CS-541
Wireless Sensor Networks

Lecture 2: Wireless networks prerequisites and protocol stacks

Spring Semester 2017-2018

Prof Panagiotis Tsakalides, Dr Athanasia Panousopoulou, Dr Gregory Tsagkatakis
Today’s Objectives

• Part A: Wireless Links: Signal Propagation, Handling the Spectrum, Modelling the PHY performance

• Part B: Protocol stack preliminaries for WSN
Wireless Links – Radio Spectrum

- Radio Spectrum: The part of the electromagnetic spectrum (8.3KHz – 3 THz) **allocated** by ITU for radio communications.

- VLF = Very Low Frequency
- LF = Low Frequency
- MF = Medium Frequency
- HF = High Frequency
- VHF = Very High Frequency

Holger Karl, Andreas Willig, Protocols and Architectures for Wireless Sensor Systems, 2005, Willey, Ch. 4
Wireless Links – Radio Spectrum

Relationship between frequency (f) and wavelength (λ):

$$\lambda = \frac{c}{f}$$

where c is the speed of light

- **VLF** = Very Low Frequency
- **LF** = Low Frequency
- **MF** = Medium Frequency
- **HF** = High Frequency
- **VHF** = Very High Frequency
- **UHF** = Ultra High Frequency
- **SHF** = Super High Frequency
- **EHF** = Extra High Frequency
- **UV** = Ultraviolet Light
Wireless Links – Radio Spectrum

UHF (300-3000MHz): WLAN, GSM/GPRS
SHF (3-30GHz): radio astronomy, microwaves WLAN, satellites communications, modern mobile telephony

- VLF = Very Low Frequency
- LF = Low Frequency
- MF = Medium Frequency
- HF = High Frequency
- VHF = Very High Frequency
- UHF = Ultra High Frequency
- SHF = Super High Frequency
- EHF = Extra High Frequency
- UV = Ultraviolet Light
Wireless Links – Radio Spectrum

The radio spectrum is not for free or arbitrary use – usage varies w.r.t. the national regulations...

- Some of these bands are reserved, some are licensed and some are open / unlicensed.

- **ISM band – free to use**

- Typical WSN applications & manufacturers exploit this band

- @2.4GHz & 5.8GHz bands: coexistence with WiFi devices

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Start</th>
<th>End</th>
<th>Range</th>
<th>Center</th>
<th>Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6.765 MHz</td>
<td>6.795 MHz</td>
<td>30 kHz</td>
<td>6.780 MHz</td>
<td>Subject to</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>national regulations</td>
</tr>
<tr>
<td></td>
<td>13.553 MHz</td>
<td>13.567 MHz</td>
<td>14 kHz</td>
<td>13.560 MHz</td>
<td>Worldwide</td>
</tr>
<tr>
<td></td>
<td>26.957 MHz</td>
<td>27.283 MHz</td>
<td>326 kHz</td>
<td>27.120 MHz</td>
<td>Worldwide</td>
</tr>
<tr>
<td></td>
<td>40.660 MHz</td>
<td>40.700 MHz</td>
<td>40 kHz</td>
<td>40.680 MHz</td>
<td>Worldwide</td>
</tr>
<tr>
<td></td>
<td>433.050 MHz</td>
<td>434.790 MHz</td>
<td>1.74 MHz</td>
<td>433.920 MHz</td>
<td>Europe,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Africa, M.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>East, former SU,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mongolia</td>
</tr>
<tr>
<td></td>
<td>902.000 MHz</td>
<td>928.000 MHz</td>
<td>26 MHz</td>
<td>915.000 MHz</td>
<td>US, Greenland,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Eastern Pacific</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Islands</td>
</tr>
<tr>
<td></td>
<td>2.400 GHz</td>
<td>2.500 GHz</td>
<td>100 MHz</td>
<td>2.450 GHz</td>
<td>Worldwide</td>
</tr>
<tr>
<td></td>
<td>5.725 GHz</td>
<td>5.875 GHz</td>
<td>150 MHz</td>
<td>5.800 GHz</td>
<td>Worldwide</td>
</tr>
</tbody>
</table>
Wireless Links – Signal Propagation

