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A Recursive Approach to Low Complexity 
Codes 

R. MICHAEL TANNER, MEMBER, IEEE 

A bstruci- A method is described for constructing long error-correcting 
codes from one or more shorter error-correcting codes, referred to as 
subcodes, and a bipartite graph. A graph is shown which specifies carefully 
chosen subsets of the digits of the new codes that must be codewords in 
one of the shorter subcodes. Lower bounds to the rate and the minimum 
distance of the new code are derived in terms of the parameters of the 
graph and the subcodes. Both the encoders and decoders proposed are 
shown to take advantage of the code’s explicit decomposition into subcodes 
to decompose and simplify the associated computational processes. Bounds 
on the performance of two specific decoding algorithms are established, 
and the asymptotic growth of the complexity of decoding for two types of 
codes and decoders is analyzed. The proposed decoders are able to mahe 
effective use of probabilistic information supplied by the channel receiver, 
e.g., reliability information, without greatly increasing the number of 
computations required. It is shown that choosing a transmission order for 
the digits that is appropriate for the graph and the subcodes can give the 
code excellent burst-error correction abilities. The construction principles 
are illustrated by several examples. 

I. INTRODUCTION 

T HE EXPLICIT use of recursion in the construction of 
error-correcting codes is not new. In addition to the 

myriad construction techniques shown in [I], many well- 
known codes involve construction of a long length code 
from shorter codes. For example, Elias’ product codes are 
straightforwardly recursive [2]; the Reed- Muller codes can 
also be seen to be a recursive construction when viewed as 
modifications of the basic product code construction [3]; 
and similarly Fomey’s concatenated codes are another 
variation on the recursive theme of product codes, al- 
though there is no apparent advantage to more than one 
stage of recursion within his framework [4]. It is note- 
worthy that in all of these constructions the conceptual 
simplicity of the recursion goes hand in hand with a 
simplicity in the computational process required for their 
implementation. Although the threshold decoder for the 
Reed-Muller codes can tend to hide the recursive struc- 
ture, in all three of these techniques the conceptual decom- 
position of the recursion leads to a corresponding simplify- 
ing decomposition of the computational process. Unfor- 
tunately, all three would likewise appear to testify that 
simplicity comes with a certain price; the decomposition 
that affords the simplicity appears to prevent the long 
versions of the codes from being of the quality that is 
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known to be possible, and the simple decoding algorithms 
are not even able to take advantage of the full power of the 
code. While modifications to both the codes and the decod- 
ing algorithms can improve the situation (e.g., for product 
codes, [5] and [6]), the improvements increase the complex- 
ity. 

Recursion has been a central concept in a closely related 
field of study: the design and analysis of computer algo- 
rithms [7] and complexity theory. The complexity of a 
particular problem can often be understood by showing 
how the problem can be decomposed into smaller problems 
of the same type. For example, an algorithm for sorting a 
large unordered list of numbers consists of breaking the list 
into smaller lists, sorting each of these, and then merging 
the small sorted lists into successively larger sorted lists. 
The analysis of the algorithm then focuses on the work 
required for the merging process, because it is the merge 
work needed for a given subdivision scheme that ultimately 
determines the growth of complexity. This same line of 
attack has proven fruitful in a wide variety of problems. 

In this paper we introduce a recursive approach to the 
construction of codes which generalizes the product code 
construction and suggests that the design of algorithms for 
encoding and decoding is amenable to the basic techniques 
of complexity theory. Long codes are built from a bipartite 
graph and one or more subcodes; a new code is defined 
explicitly by its decomposition into shorter subcodes. These 
subcodes are then used by the decoder as centers of local 
partial computations that, when performed iteratively, cor- 
rect the errors. The decoding algorithms we propose gener- 
alize and unify the decoding schemes originally presented 
by Elias for his product codes and those of Gallager’s 
low-density parity-check codes [ 8, pp. 4 1 - 521. Correspond- 
ingly, the asymptotic growth rate is also comparable to that 
of these two low-complexity schemes. This paper provides 
a proof of a relatively weak lower bound on the minimum 
distance of the block code constructions and a related 
decoding algorithm’s correction abilities, but our study of 
short codes indicates that these low-complexity codes can 
have minimum distances as great as those of the best-known 
codes, and that simple algorithms can correct the errors 
effectively. Furthermore, the proper choice of the transmis- 
sion order for the bits can guarantee good performance 
against burst errors or a mixture of burst and random 
errors. The decoding by iteration of a fairly simple basic 
operation makes the suggested decoders naturally adapted 
to parallel implementation with large-scale-integrated cir- 
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cuit technology. Since the decoders can use soft decision 
information effectively, and because of their low computa- 
tional complexity and parallelism can decode large blocks 
very quickly, these codes may well compete with current 
convolutional techniques in some applications. 

II. CODE CONSTRUCTION 

A new code is formed from a bipartite graph and one or 
more codes of shorter length, which will be referred to as 
subcodes. A bipartite graph is one in which the nodes can 
be partitioned into two disjoint classes. An edge of the 
graph may connect a node of one class to a node of the 
other class, but there are no edges connecting nodes of the 
same class. To define the new code, all of the nodes of one 
class are associated with digits of the code; all the nodes of 
the other are associated with a subcode whose length is the 
same as the degree of the node. Each of the edges incident 
on a subcode node is assigned a unique position number 
between one and n, the length of the associated subcode. It 
is then natural to think of the digits to which each subcode 
node is connected as forming a word in that subcode, with 
each digit assigned the position in each subcode corre- 
sponding to the label of the connecting edge. This defines 
the words in the new code: a pattern of digits is a code- 
word if and only if the digits connected to each subcode 
form a word in the subcode. The code is thus specified by 
requiring that particular permutations of subsets of the 
digits be codewords in the subcodes. This is illustrated in 
Fig. 1. 

Without further restriction, this definition is too broad 
to be meaningful. Given the parity-check matrix of an 
arbitrary linear code, it is easy to construct a correspond- 
ing bipartite graph by identifying each row with a subcode 
node, each column with a digit node, and creating an edge 
in the graph for every nonzero matrix entry. This mapping 
of a code to a graph also serves to point out that the graph 
corresponding to a code is not unique. Different matrices 
defining the same code lead to different graphs. 

By placing restrictions on the form of bipartite graphs 
and on the subcodes, it is easy to move beyond this trivial 
interpretation. The central idea is to use the graph to 
structure the equations defining the code in a way that 
facilitates encoding and decoding. To start the exploration 
of the effect of different restrictions, we first consider 
graph interpretations of three well-known coding schemes 
- low-density parity check codes, Bose- Chaudhuri- 
Hocquenqhem (BCH) codes (see e.g., [9, pp. 269-309]), 
and product codes-and some related examples. 

An appealing uniformity is obtained by requiring that 
the graph be regular. Let the degree of every digit node be 
a constant j and the degree of every subcode node a 
constant k. By letting each of the subcode nodes represent 
a simple parity check, the graph defines a low-density 
parity-check code. Note that if as the name impliesj and k 
are very small compared to the number of digit nodes (the 
length of the code), the graph corresponds to a sparse 
parity-check matrix. Further restriction to the case j = 2 

Subcode I Subcode 2 
Subcode nodes 
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Fig. 1. Code definition. 

and binary digits will of course yield a circuit code, since 
each digit node then is connected to only two subcodes and 
can serve to identify a single edge between the two [9, pp. 
136- 1381. 

When all of the subcodes are simple binary parity checks, 
there is obviously no need to assign position numbers to 
each of the bits in a subcode, as each of the subcodes is 
invariant under arbitrary permutation of its bits. Generally 
this is not the case, and the assignment of position num- 
bers is of critical importance in determining both the rate 
and the minimum distance of the code. A straightforward 
graph representation of .a BCH code will serve to demon- 
strate the potential difficulty of the assignment problem. A 
primitive binary BCH of prime length can be specified by 
requiring that all codeword polynomials have as roots 
several successive powers of (11, where ~1 is a primitive 
element of GF (2”) and 2” - 1 is prime. For the purpose 
of defining a graph, each of the roots can be viewed as a 
subcode that checks all the bits. Since the codelength is 
prime, all of the subcodes are simply Hamming codes, but 
the position numbering is different for each root. Thus the 
codeword must be a word from a Hamming code under as 
many different permutations as there are nontrivial roots. 
Clearly in this case the entire question of code rate and 
minimum distance rests on understanding the effect of 
different position number assignments. The form of the 
graph alone gives little insight. 

