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Good Error-Correcting Codes
Based on Very Sparse Matrices

David J. C. MacKay

Abstract—We study two families of error-correcting codes can be produced [1]; and an explicit algebraic construction
defined in terms of very sparse matrices. "MN” (Mackay-Neal) ~of very good codes for certain channels was given in 1982
codes are recently invented, and "Gallager codes® were first 11g) gyt ng practical decoding algorithm is known for any of
investigated in 1962, but appear to have been largely forgotten, . . .
in spite of their excellent properties. The decoding of both codes these COd?S’ and it 'S.known_ th"?‘t the general “nea.r decoding
can be tackled with a practical sum-product algorithm. problem (find the maximum-likelihood source vecoin the

We prove that these codes are “very good,” in that sequences of equationG'Ts +n = rmod 2, where@G is a generator matrix,
codes exist which, when optimally decoded, achieve information 4, js a noise vector, ane is the received vector) is NP-

rates up to the Shannon limit. This result holds not only for -, h1ete [10]. Convolutional codes (which can be viewed
the binary-symmetric channel but also for any channel with ) .
symmetric stationary ergodic noise. as block codes with memory) can approach the Shannon
We give experimental results for binary-symmetric channels limit as their constraint length increases but the complexity
and Gaussian channels demonstrating that practical performance of their best known decoding algorithms grows exponentially
concatenated codes can be achieved; indeed, the performance of . . ) .
Gallager codes is almost as close to the Shannon limit as that of(”ew was that for pra},ctlca_ll purposes a channel's effective
turbo codes. capacity was a ratefly” which is smaller than the Shannon
Index Terms—Error-correction codes, iterative probabilistic capacity, if convolutional codes were used; and many believed
decoding, low-complexity decoding, nc;nlinear codes, Shannon this ConJ(_aCtu_re applied to all CO‘?'eS' spgculatlng that practical
limit. communication beyond?, was impossible. Forney proved
that there do exist very good “concatenated” codes that are
practical [23]; but the proof was also nonconstructive [45].
When it comes to practicatonstructivecodes, construc-
tions have been demonstrated of codes based on concatenation
A. Background that are good, though not very good, but most known prac-

N 1948, Shannon [58] proved that for any channel thefi€al codes are asymptotically bad [45]. Goppa’s algebraic-

exist families of block codes that achieve arbitrarily smafileometry codes, reviewed in [66], appear to be both practical
probability of error at any communication rate up to th@nd good (with practical decoding proven possible up to the
capacity of the channel. We will refer to such code families &silbert bound), but we believe that the literature has not
“very good” codes. By “good” codes we mean code familiegstablished whether they are very good. The best practical
that achieve arbitrarily small probability of error at nonzerdecoding algorithm that is known for these codes [22] appears
communication rates up to some maximum rate that may #sebe prohibitively costly(N*) to implement, and algebraic-
less thanthe capacity of the given channel. By “bad” codegeometry codes do not appear to be destined for practical
we mean code families that can only achieve arbitrarily smal&e.
probability of error by decreasing the information rate to zero. Thus the conventional view is that there are few known
(Bad codes are not necessarily useless for practical purposesrstructive codes that are good, fewer still that are practical,
By “practical” codes we mean code families which can band none at all that are both practical and very good. It seems
encoded and decoded in time and space polynomial in tleebe widely believed that while almost any random linear
blocklength. code is good, codes with structure that allows practical coding

Shannon’s proof was nonconstructive and employed randexre likely to be bad [45], [15]. Battail expresses an alternative
codes for which there is no practical encoding or decodingew, however, that “we can think of good codes, and we can
algorithm. Since 1948, it has been proved that there exicode them” [6]. This statement is supported by the results
very good cyclic codes (nonconstructively) [45], and that veyf the present paper.
good codes with a short description in terms of permutationsin this paper we study the theoretical and practical properties

_ _ _ _ of two code families. Gallager's low-density parity-check
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that they had rediscovered Gallager's work.) MN codes aféis is the rate beyond which the expected computational

unconventional in that redundancy can be incorporated in tbest of decoding a convolutional code with vanishing error

transmitted codewords not only by usingkax N generator probability using sequential decoding becomes infinite.

matrix with transmitted blocklengtV greater than the source The Gilbert boundGV(f,,) is

blocklength K, but also by using a source that is itself

redundant. GV(f.) = {1 — Hy(2fn), fa<1/4 ©)
These code families both have two important properties. " 0, o> 1/4.

First, because the codes are constructed from sparse matrices,

they have simple and practical decoding algorithms whicHis is the maximum rate at which one can communicate

work, empirically, at good communication rates. Second, wéth a code which satisfies the Gilbert—Varshamov minimum-

prove that in spite of their simple construction these codééstance bound, assuming bounded distance decoding [43].

arevery gooe-that is, sequences of codes exist which, when peinition 5: A model that defines a probability distribution

optimally decoded, achieve information rates up to the Sha&;er stringsz of any lengthN, P(x | N), hasmean entropy
non limit of the binary-symmetric channel. We further prove; for any ¢ > 0 and7 > 0’ there exi:%ts anv* such that
that the same codes are in fact good for any ergodic symme%’& al N > N*

channel. Our proof may be viewed as a semiconstructive proof

of Shannon’s noisy channel coding theorem (semiconstructive 1 1

in the sense that, while the proof still relies on an average over P<‘ N 1Og2m —He| > 77) <& ()

a set of codes, the set of codes in question is unusually small).

It is indeed easy to think of good codes. For example, a memoryless binary-symmetric channel’s noise
has mean entropif,, = H2(f,), wheref,, is the density of the

B. Definitions noise; the proof of this statement, by the law of large numbers,

For a glossary of symbols used in this paper, please é ell known [16]. We will prove that the codes presented in
g y Y paper, p t%%v paper are good codes not only for the binary-symmetric

Table I11. . .
A binary variable will be termed &it. The unit of infor- channel but also for a wide class of channels with memory.
mation content of a random bit withy = p; = 0.5 will Definition 6: A binary channel with symmetric stationary

be termed theshannon The input and output alphabets ofergodic noiseis a binary-input, binary-output channel whose

the binary-symmetric channel (BSC) will be denotftl 1}. output in response to a transmitted binary vedtr given by

We will denote the error probability of the binary-symmetrig- = ¢ + n mod 2, wheren, the noise vector, has a probability

channel byf,, where f, < 0.5. distribution that is a) independent éfand b) stationary and
—_— . : . ergodic.

HSI?;f)m;t:gn 1: The ‘binary entropy functionsifz(f) and For example, burst noise might be modeled by a stationary

and ergodic Markov process. Such a process has a mean

Hy(f) = flog,(1/f)+ (1 — f)log,(1/(1—f)) (1) entropy, though the evaluation of this quantity may be chal-
HS(f) = flog.(1/f) + (1 — fHlog (1/(1 — f)). (2) lenging. The standard Gaussian channel with binary inputs is

. . ) also equivalent to a binary channel with stationary ergodic
We will write natural logarithms akg (z) = log, (z). noise.

Definition 2: Theweightof a binary vector or matrix is the ~We will concentrate on the case of a binary channel with
number of1’s in it. The overlap between two vectors is the Symmetric noise (see Definition 6) in the body of this paper.
number of1’s in common between them. Thdensityof a Channels like the Gaussian channel whose inputs are binary
source of random bits is the expected fractioniobits. A and whose outputs are in some more general alphabet are
source issparseif its density is less thaf.5. A vectorv is addressed in Appendix A. _
very sparsef its density vanishes as its length increases, for 1) Linear Codes:A Ilnear error-correcgng code can be
example, if a constant numberof its bits arel’s. represented by aiVv by K binary matrixG" (the generator

matrix ), such that &-bit binary message is encoded as the

Definition 3: A code with blocklength/V and rateR sat- v _pjt vectort = G* s mod 2. (Note that we have chosen to use

isfies theGilbert-Varshamov minimum-distance bouifidhe  column vectors so the generator matrices act to the right rather

minimum distancel between its codewords satisfies than the left.) The generator matrix is siystematic fornif it
R=1- Hy(d/N). (3) can be written as
Iy
Definition 4: The capacity C(f,,) of a binary-symmetric G' = { 1; } (8)
channel with noise density, is, in shannons per channel use,
C(fa) = 1 — Ha(fa). (4) Wherely is the K x K identity matrix, andP is a binary
. _ matrix. The channel adds noise to the vectort with the
The computational cutoff rateRo(fs) is resulting received signal being given by

RO(fn) =1- 10g2[1 + 2y fn(l - fn)] (5) r= (GTS +n) mod 2. (9)
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The decoder’s task is to infargiven the received message The matrix C is a squaré x M matrix that is very sparse
and the assumed noise properties of the channeloptimmal and invertible. The invers@’;1 of this matrix in modulo2
decoderreturns the message that maximizes the posterior arithmetic has been computed during the Gaussian elimination
probability which produced the matrif? = 02_101. (The expression
P P = C;'C; is the product (modul@) of the two matrices
(r|s,G)P(s) 1 M- 207 ti :
P(s|r,G) = G (10) €5 and C;.) The inversion takes ordel/*N time and is
Pr|@) performed once only.
It is often not practical to implement the optimal decoder; The matrix C, is a rectangulan/ x K matrix that is very
indeed, the general decoding problem is known to be NBparse.
complete [10]. Encoding. We define the generator matrix of the Gallager code
If the prior probability of s is assumed uniform, andto be
the probability of n is assumed to be independent sf

(c.f. Definition 6), then it is convenient to introduce the Gt — |:IK:| _ { Iy } (13)
(N — K) x N parity-check matrix H, which in systematic P c;'eCy
form is [P|Iy_xk]. The parity-check matrix has the property
HG" = 0mod 2, so that, applyingd to (9) where I is the K x K identity matrix.