Range in wireless communications:

- Transmission Range
- Detection Range
- Interference Range

In theory

Depends on:

- Operational frequency
- Transmission power
- Gain / Type of the antenna & hardware differences
- Sensitivity of the receiver S
- Type of environment & propagation mechanism
- Ambient conditions & co-existence of other devices
Wireless Links – Signal Propagation

Range in wireless communications:

In theory

In reality

Anisotropic Path Losses

Wireless Links – Signal Propagation

Range in wireless communications:

- Operational frequency
- Transmission power: different power yields different range
- Gain / Type of the antenna & hardware differences: dipole Vs embedded antennas
- Sensitivity of the receiver
- Type of environment & propagation mechanism: Variance in the signal path loss

In reality

Anisotropic Path Losses

Wireless Links – Signal Propagation

Range in wireless communications:

In reality

(a)

(b)

(c)

(d)

At the same distance & with constant transmission power, even the relative position of the tx-rx pair matters!

Gain / Type of the antenna & hardware differences
Wireless Links – Signal Propagation

Radio Propagation dictates the behavior of a transmitted radio wave:

• How signal is attenuated with respect to distance between transmitter and receiver
• How signal is affected by the surrounding environment (e.g. line of sight, types of obstacles, etc)
• How signal fluctuates over very short distances or very short time durations.

Radio propagation models: predict the average received signal strength at a given distance from the transmitter, & the time variability of the signal strength at a given location.

• Large-scale path-loss: estimating the signal strength Vs distance
• Small-scale / fading: variations over very short distances, time, and frequencies
Wireless Links – Signal Propagation

P mW to X dBm:
X dBm = 10log10(P/1mW)

Wireless Links – Signal Propagation

• Large-scale path-loss: Theoretical Model is the Free Space Model

$$P_{rx}(d) = \frac{P_{tx} G_{tx} G_{rx} \lambda^2}{16\pi^2 d^2 L} \ (W)$$

• Path-loss: difference (in dB) between the transmission and reception power:

$$PL(dB) = 10 log \frac{P_{tx}}{P_{rx}}$$
Wireless Links – Signal Propagation

• Large-scale path-loss:
 • Reflection: the wave bounces on an object which has very large dimensions when compared to the wavelength of the propagated wave. The signal is partially reflected and partially transmitted through the medium (absorbed)
 • Material properties
 • Angle of reflection
 • Frequency of wave.

Also:
Ground reflection: direct path and the ground reflected path between a tx-rx pair:

\[P_{rx}(d) = \frac{P_{tx}G_{tx}G_{rx}}{d^4} (h_{tx}h_{rx})^2 \ (W) \]
Wireless Links – Signal Propagation

Large-scale path loss:

• Diffraction: the signal encounters an irregular surface, such as a stone with sharp edges.

• Scattering: the medium through which the electromagnetic wave propagates contains a large number of objects with dimensions smaller than the signal wavelength. Signal is diffused in different directions → Additional radio energy arrives at the receiver.
Wireless Links – Signal Propagation

Small-scale phenomena:
Caused by the macroscopic behavior of the transmitted wave - reflection, diffraction, scattering - Fading due to interference of the same signal arriving at the receiver at different times.

Delay spread: the duration of the “echo” generated by the difference in arrival times.

Inter-symbol interference: Second multipath is delayed and is received during next symbol
Wireless Links – Signal Propagation

Analytical & empirical models conclude to the observation that signal attenuates logarithmically to the distance between TX – RX.