The impact of a natural graph representation is more 
evident in the case of the standard product code construc- 
tion. A codeword of length n, n2 is formed as an n, by n2 
rectangular array of digits where each row is a codeword of 
a code of length n2, and each column is a codeword of a 
code of length n,. To form a corresponding graph, create 
n, subcode nodes of degree n2, one for each of the row 
constraints, and n2 subcode nodes of degree n ,, one for 
each of the column constraints. The node corresponding to 
each digit is then connected to two subcode nodes, one for 
its row and one for its column. This is demonstrated in 
Figs. 2 and 3 using the product of two [7, 4, 31 Hamming 
codes.’ The usual proof that the minimum distance of the 

‘Following the notation of [I], a linear code will be denoted by a 
3-tuple, [n, k, d,,]. 
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Fig. 2. Standard [49, 16, 91 product code from [7, 4, 31 Hamming code. 

n 

Fig. 4. The bipartite graph as two rings of seven subcode nodes. 

Fig. 3. Associated bipartite graph. 
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product code must be at least as great as the product of the 
minimum distances of the two constituent codes may now 
be rephrased in graph terms. Suppose two codewords differ 
in at least one digit. That digit is connected to one column 
subcode node, which implies because that subcode has 
minimum distance d,, that the two codewords differ in at 
least d, of the digits connected to that subcode node. These 
in turn are connected to at least d, different row subcode 
nodes; each of these has minimum distance d, and no two 
of them are connected to the same bit. Thus the codewords 
must differ in at least d,d, digits. The point that we wish to 
emphasize is that this is a consequence of the properties of 
the graph. This lower bound on minimum distance holds 
independently of the particular position assignments of the 
digits in each subcode. The product code construction of 
course specifies position assignments for all of the digits, 
but the lower bound on the distance would be valid for any 
of the myriad possible assignments. 

To demonstrate the effect of different assignments, con- 
sider once again the example of the product of two [7,4, 31 
binary Hamming codes. Starting from the bipartite graph 
of Fig. 3, we arrange it so that it appears as two rings of 
seven subcode nodes with a bit node between every pair of 
top and bottom nodes as shown in Fig. 4, and impose the 
condition that the subcode position assignments have cir- 
cular and reflexive symmetry so that rotating the graph 
about its axis or reflecting about the midplane does not 
change the relationship between the bits and the subcodes 
at any position. The code will then be specified by choos- 
ing one of the 7! possible position assignments for the 
seven bits connected to a particular subcode node. Many 
of these choices will yield equivalent codes, obviously. Fig. 
5 gives three assignments yielding markedly different codes: 
the cyclic Hamming code assignment leads to the standard 
[49, 16, 91 code; the next gives a [49, 12, 161 code; the third 
gives a [49, 7, 171 code. A comparable best-known code has 
parameters [49, 12, 171 [l, p. 6781. Note further that the 
largest minimum distance far exceeds the lower bound of 
nine guaranteed by the graph properties alone. Moving one 

Fig. 5. The effect of different bit position assignments, 
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Fig. 6. A [28, 9, IO] code. 

step further, let us now consider a simple example that 
starts from a different graph. 

A complete graph on 8 nodes has 28 edges, one connect- 
ing every pair of nodes. From this we create a bipartite 
graph by replacing each edge with a bit node and two 
edges so that there is now a unique bit node connected to 
each pair of nodes, which can then serve as subcode nodes. 
Since the subcode nodes have degree seven, associate each 
with a [7, 4, 31 Hamming code. Of the many possible ways 
of assigning bit positions, those with some natural symme- 
try seem most appealing. The code shown in Fig. 6 is built 
with the graph in the form of a spoked wheel; the hub 
subcode is the cyclic Hamming code, and the rest of the 
assignments have circular symmetry. It produces a [28, 9, 
lo] code, matching the best-known code [ 1, p. 6761. 

As both the modified product codes and the standard 
BCH code demonstrate, the choice of position assignments 
in the subcodes can dramatically affect the parameters of 
the resulting code. This paper will focus, however, on those 
code properties that are derivable from the graph parame- 
ters and the subcode minimum distance. Although the 
bounds on the code rate and minimum distance that result 
are weak when compared for example to the comparable 
BCH bounds, the computational properties of the algo- 
rithms we will present could make these codes attractive 
nonetheless. Convolutional codes in current use are simi- 



536 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-27, NO. 5, SEPTEMBER 1981 

larly weak in terms of rate and minimum distance, but 
their computational properties make them of practical im- 
portance. Moreover the evidence provided by short codes 
suggests that it is the graph-based bounds that are weak, 
not the codes. Future work may well establish tighter 
bounds. 

For the sake of the discussion of encoding and transmis- 
sion order we need more complete knowledge of the code 
structure than is provided by graph parameters and sub- 
code minimum distance alone. The following class of codes 
will be used to demonstrate several techniques. 

Field Plane Hexagon Codes 

The projective plane PG(2, q) [ 10, p. 61 has (q3 - l)/(q 
- 1) lines and an equal number of points. We create a 
subcode node for each point P and one for each line L, 
and a bit node for each point-line pair (P, L). A bit node 
(P, L) is connected in the obvious way to subcode node P 
and subcode node L. The resulting graph is a generalized 
hexagon [ 11, pp. 300- 3051. It can be presented as a double 
ring similar to Fig. 4 with all point subcode nodes in the 
top ring and all line subcode nodes in the bottom: let (Y be 
a primitive element of GF(q3) represented by a vector 
a E IF3, lF = GF(q). A point of PG(2, q) is a one-space of 
F3, i.e., {y(~ y E IF}. Consequently the distinct points of 
PG (2, q) can be cyclically indexed by (Y~, i = 0, 1, - . a, t - 1, 
with t = ((q3 - l)/(q - 1)) (a’ is a primitive element of 
F) to form the top ring. Similarly, let /I E IF3 correspond to 
a particular line in PG (2, q) and let A be the 3 X 3 matrix 
over IF that is the companion of cw; that is, Ay = (ay) for 
some y E GF(q3). The line in the bottom ring below the 
point (Y~ is then B@, B = (AT)-‘. Incidence in PG(2, q) 
can be defined via the dot product operation in IF 3; namely, 
point a, is incident on line fl, whenever (Y: .&, = 0. The 
double ring presentation is circularly symmetric because if 
(Y:-& = 0, then (AiaJT*(Bi&) = aT(A=)‘B’P, = a:-& 
= 0. Since each subcode has q + 1 incident bits, this graph 
can be combined with any code of length q + 1 to produce 
a code of length (q + 1)(q3 - l)/(q - 1). 

III. CODE PROPERTIES 

The properties of the bipartite graph alone can be used 
to guarantee lower bounds for the code rate and minimum 
distance. Obtaining a bound on rate is easy if all of the 
subcodes are linear, implying linearity of the resulting 
code. 

Theorem I: Let R be the rate of a linear code con- 
structed from a bipartite graph whose digit nodes have 
degree m and whose subcode nodes have degree n. If a 
single linear subcode with parameters (n, k) and rate r = 
k/n is associated with each of the subcode nodes, then 

R 2 1 - (1 - r)m. (3.1) 
Proof: Suppose there are S subcode nodes in the 

graph. Then the code must have (n/m)S digits, since each 
digit node is connected to m of the (n)S edges in the graph. 
Each subcode node contributes n - k equations to the 

parity-check matrix for a total of (n - k)S. These equa- 
tions may not be linearly independent. Therefore 

R r (n/m)S - b - k)S 
Wm>S 

n-k 
=1-m 7 

( ) 
= 1 - m(1 - r). 

As an illustration of this simple theorem, consider the 
codes shown in Fig. 5. The digit nodes of this graph have 
degree two, so that the rate of these codes must be greater 
than 1 - 2(1 - 4/7) = l/7, which is achieved by the [49, 
7, 171 code. 

A lower bound on the minimum distance of the code can 
be derived from the minimum distance of the subcode and 
the girth of the bipartite graph. Note that the girth of a 
bipartite graph must always be even. 