Hn = Hr mod 2. (11) 2) Variations: _ . .

a) When generating the matrid, one can constrain all

Any other (N — K') x N matrix A whose rows span the same pairs of columns in the matrix to have an overlap
space add is a valid parity-check matrix. <1. This is expected to improve the properties of the

The decoding problem thus reduces, given the above as- ensemble of codes, for reasons that will become apparent
sumptions, to the task of finding the most probable noise vector in Section II-C.
n such that b) One can further constrain the matrid so that the
topology of the corresponding bipartite graph does not

Hnmod2 =2 (12) contain short cycles. This is discussed further in Sec-
where the syndrome vecter = Hr mod 2. tion IV-C.
3) The Decoding Problem for Gallager Code#: source
C. Description of the Two Code Families vector s of length K is encoded into a transmitted vector

t defined byt = G smod2. If a systematic generator
Matrix has been computed explicitly (which takég2N
time) then the transmitted vector can be computed by explicit
multiplication in AKX time. However, encoding might be

We define two code families. We explain the more conve
tional Gallager codes first.
1) Construction of Gallager CodesA Gallager code is a
code which has a very sparse random parity-check matr Qo : - ;
. . . ssible in less time using sparse matrix methods.
(Very sparse, buhot systematic.) The parity-check matrik BE) gsp

b tructed ol We will d b iati The received vector i8 = t + nmod 2, where the noise is
can be constructed as follows. We will describe vanations Qi |, ihe case of a binary-symmetric channeljs assumed
this construction later.

. to be a sparse random vector with independent and identically
A transmitted blocklengthV and a source blocklength’ distri : ; P
: . distributed bits of densityf,,. We will discuss more general
are selected. We defind = N — K to be the number of parity Y. g

hecks. We select eol ightt, which will initially be  Channels later.
checks. We select aolumn weightt, which will initially be By construction A is a parity-check matrix foG—that is,

an integer greater than or equal:ioWe create a rectangularAGT — 0mod 2—so0 the decoding problem is to recoveby
M x N matrix (M rows andN columns).4 at random with finding the most probable that satisfies the equation

exactly weightt per column and a weight per row as uniform
as possible. IfN/M is chosen to be an appropriate ratio
of integers then the number per row can be constrained to
be exactlytN/M; in this case, we call the resulting code a
regular Gallager code because the bipartite graph defined Were z is the syndrome vectar = Ar mod 2, computation
the parity-check matrix is regular. of which takes time of ordeiVt, if the sparseness afl is
We then use Gaussian elimination and reordering of columesploited.
to derive an equivalent parity-check matrix in systematic form The optimal decoder, in the case of a binary-symmetric
H = [P|I,,]. There is a possibility that the rows of the originathannel, is an algorithm that finds the sparsest vegttnat
matrix A are not independent (though for otidhis has small satisfiesAn = zmod 2. Fromn we obtain our guess for the
probability); in this caseA is a parity-check matrix for a transmitted signat = r + amod 2, the first K bits of which
code with the samé& and with smallet}, that is, a code with are the optimal guess for the original message.
greaterrate than assumed in the following sections. Redefining Both the matrix4 and the unknown vector are sparse. One
A to be the original matrix with its columns reordered as imight therefore hope that it is practical to solve this decoding
the Gaussian elimination, we have the following situation. problem (though perhaps not right up to the theoretical limits
The matrix A = [C;|C:] is composed of two very sparseof the optimal decoder). We will demonstrate a practical
matricesC; and C, as follows. decoder later.

An = zmod 2 (14)
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4) Construction of MN CodesHaving created the matri- Previous work on low-density parity-check codes has al-
ces O’;l and Cy, we can define the generator matik of ready established some good properties of Gallager codes.
an MN code by the nonsystematic mat’ = C, l¢,. Gallager [26], [27] proved that his codes have good distance
The novel idea behind MN codes is that we caonstrain properties. Zyablov and Pinsker [73] proved that Gallager
the source vectors to be sparard exploit this unconventional codes are good and gave a practical decoder, but only for
form of redundancy in the decoder [40]. We will discuss progommunication rates substantially below the Gilbert bound.
erties and possible applications of MN codes in Section VI. A3ur approach in terms of an ideal decoder allows us to prove
explained in that section, the decoding of these codes involibat the codes are good not only for the binary-symmetric
a problem similar to the Gallager codes’ decoding problenhannel but also for arbitrary ergodic symmetric channel
(14). models; we also prove that Gallager codes &gy good, a

5) Overview: Thetheoreticaleffectiveness of Gallager andresult not explicitly proven in [26], [27], and [73].

MN codes as error-correcting codes depends on the properties

of very sparse matriced in relation to the solvability of the
decoding problem (14). We address the question, “how Wél
would these codes work if we had the best possible algorithmThe properties that we prove depend on the ensemble of
for solving the decoding problem?” matricesA that is averaged over. We find it easiest to prove

The practical effectiveness of Gallager and MN codeshe desired properties by weakening the ensemble of matrices
depends on our finding a practical algorithm for solving (14¥om that described in Section I-C. We introduce the following
that is close enough to the optimal decoder that the desiraBrsembles which we believe are ordered such that the later
theoretical properties are not lost. ensembles define Gallager and MN codes that have smaller

We show theoretically in Section Il that there exist Gallagéverage probability of error, though we do not have a proof
and MN codes for which the optimal decoder would achiewef this statement.
information rates arbitrarily close to the Shannon limit for a 1) Matrix A generated by starting from an all-zero matrix
wide variety of channels. In Section Ill we present a “sum-  and randomly flippingt not necessarily distinct bits in
product” decoding algorithm for Gallager codes and MN each column.
codes, first used by Gallager [26]. We give an analysis of the2) Matrix A generated by randomly creating weight
decoding algorithm in Section IlI-C. These results lead us to  columns.
conjecture that there exist Gallager and MN codes which are3) Matrix A generated with weight per column and (as
not only good but which also achieve error rates approaching near as possible) uniform weight per row.
zero at a nonzero information rate when decoded using a prac4) Matrix A generated with weight per column and
tical algorithm. In Section IV we describe empirical results uniform weight per row, and no two columns having
of computer experiments using the sum-product algorithm to  overlap greater than 1.
decode Gallager codes. Our experiments show that practicab) Matrix A further constrained so that its bipartite graph
performance significantly superior to that of textbook codes has large girth.
can be achieved by these codes on both binary-symmetri&) Matrix A = [C1|C>] further constrained or slightly
channels and Gaussian channels. In Section V we give a modified so thaCs is an invertible matrix.
pictorial demonstration of the iterative decoding algorithm fahyr proofs use the first ensemble. Our demonstrations use
a couple of Gallager codes. In Section VI we present MMatrices from ensembles 4), 5), and 6).
codes and give theoretical and experimental results for them.The properties of the decoding probleds = zmod 2 also
depend on the assumed noise model. We will give theoretical
results for three cases. First, we give a general theorem
for a broad class of symmetric noise models with memory

We prove properties of Gallager and MN codes by studyin@efinition 6). Second, we discuss a popular special case, the
properties of the decoding probledr = 2 mod 2 where the memoryless binary-symmetric channel, corresponding, in the
unknown vectorz is sparse andi is very sparse. We makecase of Gallager codes, to a vectorof uniform density f.
use of two standard tools: we prove properties of the optinTghird, the generalization to channels with continuous outputs
decoder by proving properties of a slightly suboptimal “typicdt discussed in Appendix A.
set decoder” which is easier to analyze; and we average the
performance of this decoder over an ensemble of very sparse . ,
matricesA. A “good” average performance proves that therB: Decodability for Arbitrary P(z)
exist “good” matricesA—indeed, that any random matrig To avoid confusion between Gallager and MN codes when
from the ensemble is likely to be “good.” As in all proofsdiscussing their common decoding probleis = 2 mod 2, we
of goodness of coding systems, we employ a blocklength thafer to the number of columns id as L and the number of
can be increased to a sufficiently large value that an ermmws asM. (For a glossary of all symbols used in this paper,
probability smaller than a desireds achieved. To prove that see Table IIl.) In the case of Gallager codesis a sample
Gallager and MN codes aneery good we will also increase from the noise modekr = n. In the case of MN codes; is
the weight per columr, of the matrixA, but only in such a the concatenation of the vectogssandn, and the probability
way as to keep the matrix very sparse, €M — 0. of & is separable intd’(z) = Fi(s)FP.(n).

Ensembles of Very Sparse Matrices

Il. LiMITS OF OPTIMAL DECODING
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Let the ratio of the length ofe to the length ofz be In Section II-D we evaluate a tighter numerical lower bound
A = L/M. The decoding problem is equivalent to playindor H**(A,t). These are worst case results, true &my
a game in which a vectog is drawn from a probability source of mean entropl... In Section II-E we give numerical
distribution P(z), and the vector = Az mod 2 is revealed; results for the case of the binary-symmetric channel, where
the player’s task is then to identify the original vecigrgiven considerably more optimistic bounds can be derived.
the “encoding”z, the matrixA4, and the known distributioi®. We also prove the following minimum distance theorem for
The optimal decoder is an algorithm that identifies the veetorGallager codes which uses the functiéin( A, t) of Theorem 1.
that maximizesP(z) subject to the constraint = Az mod 2.

There is a Shannon limit for this game beyond which WE. 22 fractions < 0.5, and a\ such thatH(8) < Ha(\, 1)
i ’ g} 2 x ) 1

f:annot hope to recover from z reliably. The maximum there exist integerd/ and L > AM and a matrix4d having
information content ofz is clearly A shannons. We assume

that the probability distribution of the noise is stationarM rows andZ columns with weightt or less per column,

and ergodic so that a mean entropl, can be defined for %uph that the Gallager code with parity-check matfixhas
minimum distance at leastL.

the dlstrlbunonP(m)._ Then the S_han_non limit Says reliable We can also prove that the Gilbert minimum-distance bound
recovery ofz from z is only possible ifLH, < M, i.e., . N
can be attained as— oo, still with A very sparse.