Log-normal shadowing model:

\[P_{rx}(d) [dBm] = P_{tx} [dBm] - PL(d) (dB) \]

\[PL(d) = PL(d_0) + 10n\log_{10} \left(\frac{d}{d_0} \right) + X\sigma (dB) \]

\(n \): path-loss exponent
\(\sigma \): std of zero-mean Gaussian distributed random variable \(X \) (dB)

Environmental clutter
Wireless Links – Signal Propagation

<table>
<thead>
<tr>
<th>Environment</th>
<th>path-loss exponent n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban Area</td>
<td>2.7 to 3.5</td>
</tr>
<tr>
<td>Suburban Area</td>
<td>3 to 5</td>
</tr>
<tr>
<td>Indoors (LOS)</td>
<td>1.6 to 1.8</td>
</tr>
<tr>
<td>Indoors (no-LOS)</td>
<td>4 to 6</td>
</tr>
<tr>
<td>Industrial (no-LOS)</td>
<td>2 to 3</td>
</tr>
</tbody>
</table>
Wireless Links – Signal Propagation

Log-normal shadowing empirical model

n, σ: Data measurements over a wide range of locations and tx-rx distance, then linear regression...

<table>
<thead>
<tr>
<th>Environment</th>
<th>Frequency</th>
<th>n</th>
<th>σ (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vacuum, infinite space</td>
<td></td>
<td>2.0</td>
<td>0</td>
</tr>
<tr>
<td>Retail store</td>
<td>914 MHz</td>
<td>2.2</td>
<td>8.7</td>
</tr>
<tr>
<td>Grocery store</td>
<td>914 MHz</td>
<td>1.8</td>
<td>5.2</td>
</tr>
<tr>
<td>Office with hard partition</td>
<td>1.5 GHz</td>
<td>3.0</td>
<td>7</td>
</tr>
<tr>
<td>Office with soft partition</td>
<td>900 MHz</td>
<td>2.4</td>
<td>9.6</td>
</tr>
<tr>
<td>Office with soft partition</td>
<td>1.9 GHz</td>
<td>2.6</td>
<td>14.1</td>
</tr>
<tr>
<td>Textile or chemical</td>
<td>1.3 GHz</td>
<td>2.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Textile or chemical</td>
<td>4 GHz</td>
<td>2.1</td>
<td>7.0, 9.7</td>
</tr>
</tbody>
</table>
Office Environment
Wireless Links – PHY performance

• Signal distortion

• Noise due to electronics (RF design) – Additive white noise Gaussian Channel

• Interference:
 • intra network (> 1 users on the same type of network & the same channel)
 • Adjacent channels (HW filters)
 • Inter network: different types of networks (e.g. WSN + WiFi) on overlapping channels

• Additional factors that can affect interference:
 • Transmission power
 • Channel bandwidth
 • **Spectrum spreading mechanism & medium access scheme**
Wireless Links – PHY Performance

• Signal-to-Noise-plus-Interference Ratio

\[\text{SINR} = 10 \log_{10} \left(\frac{P_{\text{recv}}}{N_0 + \sum_{i=1}^{k} I_i} \right) \]

• Bit Error Rate (with respect to type of modulation & data rate R):

DPSK:

\[\text{BER}(\text{SINR}) = 0.5 e^{-\frac{E_b}{N_0}} \]

\[\frac{E_b}{N_0} = \text{SINR} \cdot \frac{1}{R} \]
Wireless Links – PHY Performance

• Channel modelling for capturing the temporal behavior of a wireless channel/environment (modeling SNR or BER)

- Rayleigh channel
- Statistical time varying attributes - no LOS
- Primary non LOS + 2ndary LOS

Envelop of fading signal

Or design your own model
Wireless Links – How to handle the spectrum

Spread Spectrum:

• Compensates from interference and fading – allows multiple users on the same bandwidth
• The transmission bandwidth >> minimum required signal bandwidth
• Transmitter: pseudo-noise sequence for spreading signal (seed, algorithm)
• Receiver side: cross-correlation with a locally generated pseudo-noise sequence

William Stallings, Data and Computer Communications, Ch. 9, 7th Edition

Multipath fading:
Delayed spread signal will correlate poorly with receiver → interfering signals will be discarded
Wireless Links – How to handle the spectrum

• Spread Spectrum
 • Direct Sequence Spread Spectrum
 • Frequency Hopping
 • Chirp Sequence Spread Spectrum
Wireless Links – How to handle the spectrum

• Spread Spectrum
 • Direct Sequence Spread Spectrum

The baseband signal is directly multiplied by the pseudo-noise sequence → each bit is represented by multiple bits.