Theorem 2-Tree Bound on Minimum Distance: Let d 
be the minimum Hamming distance of the single subcode 
acting at all subcode nodes, D be the minimum Hamming 
distance of the resulting code, m be the degree of the digit 
nodes, and g be the girth of the bipartite graph. Then 

D 2 d [(d - l)(m - l)](g-2)‘4 - 1 
(d - l)(m - 1) - 1 

+ & [(d - l)(m - 1)](g-2”4, for g/2 odd, 

(34 

D I d [ @ - l>(m - 01 g’4 - 1 (d - l)(m - 1) - 1 ’ forg/2 even* 
(3.3) 

Proof: Suppose two codewords differ in a digit con- 
nected to a particular subcode node. Arrange the graph in 
the form of a tree with that subcode as root, as shown in 
Fig. 7. The two codewords must differ in at least d digits at 
the highest digit level. The minimum distance of the sub- 
code nodes at the next level down ensures that, descending 
to the next digit level, the codewords will differ along 
d(d - l)(m - 1) branches. If all of these edges do not 
connect to distinct digit nodes, it implies that there is a 
cycle of length six. If the graph has girth greater than six, 
this next level of digits must have at least d [( d - l)( m - l)] 
digits where the codewords differ. The number of differing 
digits increases by a factor of (d - l)(m - 1) at each new 
digit level, until at least a depth equal to g/2. If g/2 is 
odd, the first level where differing branches may join to 
form a cycle is a digit level, and each of these digits may 
terminate m different branches. This leads to the factor of 
l/m in the last term. Summing the differing digits over all 
the levels yields 

(r-6)/4 

Did ,zo [(d- l>(m- l,]’ 

+i[(d- l)(m - l)](g-2”4 (3.4 
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Fig. 7. Tree bound on minimum distance. 

for g/2 odd and 
(g--4)/4 

D>d x [(d-l)(m-l)]i 
j=O 

(3.5) 

for g/2 even, which reduce to the expressions given. 

It is possible to derive a different bound by using a digit 
as the root, but the given bound will always be better so 
long as d L m + 2. It is interesting to note that this bound, 
which is closely related to arguments used by Gallager [8, 
pp. 18-201, reduces to the bound satisfied by the product 
code construction when the graph has girth eight. 

Unfortunately the bound is relatively weak. While the 
distance D grows exponentially with the graph girth, so 
does the code length N. Looking again at the tree, it is easy 
to see that 

N 1 n [(n - Mm - 111 g’4 - 1 
(n - l)(m - 1) - 1 (3.6) 

for g/2 even. Consequently this bound alone does not 
prevent the ratio of minimum distance to code length from 
approaching zero as the girth of the graph is increased. 

The bound of Theorem 2 will be strongest if the length 
of the code achieves equality in (3.6), thereby minimizing 
the length for a fixed lower bound on the minimum 
distance. Then all digits in the code are contained in the 
tree of Fig. 7 when it is extended to the level where the first 
cycle is formed. For such a graph, the graph diameter, 
which is the length of the path connecting the most distant 
pair of nodes in the graph, is t = [g/2]. The girth of an 
undirected bipartite graph must always satisfy g I 2t + 1, 
as the following argument shows: let vi and v2 be two 
nodes in the graph for which the shortest path has length t, 
and let v3 be the first node encountered on another path 
from v, to v2. By definition of the diameter, the minimum 
path from v3 to v2 must have length less than or equal to t. 
Clearly this path cannot include v2. Therefore there is a 
cycle from v, to v2 to v3 and back to v, of length less than 
or equal to 2t + 1. The condition t = [g/2] is therefore a 
fairly stringent requirement on the graph. With a graph 
satisfying this requirement, however, any node in the graph 

can be used as the root of the tree of Fig. 7 and the tree 
will contain all the nodes at depth g/2 - 1 or less. 

Fortunately the existing literature provides many avenues 
for constructing regular graphs satisfying the girth condi- 
tion approximately if not precisely. By inserting digit nodes 
in the edges of a Moore graph [ 121 or of a graph based on a 
generalized polygon [ 11, pp. 300-3051, bipartite graphs 
with digit node degree two that satisfies the condition 
exactly can be obtained at a variety of sizes and girths. 
Although this mathematical approach cannot furnish non- 
trivial graphs with girths greater than 32 and t = [g/2], 
this poses no particular obstacle from a practical point of 
view. The field plane hexagon of Section II has a girth of 
only 12, yet can easily produce codes longer than current 
applications require. 

An algorithmic attack on the graph construction prob- 
lem is also possible. Using the matrix equivalent of the 
code graph, Gallager provided a construction to guarantee 
independent decoding iterations for his low-density parity- 
check codes [8, pp. 91-991. The first 1 g/2 - l] iterations 
are independent, and so his construction is precisely 
addressed to the issue of achieving a large girth for a given 
graph diameter. His construction will only ensure a girth 
approximately equal to the diameter, however. Given the 
exponential dependence of length on girth, his construction 
yields graphs much weaker than those of the generalized 
polygons. 

IV. ENCODING 

The form of the best encoder for a code of this type will 
necessarily depend on the specific graph, subcodes, and 
position assignments. Nevertheless, fairly general consider- 
ations enable us to conclude that the complexity of encod- 
ing can be made at least comparable to the complexity of 
encoding normal cyclic codes, for example. 

For linear codes, of course, the linearity alone guarantees 
a relatively simple algorithm; solving the defining equation 
H * C = 0 for the parity check digits can be done in fewer 
than K(N - K) multiplications and a like number of 
additions. The H matrix of a recursively defined code is 
sparse, and thus parallel algorithms for sparse matrices can 
be used to solve this equation [ 131. With a cyclic code the 
null matrix has a simple representation, each row being a 
cyclic shift of a fixed row, which permits a single shift 
register with fixed connections to carry out the computa- 
tions. The same strategy can be employed to good end with 
many of the recursively defined codes. What is required is 
that the code be invariant under a group of automorphisms 
sufficiently powerful to carry one codeword into an orbit 
which includes a basis for the code space. Encoding can 
then be implemented using registers which are wired to 
carry out the necessary transformations. Both generator 
matrix and null matrix versions of this concept will be 
discussed in the context of an example in Section VIII. 

Another avenue to the implementation of encoders ex- 
ploits the subcode constraints directly to reduce the re- 
quired computation. The key idea is to use the subcode 



538 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-27, NO. 5, SEPTEMBER 1981 

constraints to propagate the solution to the constraint 
equations across the graph. The normal [n2, k2, d2] prod- 
uct code can be encoded in two steps using k subcode 
encodings followed by n subcode encodings. The following 
theorem shows a similar propagation algorithm that can be 
used in some of the field plane hexagon codes introduced 
in Section II. 

Theorem 3: Given an [n, k, d] subcode, there exists an 
assignment order in the nodes of a field plane hexagon 
such that knowledge of k(k - 1)n + k bits can be used to 
encode a codeword in five steps using fewer than 2((n - 
1)3 - l)/(n - 2) subcode encodings. 

Proof: Fig. 8 exhibits a field plane hexagon in tree 
form with. the subcode nodes corresponding to lines in 
PG (2, q) indicated by squares, those corresponding to 
points indicated by circles. The encoding can proceed in 
five steps. 

,l) An information set of k bits is specified in the top 
subcode and it is encoded. 

2) An additional (k - 1) specified bits are chosen to 
complete the information set for each of the k line sub- 
codes at depth one that share a specified bit with the top 
subcode, and they are encoded. 

3) An additional (k - 1) specified bits are chosen to 
complete an information set for each of the k(n - 1) point 
subcodes that share a bit with the encoded subcodes of 
step 2), and they are encoded. 

4) By the axioms for a projective plane satisfied by 
PG(2, q), each of the line subcodes at the bottom of the 
tree is connected via a unique point subcode with each of 
the k line subcodes of step 2) at depth one. Thus each of 
the bottom subcodes has k incident bits that are either 
specified or computed in step 3). There exists an assign- 
ment order such that they form an information set in each, 
and the bottom subcodes can thus be encoded. 

5) Each of (n - k) (n - 1) point subcodes at depth two 
then have (n - 1) incident bits computed in step 4) and 
the last remaining bit in each case can be encoded. 
The total number of specified bits is, from the first three 
steps, k + k(k - 1) + k(n - l)(k - 1) = k(k - 1)n + k. 
There are 2(( n - 1)3 - l)/(n - 2) subcode nodes in the 
graph; all but (n - k) at depth one are encoded at some 
stage, although for those encoded in step 5), only one bit is 
computed. 

The need for a particular assignment order occurs only 
in the fourth step. If the k bits incident on a bottom 
subcode do not form an information set, it means that 
some of the specified bits could not have been freely 
chosen and that additional bits in that subcode may have 
to be specified for the encoding to be complete. For an 
arbitrary assignment, the set of known bits consisting of 
true information bits and possibly some generally com- 
puted bits, may have to be slightly larger. 