MH, < 1. (15)

Theorem 3—Good Distance Propertie&iven an integer

Theorem 4—Gilbert Minimum Distance Bound Attainable:

If there are matricesi for which we can play the decodingGiven a fractions < 0.5, and aX such thatH>(é) < 1/A,
game well at a value ohH, close to this limit, then there there exists & and anM,p,;, such that for anyM > M,
exist Gallager codes which can communicate correspondingigre is a matrixA having M rows andL > AM columns
close to the Shannon limit of a noisy channel whose noi¥éth weightt or less per column, such that the Gallager code
distribution is given byP(z). with parity-check matrixA has minimum distance at lea&t.

For brevity we introduce the following definition. Implication of Theorem 3 contrasted with Theorem 1.If

Definition 7: A satisfactory(M, A, t,¢) matrix A for the ~ one only aims to decode noise patterns of weight up to half
distribution P(x) is a matrixA having M rows andL > \M of the minimum distancé = 6L (as is conventional in much
columns with weight or less per column, with the following of coding theory), then one can only handle noise levels up
property: if z is generated fromP(z), the optimal decoder t0 (¢/L)/2. But in fact the optimal decoder can decode (with

from 2z = Az mod 2 back toz achieves a probability of block vanishing probability of error) at noise levels up td/L).
error less thar. Thus Gallager codes can serve as good codes at noise levels

The following theorems will be proved. twice as greatas the maximum noise level that is attainable
if one restricts attention to bounded distance decoding. The
intuition for this result is that in a very-high-dimensional
binary space, while two spheres of radiugrhose centres are

a distanced apart have anonzerovolume of intersection for

Theorem 1—Good CodesGiven an integerr > 3 and a
ratio A > 1, there exists an entrop¥ (A, ¢) > 0 such that,
for any P(z) of mean entropy, < H.(\,t), and a desired

block error probabilityc > 0, there exists an intege¥/ and a 4. greater thand/2, the fractional volume of intersection
satisfactory(M, A, t, €) matrix A for the distributionP(z). is vanishingly smals long as- is less thand.

Theorem 2—Very Good CodeSiven a distribution(z) Gallager codes, as Gallager showed [26] and we will show
of mean entropyH, < 1 and a desired\ < 1/H,, there later, can in practice be decoded beyond their minimum
exists an integet(H,, ) > 3 such that for any desired blockdistance.
error probabilitye > 0, there is an integed/,,;, such that
for any M > M,.in, there is a satisfactoryM, \, t(H,, \),¢) C. Proof of Theorem 1
matrix A for the distributionP(z). Consider the problem, giveA andz, of inferring z, where

Implications of Theorems 1 and 2 for Gallager codesThe 4% = zmod 2, andz has probability distribution”(z) with
first theorem effectively states that Gallager codes with af§ean entropyH.. We consider the probability of error of
value oft > 3 aregood i.e., for any channel with appropriate@ tYPical set decodefl6], averaging it over all very sparse
entropy, there are Gallager codes which can achieve virtuaﬁpdom matricesd. We establish the existence of a function
error-free transmission at rates up to some nonzerolrate 1=(}?) > 0such that the probability of error can be bounded
1/, if the blocklengthL is made sufficiently large. by a sum of terms which decrease as inverse powets, df

The second theorem effectively states that Gallager codds < _H-r()"t)' ) )
arevery good—if we are allowed to choose then we can get ~ 1YPical set decoder.We consider the typical set
arbitrarily close to capacity, still using very sparse matrices r |1, 1
with ¢/M arbitrarily small. T=Tawn = {w €017 | 7 loes P(x) | = 77}

In Section II-C we prove these theorems, that is, we derive (16)
expressions for a functioH . (A, t) > 0 satisfying Theorem 1,
and a functiont(H,, ) satisfying Theorem 2. We also give
numerical results relating to these theorems. Let the largest ZP(Q) <1
function for which the first theorem is true bEX*=(\,¢). zCT

wheren is a small constant to be fixed later. Since
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( ﬁ)’ﬁ, for r <+ =~+'M, wherey =

( fy’) ,/2, for r > 7';

the number of elements in this typical sgf), satisfies {
17| < oL(Ho+m) (17) (22)

Bl

We now consider decoding= Az mod 2 by the following log ') < log q<7> =M™ _log2) +log2.  (23)
procedure:
if there is a uniqué € 7" such thatz = Azmod 2 then ~ These bounds are tightest for< M andr > M, respec-

producez as the decoding of; tively. Both these bounds are decreasing functions. of
else report decoding failure. We now have
There are two failure modes for this decoder, with proba-
bilities 7 and Pyr(A) such that Pu< Z 3" P(@)h(w|z)gly”. (24)
P (Block errorl A) = Pr + Prr(A). (18) w=lecT

We pause to dissect the product

> P w|w] i

xcT

I. Original vector not typicalThis failure occurs with pro-
bability P = P(xz ¢ T). Becauser is assumed to have
a mean entropw,., this probability vanishes ab — ~o
(see Definition 5, Section I-B).

Il. z is typical but at least one other typical vectgrhas

The first factor is typically a rapidly increasing function of
the same encoding, We now concentrate on the proba-’ up to some peak (which in the case of a binary-symmetric

bility of a decoding error arising this way, and denot&hannel of densityf is located atw ~ 2f(1 — f)L). The

the average of(A) over A drawn from ensemble 1) second factoq(“’ ) is largest forw = 1 and falls initially as
(Section 1I-A) by P. a power Iawl/M“’t/2 (see (22)) decreasing to an equilibrium

value of2 x 2= (see (23)), corresponding to an equilibrium
distribution uniform over (half of) the states of the hypercube.
We want the product of these two factors to be vanishingly

We define the indicator functiofi(S) to have the valud
if the proposition.S is true and0 otherwise. We can bound

Pu(4) by small (in increasingl) for all w.
Pr(A) < Z Pz Z 5[A =0mod2]. (19) Intuitively, if the product were large at small, then type
z€T a'eT Il errors would arise because there would be a small subset
T 7 of columns inA that sum to zero such that it is possible to

In (19) the second sum is the number of typical vecirhat  confuse vectors: and 2’ that differ in only a few bits (and
have the same encoding asWe now average over code§s which could therefore both be typical). If the product is large
B at largew, then type Il errors would arise because there are
Pr< Y P(:c){ZP(A)(S[A(a: —a) = 0]}- (20) two completely different vectors, ' which have the same
2T A encoding. Gallager codes and MN codes are good because we
f”#’” ) can indeed make the product vanishingly small forall
The term in brackets only depends on the weighof the 1y worst Case AnalysisUp to this point we have not men-
difference(z — «’). The probability thatd(z — ') = 0is the tjoned any form for P(z), which determines the function

probability thatw_ columns of the very sparse matwk sum to h(w|z) in (24). We now proceed with a worst case assumption
zero. Becausel is constructed by flipping bits per column ¢4 the functionh(w | z).

at random with replacement, this is the probability theat We know that
steps of the random walk on th&/-dimensional hypercube,

starting from the origin, bring us back to origin. We denote L

this probabilitypgg’t) and definei(w| ) to be the number of Z hw]
typical vectorsz’ such that the difference — 2’ has weight

z) < |T| < 2" Hotm),

w, for the givenz. Then we have Also h(w | ) is bounded above by the maximum number of
distinct vectors of weighty, (, ). Finally, q(“’t) is a decreasing
P < Z > P(a)h(w]|z) it (21) function ofw. So we can replace the functidrfw |z) in (24)
w=1l=zeT by the worst case function*(w) which has the maximum

In Appendix E we give an expression for the functipgl); Vvalue at smalkw
this function is zero for all odd, and is a decreasing function . (,L), w < w*
of evenr. It will be convenient to introduce an upper bound on h*(w) = {():U w > w*
pé(;) which is equal to it for evem and which is a decreasing

function. We define this functlorq00 , in (87). In ,A(E);)end|x wherew* is chosen to satisfy>™ A*(w) > 2E(H+1)If we
E we also derive various upper bounds;fﬁﬁ and gy, from , w=1
which we will use the following two: write

P < g < ¢ Hy(w* /L) = H, + 1 (26)

(25)
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wherer; is a small quantity satisfying’ > n andr’ < 1—H,, 0.8 : : . . . .
then
S bty > [ B) 5 2ol /D) 5 ot 06 |
w=1 A\t - L + 1 -
@7) 041 lambda H_2 —

bound for t=3 ----
bound for t=4 -----
bound for t=6 -~
bound for t=10 —-- |
-lambdaH 2 —

as long asy is sufficiently small andL is sufficiently large
thatn + 4 log,(L + 1) < #'. (Here we have used (73) from
Appendix D.) Notice that the only dependence that the function
h*(w) has on the source distributiaf(z) is the cutoff value

w*, which is controlled byH,.. Thus 0§ i
Py < ZP@:)% LY g (28)
B eT oot N\ . 02 ]

,w* L “
<30 (0 )a CONN
w=1

We now seek conditions under whidh; can be made arbit-
rarily small by increasingV/. Here first is a sketch of our
proof. Consider the logarithm of the term inside the summation
in (29) as a function ofv. Using (73) again 08 ! ! ! . . .
(wt)