transmitted signal >> *information signal*

At the receiver: the de-spreading of the signal results at spreading the interference over a larger bandwidth.
Wireless Links – How to handle the spectrum

Direct Sequence Spread Spectrum – Example

Wireless Links – How to handle the spectrum

• Spread Spectrum
 • Frequency Hopping Spread Spectrum:

The pseudo-noise sequence is used for changing the transmission frequency ->

Signal broadcast over seemingly random series of frequencies

The transmitted carrier hops from one channel to another – small bursts / channel

Receiver: remain in synchronization with the transmitter for recovering the initial signal.
Wireless Links – How to handle the spectrum

• Spread Spectrum
 • Frequency Hopping Spread Spectrum:

If a signal is sent over at the same time & the same channel with another signal then there will be a *collision*

• FH/Time Division: more than one users use the same sequence
• Adaptive FH: allows skipping certain frequencies that are used by non-hopping ISM systems.

BT & BSN based on BT

Static Frequency Allocation

Adaptive Frequency Allocation
Wireless Links – How to handle the spectrum

WSN in RF-harsh environments / tracking apps / Long Range WSN!

• Spread Spectrum
 • Chirp Spread Spectrum:

 Windowed chirp: a sinusoidal signal whose frequency changes linearly over a time window.

 ![Graph of windowed chirp]

 No pseudo-noise elements (DSSS, FH)
 Subchirps: patterns of smaller chirps
 Used in different frequency sub-bands with different chirp directions
 Concatenated to construct a longer chirp symbol
Wireless Links and WSN

• WSN
 • Small transmission range (most of them)
 • Small delay spread (nanoseconds, compared to micro/milliseconds for symbol duration)

• WSN fading is typically considered flat (SS techniques are helping):

 \[\text{BW of signal} < \text{BW of the channel} \]
 \[\text{Delay Spread} < \text{Symbol period} \]

+ the spectral characteristics of the transmitted signal are preserved at the receiver
- the received signal strength may change over time due to multipath & inter-symbol interference (depending on the type of the environment, antenna & HW)
Today’s Objectives

- Part B: Protocol stack preliminaries for WSN
OSI Reference Model

OSI Reference model

Typical data & industrial networks: a stack of vertical planes

Well defined responsibilities @ each plane - well defined roles within the network

Well defined interfaces between different layers

Trade off between layers/range of functionalities and complexity (especially for the industrial protocols)
OSI Reference Model

The more the layers, the higher the complexity

The higher the computational & memory demands

The more complex the transmission schemes & energy demands

BUT: More scalable, interoperability against low-level differences, and better structured (complex operational conditions)
Protocol Stack Model for WSN

Sensor nodes have multiple roles: (a) data originators, (b) data routers, (c) *sinks and gateways*

Address the challenge of operating in an unattended manner in the field while under several constraints: power limitations, multipath propagation phenomena, exposure/coexistence with other networks, *the demands of the application*, etc.

Protocol stack → combination of vertical and *horizontal* planes

“A wireless sensor networks”, Ian F. Akyildiz, Mehmet Can Vuran, 2010, Wile, Ch 1

A reference model for WSN
Protocol Stack Model for WSN

Physical Layer: (de)modulation, spectrum allocation, transmission and reception (relying on well defined techniques and standards)

Data Link Layer (noisy environment / dynamic topologies): Error Control techniques for reliable communication and manage channel access through the MAC sublayer

Network Layer: (Energy-aware) data routing

Transport layer: Data flow maintenance

A reference model for WSN
Protocol Stack Model for WSN

Power management: monitoring available energy level & accordingly allocate resources (e.g. turn off radio after receiving a message or when power is critically low stop all forwarding services.)

Mobility management plane: detects and registers the movement of sensor nodes (e.g. for routing)

Task management plane: balances and schedules the sensing tasks given to a specific region. → Network-wide collaboration & achieving a global optimum (e.g. detecting a target, preserving energy)

A reference model for WSN
Protocol Stack Model for WSN

At the level of the Application Layer

Localization Plane:
Accurate view of the observed sensor field. Tracking application & Location-based services

Synchronization Plane:
Local clock for sensing, processing, and communication. Timing information for data consistency. Collaborative execution of events (modelling the physical environment).