This basic strategy can be adapted to a wide variety of 
graphs and subcodes. The subtlety lies in deducing from 
the graph and the specific properties of the subcodes the 
minimum amount of globally computed information needed 

0 “Line” Subcodes - Specified bit 

0 “Point” Subcodes -*- Computed bit 

Camputotkml Stages: 

-w-D+-- 
I st 2 nd 0 3rd 4th 5 h 

Fig. 8. Encoding a field plane hexagon code. 

to permit propagation of the solution by localized subcode 
computations. 

V. TRANSMISSION ORDER FOR THE DIGITS 

Thus far the digits of a recursively defined code have 
been treated only as corresponding to the unordered digit 
nodes of the graph, with the desirability of one order over 
another influenced simply by the encoder design. If the 
errors introduced by the channel tend to occur in bursts, 
however, the specific order of transmission becomes an 
important issue because it greatly affects the ability of the 
decoder to correct such burst errors. 

Assuming that the code is based on subcodes with a 
certain minimum distance of their own, it is clear that the 
subcode structure alone provides for a large distance be- 
tween any two codewords which differ in many subcodes. 
Consequently, an auspicious transmission order is one 
which causes errors occurring in bursts to appear as low 
weight errors in a large number of subcodes. Even if the 
subcodes themselves are designed to operate against purely 
random errors, following this strategy will enhance the 
burst error correction abilities of the new code. If, in 
addition, the subcodes themselves have superior burst error 
correction properties, the transmission order should make 
a burst of errors appear as many correctable bursts in the 
subcodes. This will be important for a code defined with 
multiple stages of recursion, since the subcodes of the last 
stage will be a smaller recursively defined code with 
guaranteed strength against burst errors. Since in general 
the order must be matched to both the graph and the 
subcode, the field plane hexagon construction will be used 
to illustrate the general strategy. 

Theorem 4: A subcode of length n capable of correcting 
all bursts of length b or less can be used in a field plane 
hexagon to produce a code of length n((n - 1)3 - I)/(n 
- 2) capable of correcting all bursts of length b((n - 1)3 
- I)/(n - 2) or less. 
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Proof Let bits incident on the point subcode corre- 
sponding to (Y, = 1 be labeled arbitrarily zero to n - 1 and 
those incident on any other be given the labeling induced 
by circular symmetry; that is, if the bit between (Y, and /3, 
azfl= 0, is labeled j, the edge between A’a, and B’j3 is 
likewise. A bit in the graph can then be indexed by (j, i), 
j = 0, 1; * *, n- l,andi=O,l;+. ,t - 1, (t = (n - 1)3 - 
I)/(n - 2)). Assign a bit position in each subcode accord- 
ing to labelj. Transmit the bits in lexicographical order on 
\t i), i.e., to, 01, to, 11, * - * ,a t - 11, (LO); * -41, t - 

. * * ,(n - 1, t - 1). Obviously any burst of length b((n 
-’ 1)3 - l)/(n - 2) or 1 ess will cause a burst of length b or 
less in each subcode. If each subcode corrects errors in its 
incident bits according to the subcode burst correction 
procedure, the entire burst will be corrected. 

The graph in this case provides perfect interleaving for 
the point subcodes alone and for the line subcodes alone. 
The advantage of the graph structure is that the same 
memory is simultaneously organized to correct random 
errors as well. 

An analogous order for a complete graph is given in 
Section VIII, 

VI. DECODING 

The principal objective of defining the codes in terms of 
explicit subcodes is to reduce the complexity of the decod- 
ing process to provide high quality codes that can be 
decoded effectively by a computational process whose 
complexity grows only very slowly with increasing code 
length at fixed code rate. Given the close relationship 
between our codes and both product codes and low-density 
parity-check codes, it is not surprising that the decoding 
algorithms we propose blend themes present in those earlier 
works. The crucial concept is the following: low complexity 
error-correction for the recursively defined code is achieved 
by the decomposition of the entire decoding process into 
an ensemble of independent partial decoding processes 
carried out, usually iteratively, by each of the constituent 
subcodes. Information is passed from one subcode to 
another only through statistics associated with a digit they 
have in common. 

Before moving to the exposition of the more involved 
error-correction procedures, the use of a recursively defined 
code for detection warrants a brief comment. Since the 
codewords are defined to be any set of digits satisfying all 
of the subcode relations, the correctness of a codeword can 
be verified by simply verifying that all of the subcode 
constraints are satisfied. This in turn merely requires an 
error detection check for each of the subcodes. Thus detec- 
tion for the new code is no more difficult than the sum of 
the detection operations for all of the defining subcodes. 

The underlying concept of decomposing the decoding 
process can be embodied in a variety of algorithms. To give 
some idea of the range of possibilities, we will present three 
types of algorithms of increasing sophistication that incor- 
porate aspects of product code decoders and probabilistic 
low-density parity-check decoders. It will be useful to think 

of them as being carried out by a parallel architecture: 
each subcode node in the graph has associated with it a 
special processor capable of executing a specific decoding 
procedure for the subcode at that node; each digit node 
has associated with it one or more registers accessible by 
the subcodes checking it and a processor for updating the 
contents of the digit’s registers. With the exception of a 
central control that sequences and coordinates the execu- 
tions at each node, the processors are autonomous and 
perform the computation solely on the contents of registers 
they access. 

The first procedure generalizes the original product code 
decoding procedure. There is a single register for each digit 
which contains a current best estimate for that digit. Ini- 
tially each register is loaded with the estimate for that digit 
supplied by the channel receiver. The central control then 
requests each subcode processor, one by one in some 
prescribed order, to attempt to correct any .errors in the 
bits as perceived by that subcode. Each processor may 
change some digits, and the next subcode processor will 
operate on the new digits. The entire cycle of corrections 
may be repeated a fixed number of times or terminated 
earlier if no digits are changed. 

In the second class of algorithms, there are multiple 
registers for each digit containing different estimates of the 
digit. There are two phases to the procedure. In the first, 
each subcode node processor receives a digit value from 
one of the registers of each of the digits it checks. Based on 
those values the subcode processor computes corrections to 
be made, and returns a “corrected” value for each digit to 
the corresponding digit register. In the second phase, the 
contents of all of the digit registers for each digit are 
updated by a computation based only on the contents of 
the registers for that digit. For example, this could be a 
threshold operation where all of the registers are set to the 
value occurring most frequently among the “corrected” 
values returned by the subcodes, or each register could be 
determined by a vote of all the other registers. The two 
phases are then alternated for a prescribed number of 
iterations. The final value for each digit is determined by a 
vote of all associated registers. 

To illustrate with a specific algorithm of this type, con- 
sider a graph of girth g where all bit nodes have degree 
two, all subcodes have degree 2” - 1, and each subcode 
node has associated a binary Hamming code of length 
2” - 1. There are three registers for each bit, one which 
stores the initial received value of the bit during the entire 
decoding process, and one for each of the two subcodes 
checking the bit. 

Algorithm A: All three registers are initially loaded with 
the received value of the bit. During the first phase, each 
subcode takes in both a vector representing the initial 
values of all incident bits and a vector of the values 
currently in its own bit registers. It then calculates an 
updated vector of values to be returned to its registers as 
follows: the initial value of each bit is used along with the 
current values of all other bits to form a codeword; if the 
single error correction procedure for the Hamming code 
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indicates that the initial value is incorrect, then the up- 
dated value is the complement of the initial value; if the 
correction procedure indicates that either ,the word is cor- 
rect or some other bit is in error, then the updated value is 
the initial value unchanged. This is carried out for every 
subcode in the code. Then for each bit the bit register 
values coming from the two subcodes are simply inter- 
changed, so that the result of one subcode’s correction is 
used in the next correction of the other. The two phases are 
alternated for I( g - 2)/4] iterations. The final decoded 
value of a bit is the value in the two subcode registers when 
they agree, and the initial value when they disagree. 

Algorithm A obviously unites principles from both prod- 
uct codes and low-density codes (see, specifically, [8, pp. 
47-521). It is probably not surprising then, that the proba- 
bility of error in a bit can be made to go to zero asymptoti- 
cally. 

Theorem 5: Any code based on a bipartite graph with 
bit node degree two, subcode node degree 2” - 1, and the 
length 2” - 1 single-error correcting Hamming code can 
be decoded by Algorithm A with bit error probability 
approaching zero as the girth of the graph approaches 
infinity when used on a binary symmetric channel with 
crossover probability q if q < l/(2”’ - 2). 