L (wt) 1 (wt) 0 0.02 0.04 0.06 0.08 0.1 0.12
w e w
10g[<w>%0 } < M<)\H2(w/L) + i log g0 ) (30)
Fig. 1. Plot of a numerical upper bounéi log ge on the function

max )
We want to show that for altv less than somev that log qéﬁ"), for large M and for various values of; and the function

: : - T

grows ll.nearly WithM, we = M, the above term becomesy«(,,/1), as a function ofw/L, for A = 2. For convenience, the
increasingly large and negative $ increases. We need allfunction—\H (w/ L) is also shown. The intersection point of the two curves
the terms in the sum in (29) to go to zero, and we need almestHs(w/L) and 4 log¢t*" defines a value ofo* which gives a lower

all of them to do so faster thah/M so that the sum itself bound on the achievable information rate for Gallager and MN codes. This
! graph gives an informal proof of Theorems 1 and 2 for the case 2.

goes to zero. To aid the intuition, the two terml 3 (w/L) and  The content of Theorem 1 is that for anythe solid line—\Hg (w/L) lies

+log 4" (a tight numerical upper bound dng qéﬁ’t)) are above the dotted liner log ¢{"") for all w/L up to some nonzero value.

plotted in Fig. 1 as a function Qﬁ/L for a variety of values of The content of Theorem 2 is that as- oo, the first point of intgrsection of

t, for A = 2. The function\H$(w/L) is an increasing function the two curves approaches the point at whid (/L) = log 2.

of w (if w < L/2) reaching a maximum value oflog?2 at . o _

w = L/2; the function- log 5" is a decreasing function of WNereée = (; — 1) satisfiesa > 0 if ¢ > 2, and

w reaching a minimum value of log 2 asymptotically. For [ <3t>t/21 la
c= e

-0.6
-log(2)

u

w/L = 1/2, the right-hand side of (30) is certainly positive 1

since A > 1. For smallw/L, on the other hand (starting at
w = 1), the sum is negative, #f > 2, as we now prove. There Now as a function ofw, log(c7)*" is a decreasing function
therefore exists & > 0 such that, for alkw < 8M, the sumis for w < % as is easily confirmed by differentiation, so if we
negative. This defines the critical value®f which, via (26), constrainw* by w* < % we can bound the lagiv* — 2)
proves the existence of the functidfi,(\, ) that we seek. terms by2L times the third term

We continue from (29), using (22) and inequality (85) and b
assuminguw*t < — M.

3e — v L w
w? < Z <w>Q((Jot)
w=1

- LY (wt) L <3wt> t
P < < — == 31
"= wz::l <w>q00 B Z wh \4 M &) c\(E-1) 2c 25— M [ 3c 3(5-1)
<(Z = == .
_(M) +<M> +ce <M> (35)

w=1
S & S A
= Z M wve%e <ZM) . ;
w=1 Thus the average probability of error for this ensemble of

(32) codes vanishes with increasing as M~—/2 if ¢ = 3 and
wt_, 3\ wt/2 faster if ¢ > 3. There therefore exists & given by g =
( A)’ll)( t)

IN
=
A~
<|e
~—
)
g

1 min(5+, L) > 0 such that ifw* < BM, or equivalently, if
w=1 H, + 17 < Hs(B/X), then
(33)
w” W\ ew _ w” L w
<y (CM) (34) i<y <w>qgot> 0 asM —oo.  (36)
w=1 w=1
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This establishes the existence of the functidp(), ¢), since wherew™ is given by
if we define
Ha(w*/L) = Hy +1' (39)
Ho(\t) = Ha(B/) (37)
? andn’ > n+ %logQ(L + 1). From (30),
then, for anyH, < H,(\,t), we can sety, », andL such
thatn' > n+ +logy(L + 1) andyy/ < Hy(A,t) — (wt)
< — .
This completes the proof of Theorem 1. We note that the Pn < Z exp | M| AH3(w/L) + logq (40)
value of H,. (), t) given above is not the largest such function
H»*(),t) that satisfies the theorem. By using tighter boundswe can set andn such that the term in parentheses is neg-
on péﬁj’t) we can prove the theorem for larger values ddtive for allw < w* then Py goes to zero as/ mcreases For
H,.(\t). We use a numerical bound to obtain graphs of lowgarget it is evident (c.f. Fig. 1) thatAHS$(w/L)+; log o)
bounds onHX**(A,¢) in Section II-D. attains its largest value at = w*. So, substltutlng upper

Comment. It is instructive to study the terms which dom-20und (23) forlog 4o » our condition for vanishing’y is

inate the sum ovetw. The terms with smalks decrease as o % —ow t/ M
inverse powers ofd/ as long as(w — wt/2) < 0 for all AH; (W' /L) + (e /
w > 1, i.e., as long ag > 2. Thew = 1 term, the largest
decreases a&/1~*/2. We can get a stronger decreaself
ywt_h M if we assume.that each column has exactlgnes o 2HT (Hotn' )N +O(1/M) < log2 — N(Hy + 1) log2

in it. Then we can omit thev = 1 term, which corresponds (42)

to the probability of there being a zero column.n By the so that if we sety’ such that\(#, + /) < 1 and# such that
further step of ensuring that no two columns of the mattix

are identical, we can rule out the = 2 term from the sum. exp[—2H; Y (H, + ')\t < log2[1 — N(H, +7')]

By adding further constraints when generating the code, that

the girth of the corresponding bipartite graph must be larggen P;; vanishes with increasingZ, so anM,,;, can be

we can make the probability of this sort of “smait’ error found such that the average error probability of the ensemble
even smaller. This is the motivation for the code Construction$ matricesA is below any desired error probability

1B and 2B that we introduce later on.

—log2)+ O(1/M) <0. (41)

' Substituting in (39), we require

4) Proof of Theorem 4:This theorem follows from The-
2) Proof of Theorem 3:A code with parity-check matrix orem 2 as Theorem 3 followed from Theorem 1. Briefly,
H has minimum distancei if and only if any (d — 1) since we can find & such thaty""_, (X )pis" vanishes with
columns of H are linearly independent, and there exist increasingL for any w* */L sat|sfy|ngH2( */L) < 1/, this
linearly dependent columns. We can prove the existence oOfngplies that, for sufficiently larg&, we can find a matrix with

matrix A with 6L linearly independent columns easily startingt leastsL linearly independent columns for adysatisfying
from (36). Hereél is the desired minimum distance. Wem,(§) < 1/A.

setw® = 6L and note that the assumption of the theorem,
Hy(§) < Hu (A1) implies that the quantityy"y/_, (1)p” b, Numerical Bounds off 2%( X\, ¢): Worst Case
vanishes with mcreasm@

The quantity >, (£)p{s" is the expected number of
linear dependences of up te@* columns in a randomly
generated matrid. Since this expected number is less than
(indeed, it goes to zero), there must be at least dria the
ensemble such that the number of linear dependences is
(indeed, nearly all4d in the ensemble must satisfy this).

Theorem 1 proved the existence, for a given ratjof an
entropy H..(\, t) such that there exist good Gallager and MN
codes with rates defined byfor any channel with symmetric
stationary ergodic noise (Definition 6) with mean entropy up to
Zlg A, t). We defineH2*>(\, t) to be the largest function for

ch the theorem holds. In Fig. 2(a) we show a numerically
obtalned bound on this function. The graph shows a lower

3) Proof of Theorem 2:We now show that if we are free bound on\H®**(,#) as a function of\; the Shannon limit
to chooset then Gallager and MN codes can get arbitrarilprovides the upper boundH™2*(\,#) < 1. This graph was
close to the Shannon limit. We prove that for a desived optained as follows. Using the expansionpéﬁ) in (86), the
and any source with mean entropy, such thatAH, < 1, condition for P;; to vanish is that for alw < w* and all j
and anye > 0, there exists & and an My, such that the quantity
Ax = zmod 2 can be solved with probability of failure less L\ (M 2\
thane, averaged over the first ensemble of matrides G = log <w> <j ) <1 - M) (43)

We start from (29), which bounds the type Il probability of

- YN and maximize as a function ofp = w/L andx = j/M. We
Pr < Z <w>qéﬁut) (38) repeat this procedure iteratively to locate the critical value of
w=1 w* /L such thatG is zero. This gives the bound.

for any M > M,,;,, the corresponding decoding problem
error ihus should be negative. We use the inequalify) < 2~ =K/
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Fig. 3. Lower bounds on achievable information rate (in shannons) versus
binary-symmetric channel's noise levél for Gallager codes (ensemble 1)
with ¢ from 3 to 6. The solid line shows the channel capacity.
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Fig. 2. Lower bounds ohH"**(X,t) (a) for arbitrary sourceP(z) and
(b) assumingP(x) corresponding to binary-symmetric channel, for matrices ou
A with ¢ from 3 to 6. As the weight per column increases, the achievable 0.001 0.01 01
rates rise towards the Shannon limit/,, = 1. (@)
E. Numerical Upper and Lower Bounds: Uniform Noise Model 1

We now assume that the channel under discussion is the
binary-symmetric channel and obtain numerical upper and 08
lower bounds on the achievable rate of Gallager codes, assum-
ing the optimal decoder. The method here is as in the previous
section, with the worst case functidrf(w) = (f}) replaced
by the/(w) appropriate to the uniform noise case, as detailed

1

0.6

in Appendix F. The resulting lower bounds &fi**<(\, ¢) are 04 T
shown in Fig. 2(b).