Topology Management Plane:

A reference model for WSN
Protocol Stack Model for WSN

Cross-layer design of protocols: tight interaction between different layers of the vertical protocol stack (through the horizontal planes)
Increased efficiency in code space and operating overhead

Structured design – different instances with respect to the application demands

A reference model for WSN
Protocol Stack Model for WSN

An example of instantiation...
Protocol Stack Model for WSN

- **MAC approaches – design considerations for WSN**
 - Create the network infrastructure (dense deployment, self-organizing ability)
 - Allow fair and efficient sharing of the wireless communication medium between sensor nodes.
 - **Energy (communication is the most expensive aspect of WSN)** -> Balance between smart radio control and protocol design

- **Error control of transmission data:**
 - Forward error correction (FEC): @ HW level, simple encoding / decoding techniques
 - Automatic repeat request (ARQ): **Retransmission cost and overhead**. On the other hand, decoding complexity is greater in FEC, as error correction capabilities need to be built in.
Techniques for WSN MAC

- **MAC approaches**

 - Contention-based
 - CSMA and its variations
 - On-demand allocation for those that have frames for transmission
 - Sensing the carrier before attempting a transmission
 - Scalable / no need for central authority
 - Idle listening / Interference / Collisions / Traffic fluctuations → Energy consumption
 - Multi-hop topologies (hidden / exposed terminal problem)

 - Fixed assignment
 - Schedule that specifies when, and for how long, each node may transmit over the shared medium
 - Energy efficient
 - Interference, collisions are not a problem
 - Synchronization
 - Central authority

 - Scheduled-based

 - On demand

Techniques for WSN MAC

hidden terminal problem

Exposed terminal problem
Techniques for WSN MAC

Basic CSMA/CA

Inter-frame Space: waiting time, after the carrier has been found idle
*: ACK is optional
Techniques for WSN MAC

• Contention-based
 • RTS / CTS before transmission

• Low-level carrier sense method at PHY
 • Transmitter: preamble (no data) to notify receivers for turning on their radio and potential transmitters that the channel is busy
 • Receivers can be on sleep mode and periodically sample the carrier

• Clear Channel Assessment
Techniques for WSN MAC

• Contention-based: RTS/CTS
 • RTS / CTS before the actual transmission between the transmitter and receiver pair for reserving the transmission medium
 • Combined with carrier sense for mitigating (not solving) the hidden/exposed terminal problem

Holger Karl, Andreas Willig, Protocols and Architectures for Wireless Sensor Systems, 2005, Willey, Ch. 5
Techniques for WSN MAC

Contention-based: RTS/CTS

For WSN: idle listening with RTS/CTS is not energy-conservative → combined with sleep and wake up schedules between the nodes

- Wakeup schedule between neighbors
- Active period << wakeup period & sleep period
- Use SYNCH, RTS, CTS phases
 - SYNCH: for synchronization on wakeup and sleep (and drifting)
 - RTS/CTS: for data transmission
 - If RTS/CTS: the packet exchange continues, extending the nominal sleep time.

Holger Karl, Andreas Willig, Protocols and Architectures for Wireless Sensor Systems, 2005, Willey, Ch. 5
Techniques for WSN MAC

Contestation-based: Low-level carrier sense

@ PHY header:
TX: Preamble that is used to notify receivers of the transfer
RX: Adjust their circuitry to the current channel conditions.

Techniques for WSN MAC

Contestation-based: Low-level carrier sense

WiseMAC: CSMA-based + piggyback information in the ACK related to sleep time for deciding the time and duration of preamble

Transmitter schedules transmissions so that the receiving node’s sampling time corresponds to the middle of the sender’s preamble

Clock drift: the preamble is extended with a time proportional to the length of the interval since the last message exchange.