Proof: Starting with an arbitrary bit as root, draw the 
code as a tree with that bit as root at the top. The nodes at 
even depths of the tree are other bits in the code. Looking 
first at the bits at depth 2 [g/4], the first subcode correc- 
tion will cause the “corrected” bits at the next level up to 
have probability of error p,. By Lemma 2 of Appendix A, 
p, < rq for some r < 1. Clearly, these “corrected” bits are 
all statistically independent; consequently, after the next 
iteration the bits at depth 2 1 g/4] - 2 will have probability 
p2 < rp, < r2q. Continued iterations give the “corrected” 
bit at the top of the tree a probability of error 

p = rlg141q. 

It follows immediately that p goes to zero as the girth goes 
to infinity. 

Gallager’s graph construction ensures the existence of 
graphs with arbitrarily large girths. Because the length of 
the code grows exponentially with the girth, this bit error 
convergence alone does not give asymptotically reliable 
communication. As the proof of the lemma reveals, how- 
ever, by making the initial crossover probability q suffi- 
ciently small the ratio r can be made arbitrarily small, 
which will cause the probability of decoding error to go to 
zero. More rapid convergence of the decoding error proba- 
bility can be obtained by using a more powerful subcode or 
a higher bit node degree. 

One of the major sources of weaknesses of this type of 
algorithm is the loss of information that occurs during a 
subcode correction; the result passed to the next subcode is 
simply a “corrected” digit, with no indication of the relia- 
bility of that “corrected” digit. The third type of algorithm 
to be considered, which generalizes the probabilistic de- 

coder of low-density parity-check codes, remedies this de- 
ficiency by using registers which carry probability esti- 
mates for the value of the associated digit. 

For clarity of exposition we will present the algorithm 
for the binary case with digit degree three. At each bit node 
there is one register that stores a hard decision value for 
the received bit and another that stores the probability that 
value is wrong based on information from the receiver. In 
addition there is a separate probability register for each 
subcode that checks the bit. These registers are initially 
loaded with the probability of bit error from the channel. 
At the start of the process each subcode calculates a 
syndrome using the hard decision bit values. This syn- 
drome is saved to be used throughout the process. As 
before, multiple iterations of a two-phase process carry 
statistically independent information across the graph. The 
computations which take place during a single iteration are 
shown in Fig. 9. The underlying theory is the following. 
Let pi be the probability, supplied by the receiver, that the 
original hard decision for bit i is in error. Let pi, be the 
updated probability that the bit is in error given three 
statistics: first, pi; second, the current calculated probabili- 
ties of error for all the bits in all the subcodes except the 
first (those labeled b, through b,, in Fig. 9); third, the 
original computed syndrome si, for all the subcodes except 
the first (s2 and s3 in Fig. 9). Then using Bayes law, 

Pi1 - Pr (bit i in error] S, , S, ) Pr ( S, , S, ) 

’ - Pi1 Pr (bit i not in error] S,, S,) Pr (S,, S, ) 

Pr ( S, , S, [bit i in error) pi 
= Pr(S,,S,]bitinotinerror)(l -pi) * 

Assuming all other bits in subcode two and subcode three 
are independent, 

= Pr (S, (bit i in error) 
Pr (S, [bit i not in error) 

Pr (S, lbit i in error) . pi 
Pr (S, [bit i not in error) 1 - pi 

= ri2ri3ri. 

Each of the ratios 7j can be computed by computing the 
a posteriori probabihty of error for the i th bit given the 
constraints of the jth code and using Bayes law. Several 
methods for obtaining the required a posteriori probabili- 
ties are presented in [ 141. Solving for pil, 

ri2ri3ri 

pi1 = 1 + ri2ri3ri * 

By computing r = ri,ri2ri3ri and then dividing out the jth 
term, pij can be computed for each subcode. 

This procedure propagates information across the graph, 
bringing independent information towards each digit along 
all the paths of the tree emanating from that digit. (After 
L( g - 2)/4J iterations the independence assumption 
breaks down.) At the end of the process, the final estimate 
for each bit is based on the stored original value and the 
computed probabilities of error of that value. 
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Subcode 2 
/b’ 

Pr(Spt I bit incorrect) 

Fig. 9. Iteration step. 

Since this probabilistic decoder incorporates error prob- 
abilities supplied by the receiver into the decoding process, 
it is able to take advantage of accurate channel models. 
The price paid for this generality is the need for fairly 
involved real arithmetic operations in both the subcode 
and digit phases. 

The final algorithm we present will correct any pattern 
of l(dT - w1 or fewer errors, where d, is the tree 
lower bound on minimum distance. Again for clarity we 
will treat the binary case. Referring to Fig. 7, it can be seen 
that the tree bound was derived by showing that any 
pattern of bits which satisfies all the subcodes in the tree, 
meaning only those above or at the level where the first 
minimum cycle is formed, must have minimum distance at 
least d,. The actual code is a subset of the set of vectors of 
bits satisfying the tree subcodes, and therefore must have a 
minimum distance at least as large as d,. The algorithm is 
designed to decode the bits at the top of the tree to those 
values occurring in the vector of bits that satisfies all the 
subcodes in the tree and requires the fewest changes in the 
actual received bits. The vector itself may not be a code- 
word. 

Presentation of the algorithm will be facilitated by 
establishing a formal indexing for the registers required. 
Let Rij be the register associated with bit i, i = 1,2,. * *, N, 
that is accessed by subcode processor j, j = 1,2, * * *, S, 
Rij(t) the value stored by the register after the t th itera- 
tion, and Rij a corresponding temporary storage register. 
Similarly let V;:, i = 1,2; * *, N, be a register storing a value 
K(O) that is + 1 or - 1 if the ith bit was received as a 1 or 
0 respectively. Finally let Ji be the index set of the subcode 
processors accessing bit i, and let Ii be the index set of bits 
accessed by subcode processor j. 

Algorithm B: 
Initialization: Each of the F, i = 1,2,. . -, N, is loaded 

with a value of + 1 or - 1 supplied from the channel 
according to the received value 1 or 0, respectively, of the 
ith bit. Then for i = 1,2; * * , N, each register R,,, j E Ji is 
assigned value Rij(0) = V,(O). 

Iterative loop: For t = 1,2; * *, I( g - 2)/41 the fol- 
lowing two phases are performed. 

1) Subcode phase: For j = 1,2,. * *, S the jth subcode 
processor computes 

DII (C*Rj(t-l)-Rij(t-1)) 
q=+l 

- Inn (c -Rj(t - 1) + Rij(t - 1)) 
c,=-1 1 

for each i E Ii. Here (!? is the set of n-dimensional real 
vectors of plus and minus ones C = ( Ci,, Ci2,. . . ,C,,) each 
derived from a codeword in the subcode by replacing each 
1 in the codeword by + 1 and each 0 by - 1; Rj( t - 1) is 
the ordered vector of register values [Ri, j(t - l), Riz j(t - 
11, * * *, Rim j(t - l)] with i, E Ii; and C .R,(t - 1) denotes 
real vector inner product. If g/2 is odd, and t = 1, all Rij 
values are divided by l/m (to avoid multiply counting bits 
at the bottom of the tree). 

2) Bit register phase: For each i = 1,2,. . a, N, the reg- 
isters for the i th bit are updated according to 

Rij(t) = x R;, - Rij + F(O). 
lE:J, 

Final Decision: 
The jth subcode processor finds the vector for C that 

achieves max cEe[C -Rj( I( g - 2)/4])] and sets Ri, j = Ci,, 
the corresponding component of the maximizing subcode 
codeword. Then the output value of the i th bit is one if 
ZjEJiRij > 0, zero otherwise. In other words, the bit’s 
value is determined by a majority vote of the best final 
estimates provided by the subcodes checking it. 

We will now prove that any pattern [(dT - 1)/2] or 
fewer errors will be corrected by Algorithm B because in 
fact all the values ci, returned for a bit will be + 1 if the bit 
was a one and - 1 if it was a zero. The first step is the 
following lemma. Referring to Fig. 7, let the jth subcode 
node 5 be the root and the ith bit pi be an arbitrary bit at 
depth one. Let qj( X) be the set of nodes 17 of the graph 
such that there is a minimum length path from uj to TJ 
passing through pi of length 1, 1 I I I X. 

Lemma 1: After t iterations of Algorithm B, R,,(t) = 
Zij(t) - Qj(t) where: 

Zij(t) =minimum number of received bits /3 E Kj(2t + 
1) that must be changed in order to have pi = 0 
and have all subcode nodes u E qj(2t + 1) be 
satisfied (i.e., the bits incident on u form a 
codeword in a). 

Qj(t) = minimum number of received bits p E 2;.,(2t + 
1) that must be changed in order to have pi = 1 
and have all subcode nodes u E Tj(2t + 1) be 
satisfied. 