1) Achievable Rate for Gallager Codes over Binary-Sym- 0.2 J
metric Channel: From the lower bound on the noise entropy
plotted in Fig. 2(b) we can compute a lower bound on the o ls i L)
achievable communication rate using Gallager codes (given 0.001 0.01 0.1
an optimal decoder), as a function of the noise level of the ()

blnary-symmetrlc channel. This rate is shown in shannons IE% 4. Upper bound on the achievable information rate in shannons versus

Fig. 3 fort = 3,4,5,6 and compared with the capacity. Aspinary-symmetric channel’s noise level, for Gallager codes, compared with

the weight per column increases the bounds rise towards th®e channel capacity. (a) This bound was obtained assuming that matrices
capacity were drawn from the ensemble having uniform weight per row as well as per

L. . column (Ensemble 3). (b) This bound was obtained assuming that matrices
2) Upper Bounds on the Communication Rate over a Binary-were drawn from the ensemble having uniform weight per column only

Symmetric ChanneFig. 4(a) and (b) addresses the questioffrnsemble 2). The graphs differ significantly at high noise levels.

“what information rate is definitelpot achievable for a given

t and noise levelf?” This is a relatively easy question tointo why Gallager codes with fixetlare only good codes and
answer, and it gives insight into what is lost in the abowveot very good codes.

proof by switching from the constrained ensemble of random Consider the decoding probleAr = 2z mod 2, wherez has
matricesA with weight ¢ per column and, = At per row to density f and lengthAM, and z has lengthM. It is clearly
the unconstrained ensemble of matrices. It also gives insigmpossible to solve the problem of deducingeliably from z
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Fig. 5. The vectors andz viewed as nodes in a belief network. White circles denote sitBlack dots denote checks,,. We illustrate the case = 4,

t, = 8. (a) This figure emphasizes with bold lines the four connections from one bit and the eight connections to one check. Eyvésythet parent of
four checks:z,,,, and each check,, is the child of eight bits. (b)—(e) Certain topological structures are undesirable in the network defined by thedmatrix
in (b) there is a cycle of length in the network; we can forbid this topology by saying that the overlap between two colunvhsrofst not exceed; in

(c), (d), and (e) more complex topologies are illustrated. Many of our experiments have used rahtincasich these topologies are also forbidden—we
eliminate bits that are involved in structures like the “doublet” (e), of which (c) and (d) are special cases. This means that every bit's “caghents” (
bits that are parents of its children) consisttofionoverlapping sets of bits as shown in (f). (g) A fragment of an infinite belief network mith4 and

t, = 8 and no cycles. In Section IlI-C2 we analyze the flow of information up this network.

if the information content of, AM H»(f) shannons, is more produces a net decrease in the information content. dfo
than the information content af We get the Shannon boundwork out a bound for the unconstrained ensemble, we sum
by noting thatH (z), in shannons, is less than or equal to itever all possible weights of a row, evaluateH»(p.(7)), and
length A/. But we can get upper bounds lower than this byeight by the probability of-, which is a Poisson distribution

tightening the bound o (2). with meant,.. The resulting upper bound is shown in Fig. 4(b).
Probability distribution of the random variable z,,. We We see that the bound is lower than that for the constrained
refer to the elements,, corresponding to each rowms = matrices, and looks similar to the lower bound in Fig. 3. It

1---M of A as checks and to the elementsaofis bits. Let thus seems plausible that, were we to change from Ensemble
zm be the sum ofr bits of densityf. We definep.(7) to be 2 to Ensemble 3 in the main proof of the paper, we would be
the probability thatz,,, = 1. Starting fromp.(0) = 0, we can able to prove the achievability of somewhat larger rates for

use the recurrence relation any givent.
This concludes our discussion of what would be achievable
. 1) =p. 1-— 1—p. 44 . . .
.p T+ 1) =pAr)1 =)+ =p(m)f (44) given an optimal decoder. We now move on to practical
to obtain [26] decoding algorithms.
1 1 .
pa(m) = 5 — 51 =2/)". (45) Ill. PRACTICAL DECODING BY
We use this result to obtain tighter bounds on the achievable THE SUM-PRODUCT ALGORITHM
communication rate. We have developed a “sum-product decoder,” also known

Bound for constrained matrices A. Consider the ensembleas a “belief propagation decoder” [51], [33] for the decoding
of random matricesd with weight¢ per column and as nearproblem Az = zmod 2. In this work, we have rediscovered a
as possiblet, per row (Ensemble 3 in Section II-A). In themethod of Gallager [27]. See [68], [24], and [46] for further
general case wheng = Xt is not an integer, the information discussion of the sum-product algorithm.
content per check of is bounded above by the average of We refer to the elements,, corresponding to each row
the marginal information content of one check, averaged over— 1.-. A7 of A as checks. We think of the set of bitsand
the ensemble, that is, checksz as making up a “belief network,” also known as a
(ty — |t DH2(p-([tr] + 1) + (1 — ¢, + |6 Ha(p= (|t ])- “Baye_sian net\NOI’k," “C@US_&U network,” or “influence diagram”

(46) [51], in which every bltycz is the.pare.nt ot checksz,,, and
each check,, is the child oft,. bits (Fig. 5). The network of
This gives the bound shown in Fig. 4(a), which was createghecks and bits form a bipartite graph: bits only connect to
as follows. For a selected value band f, a search was madechecks, andvice versa
over A for a value such that the upper bound on the information We aim, given the observed checks, to compute the marginal
content per check of is just above\H»(f), using (46). The posterior probabilities?(x; = 1|z, A) for eachl. Algorithms
graph is then a plot ofl — 1/X) versusf. for the computation of such marginal probabilities in belief

Bound for unconstrained matrices A. Now what if we networks are found in [51]. These computations are expected
remove the constraintt per row, reverting to Ensemble 2 ofto be intractable for the belief network corresponding to our
Section II-A? Intuitively we can see th&l (z) will decrease. problem Az = 2mod 2 because its topology contains many
Some checks will be sums of more thiin| +1 bits ofx, and cycles. However, it is interesting to implement the decoding
some will be sums of fewer that,.|. The former checks will algorithm that would be appropriate if there were no cycles, on
have a value op. slightly closer ta0.5, whereas the latter will the assumption that the errors introduced might be relatively
have values op. further from0.5. Some checks may be thesmall. This approach of ignoring cycles has been used in
sum of no bits at all (with probabilitgxp(—t,.)), so that they the artificial intelligence literature [4] but is now frowned
convey no information. The convexity of the relevant functionspon because it produces inaccurate probabilities (D. Spiegel-
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halter, personal communication). However, for our probleand seconds! ;, the probability of the observed value of,

the end product is a decoding; the marginal probabilities aaeising whenz; = 1, defined by
not required if the decoding is correct. Also, the posterior

probability, in the case of a good code communicating at any. , = Z Pz |z =1{zp : I € Lim)\ 1})
achievable rate, is expected typically to be hugely concentrated {1 CLEm\)

on the most probable decoding. And as the sizex L of the zy

code’s matrix4 is increased, it becomes increasingly easy to % H G- (48)

produce matrices in which there are no cycles of any given reLmN

length, so we expect that, asymp_totlcally, this algorithm will bgpe oo gjtional probabilities in these summations are either
a good algorithm. We have obtained excellent results With . . one, depending on whether the obserygdnatches
equal t01000 and 10000. The algorithm often gives usefulthe hypothesized values far, and the{zy}.
results after a number of iterations much greater than theThese probabilities can be computed in various obvious
number at which it could be affected by the presence of cyclq:,%lyS based on (47) and (48). The computations may be done
) most efficiently (if |£(m)| is large) by regarding,, +

A. The Algorithm as the final state of a Markov chain with statesand 1,

We have implemented the following algorithm (for backthis chain being started in stafie and undergoing transitions
ground reading see [51]). The algorithm is appropriate f@orresponding to additions of the various, with transition
a binary channel model in which the noise bits are irprobabilities given by the corresponding,, and ¢!, . The
dependent—for example, the memoryless binary-symmetfgobabilities for z,, having its observed value given either
channel, or the Gaussian channel with binary inputs and rgal— o or z; = 1 can then be found efficiently by use of the
outputs (the connection to real-output channels is explainedigtward—backward algorithm [7], [65], [5].

Appendix A). _ N _ A particularly convenient implementation of this method
We denote the set of bits that participate in checkn yses forward and backward passes in which products of the
by £(m) = {l : Apu = 1}. Similarly, we define the set of gifferences6¢,.; = ¢2,, — ¢}, are computed. We obtain

checks in which bit participates M(l) = {m : A,y = 1}, §p,, = 0, — 7L from the identity

We denote a sef(m) with bit { excluded byL(m) \ l. The

algorithm has_ two al_ternating parts, in which quantitbﬁ,g Syt = (—1)7 H SGmu- (49)

andr,,,; associated with each nonzero element ingheatrix

are iteratively updated. The quantig§,; is meant to be the

probability that bitl of 2 has the value:, given the information This identity is derived by iterating the following observation:

obtained via checks other than cheek The quantityr;, is if ( = z,+x, mod 2, andz, andz, have probabilitie$12, q°

meant to be the probability of cheek being satisfied if bit  and g}, g} of being0 and1, then P({ = 1) = gLq0 + ¢0q?

of z is considered fixed at and the other bits have a separablend P(¢ = 0) = ¢;q¢) + ¢.¢.. Thus

distribution given by the probabilitie$g,, : I’ € L(m)\ {}.

The algorithm would produce the exact posterior probabilities P((=0)-P(C=1)= (Q2 — qi)(qg — (Ji)-

of all the bits after a fixed number of iterations if the bipartite

graph defined by the matrid contained no cycles [51]. Finally, note that? ,+r} , = 1, and hence® ; = (1+67.,1)/2
Initialization. Let p? = P(x; = 0) (the prior probability andrl, = (1 — ér..)/2.

that bitz, is 0), and letp; = P(z; = 1) = 1—p!. Inthe case  Vertical step. The vertical step takes the computed values

of a Gallager code and a binary-symmetric chanpglwill of 0, andr! , and updates the values of the probabiliti€s

equalf,. In the case of an MN code; will be either f; or f,,, andg’,. For eachl we compute

depending on whether hitis part of the message or the noise.

