } x=5\} \ t2 \ {Q} \ {P \text{ and } x<>5} \ t3 \ {Q}\$

 $\{P \text{ if } x=5 \text{ then } t2 \text{ else } t3 \ {Q}\$
Operational Semantics

• Define an abstract machine that evaluates the program
 • Equivalent to an interpreter
 • Usually by term rewriting
• Machine states are just terms of the language
 • Can include other terms outside the program language e.g. terms in a language that describes memory contents
• Small-step operational semantics
 • Computation is a transition function that takes a machine state and returns the next state (executes one step of computation)
 • \(t \rightarrow t' \) means term \(t \) takes a step and becomes term \(t' \)
• Big-step operational semantics
 • Computation is a transition from a machine state that includes a term, to a machine state where the term is evaluated to a resulting value
 • \(t \rightarrow v \) means term \(t \) evaluates to \(v \)
 • Describes terminating executions
Operational Semantics (cont'd)

- A small-step semantics for our terms

\[
\begin{align*}
\text{iszero } 0 & \rightarrow \text{true} \\
\text{pred } 0 & \rightarrow 0 \\
\text{if false then } t_1 \text{ else } t_2 & \rightarrow t_2 \\
\text{if true then } t_1 \text{ else } t_2 & \rightarrow t_1 \\
\text{iszero } t_1 & \rightarrow \text{iszero } t_1' \\
\text{pred } t_1 & \rightarrow \text{pred } t_1' \\
\text{iszero } (\text{succ } v) & \rightarrow \text{false} \\
\text{pred}(\text{succ}(v)) & \rightarrow v \\
\text{if } t_1 \text{ then } t_2 \text{ else } t_3 & \rightarrow \\
\text{false} & \rightarrow \text{false} \\
\text{true} & \rightarrow \text{true} \\
\text{succ } t_1 & \rightarrow \text{succ } t_1'
\end{align*}
\]
In OCaml

- Each rule defines a pattern in the AST, and how to evaluate it

  ```ocaml
  let rec step = function
    TmIsZero(TmZero) -> TmTrue
  | TmIsZero(TmSucc v) when (isnumerical v) -> TmFalse
  | TmIsZero(t1) -> let t1' = step t1 in TmIsZero(t1')
  | TmPred(TmZero) -> TmZero
  | TmPred(TmSucc(v)) when (isnumerical v) -> v
  | TmPred(t1) -> TmPred(step t1)
  | TmIf(TmTrue, t1, t2) -> t1
  | TmIf(TmFalse, t1, t2) -> t2
  | TmIf(t1, t2, t3) -> TmIf(step t1, t2, t3)
  | TmSucc(t1) -> TmSucc(step t1)
  | _ -> failwith "runtime error"
  ```

- That's the interpreter!
Next time

- The lambda calculus: a very simple language

 $t ::= x \mid \lambda x.t \mid t \, t$

- One kind of value, functions $\lambda x.t$ with one argument x

- One instruction, function application $t \, t$