Proof: The proof is by induction on the number of 
iterations. Clearly for t = 0 the lemma holds because 
Rij(0) = Zij(0) - Qj(0) = y(O). Assuming it holds for 
t - 1, a register Rijjj between depths two and three coming 
into subcode nodes uj, for some j’ E J., j’ # j, contains 
zitjt(t - 1) - qrj!(t - l), i’ E Ij,. This can be recognized 
as the difference in changes needed in the subtree below 
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and including & to depth 2t + 1 for & to be zero or one, 
respectively. Then for the constraints of uj, to be satisfied 
requires 

z = ge 

ci=--1 ( 
x zitj’(t - 1) + izt qty(t - 1) 

i ’ # i i 
+-I cy= + 1 

changes below uj, for & to be zero, and 

U= min cue x ziJt - 1) + x qtjj(t - 1) 
q=+l ( i ’ # i i ’ # i I 

+=-I q= + 1 

for & to be one. Let -C be the vector achieving the former 
minimum and + C the vector achieving the latter. The 
difference is 

z-u= x (Zitj,(t - 1) - ~~j~(t - 1)) 
i ’ # i 

-c,.=-1,++=+1 

- 
z ( Zitjt(t - 1) - Qtjp(t - 1)) 

i ’ # i -c,,=+I,+c,,=---l 

= (1/2)[+C--C] .Rj,(t - 1) - Rij,(t - 1). 

Now for any C with ci = - 1 

C .Rj<(t - 1) + R,,,(t - 1) 

= izi ( zitjp(t - 1) - Q:,!( t - 1)) 

c;, = + 1 

- izl (zi!jp(t - 1) - &tj!(t - 1)) 

q,=-1 

= x zitj<(t - 1) + x qtjf(t - 1) - 2 
i ’ # i i’#i 

* 

1 

x zifjj(t - 1) + 2 qTj?(t - 1) . 
i ’ # i i ’ # i 

q-1 cg= + 1 I 

Therefore, since the first term is independent of C, 

rnng (C .Rj,(t - 1) + Rij,(t - 1)) 
ci=-1 

Similarly, 

=-CSj,(t - 1) + Rij,(t - 1). 

mn (C .Rj,( t - 1) - Rij,(t - 1)) 
q=fl 

Thus 

=+C.Rj,(t - 1) + Rij,(t - 1). 

Rij, = (1/2)[(+CR,.(t - 1) + Rij,(t - 1)) 

- (-C -Rj,(t - 1) + Rij,(t - l))] = Z - U. 

The desired difference of changes in subtree qj(2t + 1) is 
then 

Zij(t) - qj(t) = 2 Rij, + K(O) = Rij(t) 
j'EJ, 
j'#j 

as required. 

Theorem 6: Algorithm B will correct any pattern of 
I( d, - 1)/2] or fewer errors. 

Proof: Again referring to Fig. 7, by Lemma 1 after 
t, = ]( g - 2)/4] iterations the contents of the registers 
coming into the subcode at the top of the tree will be 
Rj(t,) = Zj(t,) - iZ$(t,). Let C be the vector corre- 
sponding to the codeword in the subcode that was actually 
sent and let C’ be the vector for any other codeword in the 
subcode. By the proof of the tree bound, we know that if 
no errors occur during transmission 

c;=+l 
c;=-l 

-,,z-, (zij(to> - Sj<‘o>> 2 d,* 

cj=+l 
It is obvious that changing the received value for a single 
bit in the subtree qj(2t, + 1) can at most change Zij(t,) 
- qj(t,) by two. Therefore, if fewer than [(dr - 1)/21 
errors have occurred 

(1/2)(C - C’) -R,(&) 2 d, - 2[(d, - 1)/2] I 1. 

Thus C achieves max,,,[C -RI and the value ci assigned 
to each bit will be + 1 if the transmitted bit was one, - 1 if 
the transmitted bit was zero. Since this holds no matter 
which subcode is at the top of the tree, the final majority 
vote must give the correct value for each bit. 

This same algorithm can easily be modified to take 
advantage of channel reliability information coming from a 
binary channel. Rather than loading the registers for a bit 
with + 1 or - 1 from a hard decision receiver, the registers 
can be loaded with the logarithm of the likelihood ratio for 
one versus zero. Algorithm B will then decode for a maxi- 
mum likelihood version of the tree bound. Also, a similar 
algorithm can be devised for a nonbinary channel, but it 
will require more registers for each digit. 

An immediate criticism that this algorithm invites is that 
it requires a maximum likelihood decoder for the subcodes. 
While this admittedly has dire implications for the com- 
plexity resulting from the use of an arbitrary subcode, the 
requirement is not as bad as it may seem for many recur- 
sively defined codes. First, a maximum likelihood decoder 
for a simple parity check is not complex, and this algo- 
rithm can thus easily be used on any low-density parity- 
check code. Second, for fixed subcodes the complexity of 
the algorithm grows only linearly in the girth of the graph; 
thus, for codes based on a very large girth graph, the 
complexity of the subcode decoder is not a major issue. 
Finally, it may be possible to get good decoding perfor- 
mance from a similar algorithm which works recursively, 
namely the subcode decoding is performed by an algorithm 
of the same type which computes only an approximation to 
the true maximum likelihood value of Zj(t,) - tI.$(t,). 

VII. DECODING COMPLEXITY 

The decomposition of a decoding process into a series of 
subcode operations requiring only local information 
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guarantees that the asymptotic growth of complexity for a 
sequence of codes of fixed rate is very low, as we will now 
argue by deriving upper bounds on the complexity for two 
specific sequences. 

As a first case for analysis, consider the effect of using a 
single recursive step, basing a sequence of codes on a single 
subcode and a sequence of graphs of fixed subcode node 
degree and fixed digit degree but increasing girth. Al- 
though the exact rate of the codes depends on the tech- 
nique for assigning digit positions in each of the subcodes, 
Theorem 1 ensures that the rate of any of the codes has a 
fixed lower bound. For any of these codes, the number of 
subcodes in the graph is proportional to the code length, as 
mentioned in Theorem 1. It follows’ immediately that the 
computational complexity of error detection is O(N), be- 
cause detection requires only a detection check by each of 
the subcodes involving a fixed number of operations. Since 
the detection procedure admits total parallelism, the time 
complexity is obviously 0( 1). 

Now consider the error-correcting Algorithm B used for 
Theorem 6. Each iteration requires a number of arithmetic 
operations proportional to N: the procedure carried out at 
each subcode node involves a fixed number of arithmetic 
operations per node, as does the set of operations carried 
out at each digit node. Using Gallager’s graph construc- 
tion, the girth of the graph is proportional to log N. If, as is 
the case for Algorithm B, the number of iterations is held 
proportional to the girth, it follows that the computational 
complexity in terms of arithmetic operations is 0( N log N ). 
However, the registers required .for the algorithm must 
store a number of the size of the minimum distance of the 
code, which for the best possible codes of this form, may 
grow linearly in N. This could appear to imply that the 
complexity of each register operation itself grows with N. 
On the other hand, the values stored in the registers are 
used only in comparisons with other registers. Conse- 
quently, by appropriately scaling the values in all of the 
registers at each iteration, the comparative accuracy can be 
maintained up to any desired level with registers of fixed 
size (see Appendix B). The O(Nlog N) bound is then 
preserved. Again, the complete parallelism gives the algo- 
rithm a time complexity of O(log N). 

A second avenue to the construction of a sequence of 
codes is to use graphs of the same girth and digit node 
degree at each stage of recursion and create each new code 
in the sequence by using an additional recursion. Assuming 
the lower bound on rate holds at each stage, however, the 
rate of the base subcode must be increased with the num- 
ber of stages of recursion to keep the rate of the final code 
fixed. As a specific illustration, consider forming a se- 
quence using the product code graph which has digit 
degree two, girth eight, and causes the codelength to be 
squared. Let T(N, P) be the number of operations re- 
quired to decode a code of length N and redundancy rate 
P=(N-K)/N using a recursive algorithm similar to 
Algorithm B. A two-phase process is iterated g/4 times, 
but here the subcode node decoders themselves make 
iterated recursive calls to a similar algorithm for the sub- 

subcodes, on down to the base code. If there are s stages of 
recursion, N = n**, where n is the length of the base code. 
The complexity satisfies the recursion relation 

T(N, P) = g/4(mN/fi)T( fi, i) + CN 

where CN is the number of operations required for the bit 
register interchanges and final votes. Solving for T(N, P) 
in terms of the base code complexity T(n, p) gives 

T(N, p) = 4sN’-(‘/2s)T N / 
( ’ *‘, $) + (5;4’1cN 

5 (41”9(l”N/logn)N/n)T( n, s) 

+ (4 1% @‘g N/l‘% 93) cN 

I b-% w* (logn)‘N[;+~~) +s]- 
If the lower bound on rate is satisfied at every stage of 
recursion, the base subcode used for the successive con- 
structions must have a rate increasing toward one. For 
instance, when the base subcodes are binary Hamming 
codes decoded with a decoding algorithm that requires 
O(n2) operations, the ultimate complexity can be derived 
as follows: for a Hamming code p = log n/n, implying 
n = log N/P and log n = log log N - log P. Thus 

Therefore for fixed P, 

T(N, P) 5 oog NJ2 
(loglog N - log P)’ 

-N 
[ 
&p((‘% NJ*) + f ] 

and T(N, P) = O(N(log N)3/(log log N)*). Again the 
parallelism ensures that the time complexity of this process 
is no worse than O((log N)3/(loglog N)*). 