If the noise level varies in a known way (for example, if the q?,,l = amzp? H 7’21/1 (50)

channel is a binary input Gaussian channel with a real output) m CMD\m

thenp! is initialized to the appropriate normalized likelihood. 1 1 1

For every(l,m) such that4,,; = 1 the variables;’ , andg. , Gy = Amiby H Tt (51)

are initialized to the valueg) and p;, respectively. ™ EMIDAm

Horizontal step. In the horizontal step of the algorithm, Weyherea,,; is chosen such that,, + ¢1 , = 1. These products

run through the checks: and compute for each € £(m) can pe efficiently computed in a downward pass and an upward
two probabilities: first,7° ;, the probability of the observed

value of z,,, arising whenxz; = 0, given that the other bits
{zy : I # I} have a separable distribution given by th

probabilities{q?,,., ¢5,,, }, defined by:

UVelL(m)\l

We can also compute the “pseudoposterior probabilitigs”
@nd q; at this iteration, given by

= Y, Plamlz=0{ey U € Lm)\1}) o = [ (52)
{z:VeL(m)\} meM(l)
x 11 aw (47) ad=ap [[ e (53)

rel(m)N\l meM(I)
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These quantities are used to create a tentative decaditige and MN codes with rateR close to capacity, that can achieve
consistency of which is used to decide whether the decodinggligible probability of error, for sufficiently largé/.

algorithm can halt. 1) Analysis of Correction Effect in a Simple Decodéfle

At this point, the algorithm repeats from the horizontal Stel?ntroduce a simple decoder to iteratively solve fosuch that
Decoding. If the belief network really were a tree WithoutA_T -

cycles, the values of the pseudoposterior probabiligfeand Simple decoder:

q; at each iteration would correspond exactly to the posterior SITP e_ gco er:

probabilities of bit/ given the states of all the checks in a e_ ‘é _I -t L A% mod 2. This is the check patt

truncated belief network centred on biand extending out to (- Eva uatez = z + Avmod 2. This IS the check pattem
) . . . .__that remains to be explained.

a radius equal to twice the number of iterations. Our decoding

: ; . if z=0,end.
procedure is to set; to 1 if ¢t > 0.5 and see if the checks L ” T .
Ax = zmod 2 are all satisfied, halting when they are, and Evaluate the "vote” vectarl "2 (not mod 2), which counts,

. . . . . . for each bit/, the number of unsatisfied checks to which
declaring a failure if some maximum number of iterations

(e.g., 200 or 1000) occurs without successful decoding. WhenIt belongs. The bits of that get the most votes are viewed

there is a failure. the partial decodigamay serve as a useful as the most likely candidates for being wrong. The biggest
> | afure, parti odiagmay Serv usetu possible vote that a bit can receive s since each bit
starting point for another decoding algorithm [47]. - .
Wi e i ing the diff bet this decodi participates int checks.
€ Note In passing the dirierence between this deco IngFlip all bits of # that have the largest vote.
procedure and the widespread practice in the turbo code

. . . . . o to [x].
community, where the decoding algorithm is run for a fixe hgs decod['ll algorithm is not quaranteed to reach a stable
number of iterations (irrespective of whether the decod ' ing aigorn : gu

finds a consistent state at some earlier time). This practls{é”ue’ but it is easy to analyze whether the first iteration of

. . “ e decoder produces a “correction effect” or not. We say that
is wasteful of computer time. In our procedure, “undetecte

errors would only occur if the decoder found arsatisfying Ahere is a correction effect if the Hamming distance between

Ai = zmod 2 which was not equal to the true “Detected” z and the true vectox: decreases. We expect this decoding

errors occur if the algorithm runs for the maximum numbeaIlgorithm to have similar properties to those of the sum-
9 roduct algorithm—at least for the first iteration—because, in

of iterations without finding a valid decoding. The alternativ e case of a binary-symmetric channel, the vote for a bit is

{)ratc t:jce rr(;ecr;tl;)n?d dabove blbrs dthtls (tj|sdt|nct|on betwefen gn : rectly related to its pseudoposterior probability.
ected and detected errors. Lndetected errors are ot scientl IExpected change in Hamming distanceWe will assume

interest because they reveal distance properties of a code a the weight of each row ofl is an integert,., i.e., that

engineering practice, it would seem prefgrable for the detectg bits participate in each check. We consider the flipping
errors to be labeled as erasures if practically possible. of a single bit whose vote i# (the largest possible vote),
B. Relationship to Other Algorithms and evaluate the probability that this reduces the Hamming

distance. If the expected change in Hamming distance is

. Meier gnd Staffelbach [47] implemented an algorithm .S"T.Hegative, then we might hope that decoding algorithms of this
ilar to this sum-product decoder, also studied by Mlhaf;evltype would work

and GolE [49], [50]. The main difference in their algorithm is Consider a bitz;

that they did not distinguish between the probabiliés and it participates (i.e., am: such thatd,,; = 1). The probability
L for different values ofm; rather, they computed? and - AP ' -
G 1O C * , (NEy computeq; and w4t , - — 1, given thatz; is 0, is p.(¢, — 1), as defined in
g7, as given above, and then proceeded with the horizongl (i, 11.E2." So the probability that @bit receives votet

step with all¢g®, set tog? and allg},, set tog;. is the binomial probability
Another related algorithm is the variational free-energy

minimization decoder [37]. We describe the application of a = P(vote; = t|x; = 0) = [p.(¢t, — D]". (54)
this decoder to Gallager and MN codes in Appendix C. Its

performance is not as good as the sum-product decoder's. Similarly, the probability that,,, = 1, given thatz; is 1, is
1—-p.(t. —1). So the probability that & bit receives vote is

that has valu®, and a checkn in which

C. Analysis of Decoding Algorithms

_ _ _ _ _ _ t
We analyze a simple decoding algorithm, following Gallager b= Plvote; =tz =1) = [1 = p=(t, — DI (55)

[27] and Meier and Staffelbach [47]. (The same algorithm hasNow, given that a bit has vote the probabilities that it is
been used by Spielman [60].) We also study the sum-prodyc or a 1 bit are, by Bayes’ theorem
decoder in the limit of largeV using Monte Carlo methods.

Although an explicit positive statement of the sum-product P(z; = 0|vote =t) x a(l — f)
decoder’s capabilities remains elusive, the important message P(xz; = 1|vote =t) < bf.

of our analysis that follows is that the algorithms have “cor- ) ) ] )
rection effects” which are independent of the blocklength Thus the expected change in Hamming distance when a bit

for large N. These results lead us to the following conjecturdVith vote ¢ is flipped is

(56)

Conjecture 1: Given a binary-symmetric channel with afl - f) = bf. (57)
noise densityf, there exist practical decoders for Gallager a(l—f)+bf
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Fig. 6. Analysis of practical decoding algorithms. (a) Time course of the decoding process in an infinite belief netwark=wditht,, = 8. Graph shows
average entropy of a bit as a function of number of iterations, as estimated by a Monte Carlo algorithm using 10 000 samples per iteratigninDerasigs

by steps 010.005 from bottom graph(f = 0.010) to top graph(f = 0.100). There is evidently a transition atabofit= 0.075, above which the algorithm
cannot determine:. (b) Rates achievable by Gallager codes according to two analyses,=08,4,5,6 as a function of noise leveDotted lines show
estimates of decodability based on the first iteration of the simple decoder. Below the dotted line there is a correction effect; above the loelethis de
gives no correction effecPoints show theoretical success of decoding in infinite belief networks with various values=df, 4, 5. 6, computed by Monte
Carlo simulations of up to 29 iterations, as in part (a). Point styles diamond, square, triangle, and plus represent (aligsapfwhich complete decoding
occurred after a number of iterations less than 29. Point styldenotes no decoding after 29 iterations.

If this is negative then there is a correction effect. We assunwd, f for a variety of values ot and¢,., compared with the
rather simplisticly, that if there is no correction effect on theapacity. It is interesting that (at least fgr > 0.02) as¢
first iteration then reliable communication is not achievablacreases, the bound on the achievable rate given by this
using the code; that is, we assume that this analysis predigithiple analysis decreases. Thus in contrast to the results for
a boundon the achievable communication rate. the optimal decoder, where largés best, we find that codes
For any givent and ¢,. (and hence)), we can locate with smallt (¢ = 3) are best for practical decoding.
numerically thef above which there is no correction effect. 2) Analysis of Decoding of Infinite Networks by Monte Carlo
The lower dotted curves in Fig. 6(b) show the correspondimdethods: The sum-product decoder’s performance can be
information rate(1 — 1/A) of a Gallager code as a functionanalyzed in terms of the decoding properties of an infinite
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Fig. 7. Schematic illustration of (a) Construction 1A for a Gallager code witk 3, t, = 6, and R = 1/2, (b) Construction 2A for a Gallager

code with ratel/3, (c), (d) two constructions similar to Construction 1A. Notation: an integer represents a number of permutation matrices superposed
on the surrounding square. A diagonal line represents an identity matrix. A rotating ellipse imposed on a block within the matrix represents random
permutation of all the columns in that block.