Adapting preamble duration with respect to traffic conditions:
- Light traffic: longer preambles
- Heavy traffic: short preambles

Techniques for WSN MAC

Contention-based: Clear Channel Assessment

- What is noise and what is data (in terms of received signal strength)
 - Ambient noise may change significantly depending on the environment
 - Packet reception has fairly constant channel energy

- Take a signal strength sample when the channel is assumed to be free/idle
 - Right after a packet is transmitted or when no valid data is received

- Samples are exponentially averaged, in order to decide on thresholds of free channel

- Random backoff if channel is found busy (+Immediate ACK for received packets)
Techniques for WSN MAC

Scheduled-based

• TDMA & variations

• Clustering & Hierarchical approaches
Techniques for WSN MAC

Scheduled-based: TDMA & variations

- Direct single-hop communication with a central node (Base Station)
- How the coordinator pre-allocates the slots (based on negotiation or not, based on previous performance)
- On-demand polling for data (initiated by the coordinator)
- Pre-allocation of slots for retransmissions or priority traffic

Suitable for small scale WSN (e.g., body area networks)
Techniques for WSN MAC

Scheduled-based: TDMA & variations

- Simple / Limited requirements on computational efficiency
- Power efficiency (strict master-slave mode)
- Coordinator has a leading role (single point failures)
- Assumption of perfect synchronisation

Suitable for small scale WSN (e.g., body area networks)
Techniques for WSN MAC

Scheduled-based: TDMA & variations

TRAMA

- Nodes are synchronized – no central entity

Nodes exchange neighborhood information: 2-hop neighborhood
Nodes exchange schedules of transmission (point to point links)
Nodes with little traffic: release their slots for the remainder of the frame for use by other nodes with heavy traffic
Techniques for WSN MAC

Scheduled-based: TDMA & variations

TRAMA

- Slot allocation
 - node identifier x & hash function h (globally known)
 - For time slot t: priority $p = h(x \oplus t)$
 - Compute this priority for next k time slots for node x and all two-hop neighbors
 - Node uses those time slots for which it has the highest priority

	$t = 0$	$t = 1$	$t = 2$	$t = 3$	$t = 4$	$t = 5$
A	14	23	9	56	3	26
B	33	64	8	12	44	6
C	53	18	6	33	57	2

Priorities of node A and its two neighbors B & C

Knowledge of all priorities within the 2-hop neighborhood.

 Significant computation and memory in dense sensor networks
Techniques for WSN MAC

Scheduled-based: Clustering & Hierarchical approaches

- Dense network of nodes, reporting to a BS
- **Each node can directly reach BS**
- Round-robin CH selection
- CH advertise themselves, ordinary nodes join CH with strongest signal
- TDMA within a cluster – **no peer to peer**
- CHs collect & aggregate data from all cluster members
- DSSS for inter-cluster

LEACH

![Diagram of LEACH network](image.png)
Techniques for WSN MAC

Scheduled-based: Clustering & Hierarchical approaches

- 7-8 times lower overall energy dissipation, compared to the case where each node transmits its data directly to the sink
- 4-8 lower energy than in a scenario where packets are relayed in a multihop fashion.

Techniques for WSN MAC

Scheduled-based: Clustering & Hierarchical approaches

- CH selection: available energy resources
- CH form the network backbone (multi-hop)
- Sensor Nodes follow their CH & use a contention-based mechanism to transmit (sleep on the slots of CH)

S. Biaz and Y. Dai Barowski. 2004. "GANGS": an energy efficient MAC protocol for sensor networks"
References and Material for Reading

Holger Karl, Andreas Willig, Protocols and Architectures for Wireless Sensor Systems, 2005, Willey, Ch. 4

Dag Grini, “RF basics for non-RF engineers”, available at http://www.slideshare.net/SAIFUUU/rf-basics-15017995

References and Material for Reading

Holger Karl, Andreas Willig, Protocols and Architectures for Wireless Sensor Systems, 2005, Willey, Ch. 5

Techniques for WSN MAC

Holger Karl, Andreas Willig, Protocols and Architectures for Wireless Sensor Systems, 2005, Willey, Ch. 5