By using graphs of larger girth in the same type of 
recursion, the exponent of the log N factor can be reduced. 
Furthermore, all of the operations are of the same form, 
namely repeated operations carried out by the base code 
processors and digit processors. The complexity of the 
machine architecture of the decoder lies not in the actual 
computations but in the data movements or wiring that 
allow the processor to access the appropriate subsets of the 
data. 

VIII. ANEXAMPLE 

Many of the ideas of the previous sections can be 
illustrated with a two-stage recursive construction of a [55, 
11, 181 code starting from a simple parity-check base code. 
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Complete Graph on II nodes 
Ii subcade nodes each checking IO bits 

(!)=55 bits 

The wbcode;A complete graph on 
5 nodes Sparity checks each check- 
ing 4 bits 

A ClO,6,31 code 

Fig. 10. A [55, 11, 181 recursive code. 

The graph used for each stage is a bipartite graph con- 
structed from a simple complete graph. 

Starting from a complete graph on five nodes, create a 
bipartite graph by inserting a bit node in the middle of 
each edge, as shown in Fig. 10. Each of the original nodes 
can be viewed as a subcode node checking four bits. Let 
each of these subcodes correspond to a simple parity check. 
The result is the standard [lo, 6, 31 graph code. The tree 
bound for this simple construction guarantees minimum 
distance three, the true distance. The lower bound on the 
rate of the code is l/2, but one of the parities is depen- 
dent. Now use this code as the subcode in similar construc- 
tion startin from a complete graph on 11 nodes. The new 

graph has 2 - 
f 1 

11 - 55 bit nodes, and each subcode checks 

ten bits. Because the subcode has minimum distance three, 
the tree bound guarantees a minimum distance of at least 
six for the new code, no matter how the positions of the ten 
bits checked are assigned in the subcode. The particular 
assignment used for the top subcode is shown in Fig. 10; 
the ten bits checked by that subcode, labelled one through 
ten in the eleven subcode node graph, are given the posi- 
tions labelled one through ten in the graph for the subcode. 
The assignments for the other subcodes are then de- 
termined by cyclic symmetry in the large graph: the assign- 
ments for any subcode can be determined by rotating it to 
the top subcode position. The minimum distance of the 
new code, determined by computer, is 18, far surpassing 
the tree bound. A minimum weight word is shown in Fig. 
11. 

A variety of encoders for the code can be constructed; 
we will briefly sketch the principles underlying three differ- 
ent versions. The space of codewords is spanned by the ten 
cyclic shifts of the word shown in Fig. 11 plus the all ones 
word. Another basis for the space is the set of eleven cyclic 
shifts of a word that has only one of the outermost bits 
nonzero (e.g., the bits labelled one and ten in Fig. 10). The 
outermost bits thus constitute an information set for the 
code. The first encoder, somewhat analogous to an encoder 
for a normal cyclic code based on the generator poly- 
nomial, simply adds a one into every parity bit which is 
one in the basis vector when the corresponding information 

Fig. 11. A weight 18 word. 

bit is one. For this particular code this would be a 
cumbersome architecture requiring four eleven bit shift 
registers to store the parity bits and a large number of 
adders. For similar codes of higher rate, it could be more 
advantageous. 

A second encoder can be derived from the idea of 
propagation of a solution via subcode encodings discussed 
in Section IV. Since this code is a two-stage recursive 
construction, the concept of a propagating solution can be 
carried down to the original parity checks. Referring to 
Fig. 10, suppose the outermost eleven bits are given. Sup- 
pose the values for the bits on the second tier (e.g., bits two 
and nine) are computed using some general technique. 
Now consider the subcode diagram. Since bits one, ten, 
two, and nine are known, the top parity-check alone de- 
termines bit eight. Similarly, in another subcode a single 
parity check determines bit three. But this implies that bit 
four can be determined, and another subcode gives bit 
seven, which in turn allows six and then five to be com- 
puted. A parallel implementation of this strategy can com- 
pute the codeword in five steps. 

The third encoder we suggest is analogous to the parity- 
check polynomial encoder for a standard cyclic code. Sup- 
pose the information bits have been loaded into an 11 bit 
cyclic shift register. Any bit on the second tier can be 
computed by summing a subset of the information bits in 
the cyclic register; since the graph has cyclic symmetry, all 
the second tier bits can be computed by cyclically shifting 
the register. The bits of the remaining three tiers can be 
obtained in a similar manner by using three different 
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summing circuits connected to the appropriate stages of 
the information bit shift register. Clearly the codeword can 
be computed five bits at a time with an encoder requiring 
only 11 bits of memory and four different summing cir- 
cuits. 
A good transmission order for enhancing the code’s 

effectiveness against burst errors is shown in Fig. 12. It is 
easy to see why bursts will tend to be corrected: for any 
burst of length 11 or less most of the errors appear as 
single errors in separate subcodes. 

A modified version of Algorithm B was implemented 
and tested on a general purpose computer. Rather than 
decoding at the subcode level, the algorithm works only at 
the sub-subcode level, that is, on the parity checks them- 
selves. Each of the eleven subcodes is built on a graph 
using five parity checks. Interpreted at this level, there are 
55 parity checks each checking four bits, and 55 bits each 
checked by four parities. The two-phase algorithm used 
four registers for each bit; all four were, loaded with a + 1 
if the bit was a one, - 1 if the bit was a zero. In the 
subcode phase the four registers of the bits checked by a 
parity were updated according to the generic prescription 

R; = R,( t - 1) + sgn (R,(t - 1)) 

+gn (R,(t - 1)) en @& - 1)) 

.An(I&(t - I)[, IR,(t - l>l, I%(t - l>l). 

In the bit phase the four registers for the bit were updated 
according to 

R,(t) = I R; -I- R;+ R; 

1 2 . 

After a specified number of iterations the output value of a 
bit was determined by the sign of the sum of the associated 
registers, one if the sum was postive, zero if the sum was 
negative. 

By testing the algorithm against five consecutive shifts of 
each burst error pattern containing i errors, i = 1,2, * * . ,l 1, 
we determined that the algorithm will correct all bursts of 
length 11 or less. In preliminary empirical testing against 
random errors, the same algorithm corrected all randomly 
generated patterns of seven or fewer errors and many of 
greater weight. All weight six error patterns tested were 
decoded in five or fewer iterations; one weight seven 
required 22 iterations. 

IX. CONCLUSION 

The recursive approach to the construction of error- 
correcting codes which we have presented offers hope that 
very efficient codes can be implemented with relatively 
simple circuits and decoded by algorithms requiring only 
O(Nlog N) operations of fixed type. For this hope to 
become provable reality will require that the results of the 
current paper be strengthened by improved versions of the 
tree bound and a corresponding proof that low-complexity 
algorithms can decode up to the actual minimum distance, 
Theorems 2 and 6, respectively. All the evidence provided 
by our study of specific examples indicates that best codes 

Fig. 12. Transmission order for burst-error correction. 

of this form do indeed have minimum distances far greater 
than that guaranteed by the tree bound, and that the 
simple algorithms are effective. 

Is there reason to believe that codes with this structure 
cannot be good? For the codes formed from a fixed 
subcode using large graphs, a partial answer to this ques- 
tion is provided by the upper bound on rate for low-density 
codes [8, pp. 39-401 which shows that the rate of the code 
must be bounded away from channel capacity for the 
probability of error to approach zero. From a practical 
viewpoint, however, this limitation is insignificant. A closely 
related argument is that the strength of such codes against 
burst errors, which is a direct consequence of the de- 
composition into subcodes, must preclude optimal effecti- 
veness against random errors. On the other hand, as the 
previous example illustrates, the best codes appear to have 
the potential for correcting almost as many random errors 
as burst errors. 