O/C/C,

network without cycles (of which Fig. 5(g) shows a fragmentlecrease to a stable entropy level corresponding to a failure
The larger the matrix4, the closer its decoding propertieso decode.
should approach those that we now derive. The results of many such runs with various values ahd

We consider an infinite belief network with no loops, irt,. are summarised by the points in Fig. 6(b), where the time to
which every bitz; connects tot checks and every checkreach virtually zero entropy is indicated by the point style on a
Zm cConnects tot, bits. We consider the iterative flow ofgraph of rate versus noise level of the corresponding Gallager
information in this network, and examine the average enode, with x denoting “no decoding after 29 iterations.”
tropy of one bit as a function of number of iterations. ARegions in the graph where there are points corresponding
each iteration, a bit has accumulated information from it9 1-29 iterations define values of the crossover probability
local network out to a radius equal to the number of iteff and rateR such that successful communication is possible
ations. Successful decoding will only occur if the averag#ith Gallager codes, according to the Monte Carlo analysis.
entropy of a bit decreases to zero as the number of iterationd he two analyses, using the simple decoder and using Monte
increases. Carlo methods, appear to give similar predictions as to the

We have simulated the iteration of an infinite belief networRiaximum achievable rat& as a function off.
by Monte Carlo methods—a technique first used by GallagerWe note that when the entropy drops to zero the decoding
[27]. Imagine a network of radiug (the total number of error probability falls to zero with a terminal convergence that
iterations) centred on one bit. Our aim is to compute tt& faster than exponential. The vertical step involves the multi-
conditional entropy of the central bit given the statez of Plication of¢—1 probabilities, so we believe the probability of
all checks out to radiug. To evaluate the probability thatdecoding error falls asymptotically asp (—a(t—1)*) where
the central bit isl given aparticular observationz involves 1" is the number of decoding iterations amds a constant.
an I-step propagation from the outside of the network into the

center. At theith iteration probabilities at radius/ —i+1 are IV. EXPERIMENTAL RESULTS USING
transformed intgy's and then into-’s at radius! — ¢ in a way THE SUM-PRODUCT DECODER
that depends on the statesf the unknown bits atradius—i.  Choice of ensembleln early experiments using matrices

In the Monte Carlo method, rather than simulating this netwofkom ensemble 4) of Section II-A, we examined some of the
exactly, which would take a time that grows exponentialljecoding errors made by the free-energy minimization decoder
with I, we create for each iteration a representative samp{e be described in Appendix C and found that they tended
(of size 100, say) of the values ofr,z}. In the case of a to occur when the vectoz was such that another slightly
regular network with parametetst,., each new paifr,z} in  different typical vectorz’ had a similar (but not identical)
the list at theith iteration is created by drawing the new encodingz’. In terms of the random walk on the hypercube
from its distribution and drawing at random with replacemerisection II-C), these errors correspond to walks that after a
(t=1)(t.—1) pairs{r,z} from the list at thgs —1)th iteration; small number of steps return close to the starting corner.
these are assembled into a tree fragment and the sum-produdy were possible because of rare topologies in the bipartite
algorithm is run to find the new value associated with the graph corresponding to thd matrix such as the topology
new node. illustrated in Fig. 5(c). We can eliminate the possibility of
As an example, the results of runs with= 4, ¢, = 8, and these errors by modifying the ensemble of matrideso that

noise densitieg betweerD.01 and0.10, using 10 000 samples the corresponding graph does not have short cycles in it. We
at each iteration, are shown in Fig. 6(a). It can be seen tmhde newd matrices by taking matrices from Ensemble 4 and
runs with low enough noise level collapse to zero entropy aftdeleting columns until there were no short loops of the type
a small number of iterations, and those with high noise levehown in Fig. 5(e). These matrices, having fewer columns,



MACKAY: GOOD ERROR-CORRECTING CODES BASED ON VERY SPARSE MATRICES 413

RESULTS OF SUM-PRODUCT DECODING EXPERIMENTS l;rcﬁ?B'll'_vIon IGALLAGER CODES ON BINARY-SYMMETRIC CHANNELS.
“trials” = NUMBER OF BLocks DEcoDED; “ers” = NUMBER OF BLocK ERRORS py1, = MAXIMUM -LIKELIHOOD
ESTIMATE OF BLOCK ERROR PROBABILITY. p4+ IS UPPERERROR BAR FOR BLOCK ERROR PROBABILITY (APPENDIX B)

N K f R C ers/trials  itns. pmp Dy

19839 9839 .077 .496 .609 6/20603 19.5 .000291  .000659
076 .496 .612 3/114711 17.6 2.62e-05 8.3e-05

13298 3296 .155 .248 .378 3/2685 21.8 .00112 .00354
154 248 380 6/64543 20.7  9.3e-05 .00021
.153  .248 383 7/107635 19.3 6.5e-05 .000138
152 248 .385 0/100809 18.1 0 1.98e-05
150 248 .390 0/97058 164 0 2.06e-05

correspond to codes with slightly lower rates. They also have
nonuniform weight per row. 01 k
We report results for codes with a variety of rates whose
low density parity-check matrices are created in the following 001
ways.
Construction 1A. An M by N matrix (M rows, N 0.001

columns) is created at random with weight per column 0.0001
(e.g.,t = 3), and weight per row as uniform as possible, and '
overlap between any two columns no greater thaRig. 7(a) 1e-05 L 8 o ]
. . . . ©
shows the construction schematically for a rateé code with L
t = 3 1e-06 ?3 GVRO .
Construction 2A. Up to M/2 of the columns are designated o oo
1 i 1 1 1

weight 2 columns, and these are constructed such that there 16-070
is zero overlap between any pair of columns. The remaining
columns are made at random with weightwith the weight @)
per row as uniform as possible, and overlap between any
two columns of the entire matrix no greater thanFig. 7(b) Ao a g
shows the construction schematically for a rat code. 0.10000 F mﬁp“ e @ 3
(This irregular construction using weight columns was 5 B
introduced because we guessed that it might give better g gy000 &
practical performance; we used/2 such columns because B
this was the maximum number of weightolumns for which e :
a
a

0.1 0.2 0.3 04 0.5 0.6 0.7

it was easy to make “good” matrices; if more thad/2 0.00100 ¢
columns of weight2 are introduced at random then there

is a risk that the corresponding code will have low weight 0.00010
codewords.)

Construction 1B and 2B. A small number of columns are
deleted from a matrix produced by Constructions 1A and 2A,
respectively, so that the bipartite graph corresponding to the
matrix has no short cycles of length less than some lehgth (b)
herel = 6. Fig. 8. Performance of Gallager codes applied to binary-symmetric channel

Another way of constructing regular Gallager codes is tnd decoded by sum-product decoder. Comparison of empirical decoding

; ; ; results with calculated performance of Reed—Muller codes (diamonds) and
build the matrix A from nonoverlapplng random permuta BCH codes (squares), and the Shannon limit. BSC's withf(a)= 0.076

tion matrices as shown in Fig. 7(c), (d). Fig. 7(c) shows thg) 7, = 0.16 are assumed. Arrows show the values ®f(f,) and
construction used by Gallager [26]. For practical purposeg} (f) for the channels. (a) Horizontal axis: information rate Vertical

; ; is: block error probability. Curve: Shannon limit on achievable (rate, bit
codes constructed in these ways appear to have very SImg:érigr probability) values. Results shown are for a code of Construction 1B

properties to codes made with Construction 1A, as long @gose parity matrix has/ = 10000 rows andN = 19839. The weight

cycles of lengthd are forbidden. per column ist = 3. (b) A BSC with f, = 0.160 is assumed. Horizontal
axis: information rateR. Vertical axis:bit-error probability. Results shown
are for a code of Construction 1A whose parity matrix Bds= 10000
rows and13 336 columns, and for three codes derived from this code by

A. Rate of Codes Defined by These Matrices shortening, i.e., deleting columns fr_om the parity matrix. These codes have
y N =13298,13119,12955. The weight per column is = 3.

The above constructions do not ensure that all the rows of
the matrix are linearly independent, so thé x N matrix
created is the parity-check matrix of a linear code with ete the assumption that the rate & The generator matrix of the
least R = K/N, where K = N — M. We report results on code can be created by Gaussian elimination.

BCHRM @
8 1 Gallager +— |
Shannon ——1

1

0.00001 GV RO c -
[ ® b Ny

0 0.1 0.2 0.3 0.4 0.5
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Fig. 9. Gallager codes’ performance over Gaussian channel (solid curves) compared with that of standard textbook codes and state-of-ttdstigidcodes (
curves). Vertical axis shows empirical bit error probability. It should be emphasisedlthiée block errors in the experiments with Gallager codes were
detectecerrors: the decoding algorithm reported the fact that it had failed. Panel (a) shows codes with rates betweef? ami#/3; panel (b) shows codes

with rates betweef /4 and1/3. Textbook codes:The curve labeled7,1/2) shows the performance of a ratg¢2 convolutional code with constraint length

7, known as thele factostandard for satellite communications [29]. The curve (7,1/2)C shows the performance of the concatenated code composed of the same
convolutional code and a Reed—Solomon c@tate of the art: The curve (15,1/4)C shows the performance of an extremely expensive and computer intensive
concatenated code developed at JPL based on a constraint 1éngtite1/4 convolutional code (data courtesy of R. J. McEliece.) The curves |lafeldzb

show the performance of the rat¢2 Turbo code described in [12], [11] and the rdtét code reported in [21]Gallager codes:From left to right the

codes had the following parametd’, K, R). Panel (a)(65389,32621,0.499) (1B); (19839,9839,0.496) (1B); (29331,19331,0.659) (1B). Panel (b):
(40000,10000,0.25) (Construction 2A);(29507,9507,0.322) (2B); (14971,4971,0.332) (2B); (15000,5000,0.333) (2A); (13298,3296,0.248) (1B).