Using Gallager’s low-density codes, Zyablov and Pinsker 
[ 151 have shown that there exist codes capable of correcting 
all error patterns of weight less than aN, for a fixed 
positive constant (Y, in 0( Nlog N) operations. The proof 
necessitates a fairly dramatic loss of rate, and it may well 
be that some loss of rate is necessary to maintain low 
complexity even when using our approach. 

On the other hand, the potential advantages of these 
codes may well compensate some slight loss of rate. The 
low complexity may allow the use of much longer block 
lengths than can be realistically contemplated with most 
existing techniques, and more accurate representations of 
the information provided by the receiver, such as bit reli- 
ability information, can be effectively incorporated into the 
decoding process. In addition, the natural parallelism in 
the computation is well suited to implementations using a 
large number of large scale integrated circuits of a single 
design. 

Although we have presented the central ideas in the 
context of block codes, the same concepts are applicable to 
convolutional codes as well, as we hope to discuss in a later 
paper. 
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APPENDIX A 

Probability Bound for the Subcode Correction Procedure 
of Algorithm A 

Suppose that a vector of errors is added to a codeword from a 
Hamming code of length 2” - 1 such that one bit in the word 
has probability q of being in error and the remaining bits each 
have probability p of being in error, all independently. By the 
symmetry of the code, we can assume without loss of generality 
that the first bit in the code is in error with probability q. Let the 
word be corrected according to the standard single error correc- 
tion procedure, and let p’ be the probability that the first bit is in 
error after the correction. 

Lemma 2: If m > 2 and q = l/(2” - 2) there exists an r < 1 
such that p’ 5 rp for 0 5 p 5 q. 

Proof: 

p’ = qProb (first bit not changed/first bit incorrect) 

+ (1 - q) Prob (first bit changed/first bit correct) 

%Q, + (1 - q)Q, 

Q, = 1 - Prob (f irst bit changed/first bit incorrect) 

= 1 - Prob (errors in remaining bits form a codeword) 

Zl-P,. 

That is, the incorrect first bit will be perceived as a single error if 
and only if the errors in the rest of the bits form a codeword. 
Note also that Q, = Prob (errors in remaining bits plus an error 
in the first bit form a codeword). 

To obtain an expression for the latter, consider a length 
2” - 1 word in which all bits have probability of errorp. Let P, 
be the probability the errors form a codeword. Then P, = pQ, + 
(1 - p)P,, and so Q, = (P, - (1 - p)P’)/p. Substituting, 

P’ = q(1 - P,) + (1 - qHP0 - (1 - P)P’VP 

= 4 + (I/P)(l - q)(P, - P,) + (1 - 2q)P,. 

Let A(z) by the weight enumerator for the Hamming code 
2”-1 

A(z) = x AiT, 
i=O 

where Ai is the number of codewords of weight i. Then 

P, = (1 -P)~~-‘A & 
( 1 

Using the MacWilliams identity, A(z) can be obtained from the 
weight enumerator for the dual of the Hamming code, B(z) [16, 
pp. 400-4071: 

A(z) = 2zm-‘--m ( !+)2m-‘B( !?), 

B(z) = 1 + (2” - l)z*“-‘. 

Thus 

P, = 22m(1 + (2” - l)(l - 2p)2m-1). 

Similarly P, is the probability errors occurring with probability p 
form a codeword in the shortened code whose null matrix is the 
Hamming code null matrix without the first column. The dual of 
this code has weight enumerator 

1 + 2m--Iz2m-’ + pm-1 _ 1)z2m-‘. 

Therefore 

p, = 2-m(1 + 2”-‘(1 - 2p)zm-‘-’ 

+ (2m--1 - l)( 1 - 2p)2m-‘). 

Then 

P, - P, = 22m(1 + (2”-‘)(l - 2p)2m-I - 1 

-2m-I(1 - 2p)-’ - (2*-l - I)(1 - 2p)2m-‘) 

= 2-m(2m-l(1 - 2p)2m-’ - 2m-‘(1 - 2p)2m-‘) 

= -p(l - 2p)2m-‘-‘. 

Substituting, 

p’ = q - (1 - q)(l - 2p)2”-’ 

+ (1 - 2q)Z-m(1 + 2”-*(1 - 2p)2*-‘-1 

+ (2m-’ - l)(l - 2p)2m-‘). 

Now we will show that p’ - p 5 0 if q = 1/(2m - 2). Rearrang- 
ing terms, 

p, -p = q + 2-rn(1 - Zq) - (l -22p) 2m-‘-’ 

+ (1 - 2p)2m-‘(l - 2q)2-m(2m-’ - 1) -p. 

It is easy to check that p’ - p = 0 at p = 0. Taking the derivative 

$Cp’ -p) = (y--1 - l)(l - 2p)2”-‘-2 - p-1 

.(l - 2p)2m-‘(2)(1 - 2q)2-m(2m-’ - 1) - 1 

= (2* - 2)(1 - 2p)2m-‘-2(q +p(1 - 2q)) - 1. 

Setting q = 1/(2m - 2), atp = 0, 

-3P’-P)tzo= (2m-2)&-1 =o. 

Furthermore, with q = 1/(2m - 2) the second derivative is nega- 
tive for all 0 <p I l/(2” - 2): 

-$(P! -p) 

= (2m - 2)[(2m-’ - 2)(1 - 2p)2”-+ 

.(-2)(qSp(l - 2q)) + (1 - 2p)2m-‘-2(1 - 2q)] 

= (2” - 2)(1 - 2p)2m-‘--3 

.[(I - 2P)(l - 2q) - Pm - 4Nq + P(1 - 2q))] 

= p - 2)( 1 - 2p)2m-‘-3 

- - . [-p(1 2q)(2” 2) + (1 - 2q) - (2m 4)q] - 

= (2” - 2)(1 - 2p)2m-‘-3[-p(2m - 4)] 5 0 

for m > 2. By using Taylor’s theorem with the remainder, it 
follows that p’/p 5 1 for 0 5 5 when = 1/(2m - 2). To p q q 
complete the proof, consider 

a PI 
as7 ( ) 

= (2m - 2) (1 - (1 - 2p)2m-’ 
2” P . 
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Since this is positive and independent of q for all p > 0, by 
decreasing q from l/(2* - 2) we will decrease p’/p. Moreover, 

limL p’ =2m-22m=2*-2 

( 1 p-~ a4 P 2* 

Therefore the minimum of (a/aq)( p’/p) over 0 I p 5 l/(2” - 
2) is greater than zero and q < l/(2* - 2) implies that there 
exist an r < 1 such that (p//p) < r. 

APPENDIX B 

Algorithm B with Registers of Fixed Size 

a, 

Theorem A2: Algorithm B will correct any pattern of 
(d,(l -x-c’-‘)) - )/ ] 1 2 using registers storing signed, 1 
‘git, integers represented base x, x = (d - l)(m - 1) for x > 1. 

Proof: During the t th iteration, the digits stored in a register 
are the 1 coefficients ai, of the base x expansion of the rounded-off 
value 

Rij( t) = a,x’ + a,x’-’ + *. . +a,-,x’-‘+’ 

= zij(t) - qj(t) + Eij(t). 

It is easy to prove by induction that the error, rij(t), must be 
bounded by 1 eij( t)] s x’-‘+’ as follows: clearly when the register 
is initialized rounding off the value guarantees that Ieij(0)l < 
x -(‘- ‘). By the assumptions of the tree bound, the difference can 
increase at most by a factor of (d - I)( m - 1) as it moves up 
one level in the tree. Since x = (d - l)( m - 1) the registers are 
guaranteed not to overflow unless minimum distance exceeds the 
tree bound. Similarly, maxi j~ij(t) 5 (d - l)(m - 1) maxijcij(t 
- 1) and Ieij(t - l)/ 5 x ‘-‘for all i andj implies that (cij(t)l I 
x1-‘+’ for all i and j. Consequently, if no errors occur during 
transmission, 

(1/2)(C - C) d’tj(t,) 2 d, - dx’o-‘+’ z d,(l - x-(‘-‘)). 

Therefore, if fewer than I( d, (1 - x -(‘-2)) - I)/21 errors have 

541 

occurred 

(1/2)(C - C’) .Rj(tO) 2 1, 

and as before the errors will be corrected. 

Ill 

PI 

[31 

[41 

[51 

161 

[71 

PI 

[91 

[lOI 

Fll 
WI 

iI31 

[I41 

[I51 

I161 
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