B. Empirical Results for Gallager Codes: Fig. 8 compares two Gallager codes with BCH and RM
Binary-Symmetric Channel codes on two binary-symmetric channels. To compute the

In the following experiments we performed up to 1000 iterobability of error for BCH codes we evaluated the prob-
ations of the algorithm when decoding eaghalting earlier 2Pility of more thant errors inn bits. Similarly, for RM
if a consistent decoding was found. Most of the successftffdeS Of minimum distancd, performance was computed
decodings took 20 iterations or fewer to be completed, whicpSsuming thgt more thatd/2J errors cannot be corrected.
for a code with blocklengthl0000, corresponds to a few (See Appendix B for discussion of how the presented results
seconds on a Sparc | workstation. We found that the resuff§'® computed.) . _ . .
were best for = 3 and became steadily worse amcreased. The mean numbgr Of. |ter_at|ons of the algorlthm to obtain
We compare Gallager codes with = 3 with Bose— a sucgessful decoq!ng is displayed for a selection of codes
Chaudhuri-Hocquenghem (BCH) codes, which are describ®d’ dlﬁgrent .densmesf in Table I In rare cases as many
in [52] as “the best known constructive codes” for memoryleéa'sS 800 iterations took place before a successful decoding
noisy channels, and with Reed—Muller (RM) codes. The&gnerged.
are multiple random error-correcting codes that can be )
characterized by three parameténsk, ¢). The blocklength is - Gallager Codes for the Gaussian Channel
n, of which k bits are data bits and the remainder are parity We originally conceived MN codes as codes for the mem-
bits. Up tot errors can be corrected in one block. oryless binary-symmetric channel. It turns out, however, that
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te0p L—1—— L fe0 L —1 1 1 1 Fig. 11. Short-blocklength Gallager codes’ performance over Gaussian chan-
06 0.7 08 08 1 11 1214 16 182 nel (solid curves) compared with that of standard textbook codes (dotted
curves). Vertical axis shows empirical bit error probability. It should be
Ey/No (dB) emphasised thaill the block errors in the experiments with Gallager codes
weredetectecerrors: the decoding algorithm reported the fact that it had failed.
Fig. 10. (a) Median number of iterations of sum-product algorithm taken textbook codes:as in Fig. 9.Gallager codes:From left to right the codes
obtain a successful decoding. Bars show 5th, 25th, 75th, and 95th percentitgsi the following parametetsV, i, ?): (1008, 504, 0.5) (Construction 1A);
(b) Corresponding bit error probability. (504,252,0.5) (1A).

Gallager and MN codes have a much broader applicability. Agsults for Construction 1A appear much the same as those in
we proved in Section Il, Gallager codes are very good for atys book [27, fig. 6.7].

symmetric stationary ergodic noise model (including arbitrary

correlations and memory—Definition 6) as long as a mean V. PICTORIAL DEMONSTRATION OF GALLAGER CODES

entropy can be defined for it. Here we report investigations igs 12_15 jllustrate visually the conditions under which
of nonuniform noise corresponding to communication over @ajiager's low-density parity-check codes can give reliable

Gaussian channel with binary inputs. communication over binary-symmetric channels and Gaussian

Fig. 9 compares the performance of Gallager codes Wiljannels. These demonstrations may be viewed as animations
rates betweenl/4 and 2/3 with textbook codes and with o the world wide web [39].

state-of-the-art codes. As before, the best results are obtained
by making the weight per columm as small as possible 5 Encoding

(Constructions 2A and 2B). Unsurprisingly, codes with large ) ] )
blocklength are better. Fig. 12 illustrates the encoding operation for the case of a

In some cases we modified the matrices so as to elimin&@!lager code whose parity-check matrix iSE000 x 20000
short cycles. The original matrices, by construction, had fBatrix with threel's per column. The high density of the
cycles of length4, a constraint which was found to beJ€nerator matrix is IIIu_strated in (b) and (c) by showing the
beneficial. We deleted columns so as to remove cycles @fange in the transmitted vector when one of the 10000
length 6,8, -- -, expecting that this would further improveSOUrce bits is altered. Of course, the source images shown

performance. However, we found that these modificatioR§re aré highly redundant, and such images should really be
made little difference. compressed before encoding. Redundant images are chosen in

For the codes with blocklengths anth000 and 13298 these demonstrations to make it easier to see the correction
in Fig. 9 the median number of iterations taken to compleff0C€SS during the iterative decoding. The decoding algorithm
a successful decoding is shown in Fig. 10(a) as a functigiRésnottake advantage of the redundancy of the source vector,
of E,/N,. The line shows the median number of iteration@nd it would work in exactly the same way irrespective of the
and the bars show the 5th, 25th, 75th, and 95th percentil§g0ice of source vector.

Fig. 10(b) shows the corresponding bit error probabilities,

reproduced from Fig. 9. B. Iterative Decoding

After the transmission is sent over a channel with noise level

D. Results for Small Blocklengths f = 7.5%, the received vector is as shown in the upper left of
To double-check our results against Gallager’s we replicatédy. 13. The subsequent pictures in Fig. 13 show the iterative
experiments with codes of blocklengtiv4 and 1008. Our probabilistic decoding process. The sequence of figures shows
random code constructions are not identical to Gallager’s, athé best guess, bit by bit, given by the iterative decoder, after
we ran the decoder for more iterations (up to 500), but tie 1, 2, 3, 10, 11, 12, and 13 iterations. The decoder halts
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Fig. 12. Demonstration of encoding with a raté¢2 Gallager code. The encoder is derived from a very spa@8&0 x 20000 parity-check matrix with

three1’'s per column. (a) The code creates transmitted vectors consisting of 10000 source bits and 10000 parity-check bits. (b) Here, the source sequence
has been altered by changing the first bit. Notice that many of the parity-check bits are changed. Each parity bit depends on about half of the source
bits. (c) The transmission for the case= (1,0.0,---,0). This vector is the difference (moduld) between transmissions (a) and (b). (Dilbert image
Copyright]11997 United Feature Syndicate, Inc., used with permission.)

after the 13th iteration when the best guess violates no partyandard arithmetic coder based on a model corresponding to
checks. This final decoding is error free. the sparse messages (see Appendix G). Now given that the
source is already redundant, we are no longer constrained to
have N > K. In MN codes,N may be less thad(, equal
to K, or greater thark{. We distinguish between the “symbol

In Fig. 14 the first picture shows the transmitted vector andte” of the codep = K/N, and the “information rate” of the
the second shows the received vector after transmission owetle, R = H»(f.)K/N. Error-free communication may be
a Gaussian channel with/c = 1.185. The greyscale repre- possible if the information rate is less than the capacity of the
sents the value of the normalized Iikelihoqe{%. channel. For example, consider a binary-symmetric channel
This signal-to-noise ratiar/c = 1.185 is a noise level at having f, = 0.1, and assume that we have a source with
which this ratel/2 Gallager code communicates reliably (thelensity f; = 0.1. Then we might construct a code wifki =
probability of error is~10~°). To show how close we are to K, i.e., a square linear code with symbol rat¢Fig. 16(b)].
the Shannon limit, the third panel shows the received vectbhe information ratep.47, is less than the channel capacity,
when the signal-to-noise ratio is reducedrr = 1.0, which  0.53, so it is plausible that we might construct a sequence of

C. Gaussian Channel

corresponds to the Shannon limit for codes of rgfe. codes of this form achieving vanishing probability of error.
Fig. 15 shows the analogous vectors in the case of a coddhe key idea behind MN codes is that we construct the
with rate aboutl /4. generator matrix in terms of amvertible matrix, in such
a way that the sparse source and the sparse noise can be
VI. MN CODES treated symmetrically in the decoding problem—in contrast to
conventional syndrome decoding where only the noise vector
A. The Ideas Behind MN Codes appears in the problem.

1) Code Construction:MN codes make use of the same

It is conventional to define a linear error-correcting code tr?latricesC& and C, that were constructed in Section I-C1
have transmitted blocklength > K, and to use signals of These matrices will now be denoted B, = C, (the square

density f; = 0.5. Conventionally, the code is systematic, Sthvertible matrix) andC, = C;. We redefineV and K = pN
the firstK transmitted bits are th& source bits. ThéN —K) ¢/, thatC. is an N x K matrix andC. is anN x N matrix
extra bits are parity-check bits, which produce redundancy in2) Encoaing' A source vectors of Inength pN is encode.d

the transmitted vectat. This redundancy is exploited by theinto a transmitted vectat defined by (Fig. 17(a))
decoding algorithm to infer the noise vecter '

MN codes [40] are based on a different approach. We t:c’;lc'ssmodg. (58)
first assume that the source may itself be redundant, having
fs» the expected density o$, less than0.5. Consecutive This encoding operation takes time of ordefin[p/N¢ +
source symbols are independent and identically distributed?, pN2]. The mapping from source bits to transmitted bits
Redundant sources of this type can be produced from otlem linear mapping, however, MN codes aenlinear codes
sources by using a variation on arithmetic coding [70], [57In the sense that the codewords that have high probability do
one simply reverses the role of encoder and decoder imat form a complete linear subspace {@f 1}*.
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RECEIVED:
T T{REDONDA,
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REDUNDAN
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Fig. 13. lterative probabilistic decoding of a Gallager code. The sequence of figures shows the best guess, bit by bit, given by the iterativételecoder, a
0, 1, 2, 3, 10, 11, 12, and 13 iterations. The decoder halts after the 13th iteration when the best guess violates no parity checks. This final decoding is
error free. (Dilbert image Copyrightl997 United Feature Syndicate, Inc., used with permission.)

3) The Decoding ProblemThe received vector is where A is the N by K + N matrix [C;|C,]. This decoding

r—%1 nmod2 (59) problem is shown schematically in Figs. 17(b) and 18 for MN

o codes with symbol rates = 1 and1/3.
where the noisex is assumed to be a sparse random vectorye emphasize two properties of (61).

with independent and identically distributed bits, densfily 1) There is a pleasing symmetry between the sparse source
(See Appendix A for discussion of other channels.) vector s and the sparse noise vectar especially if
The first step of the decoding is to compute o= fu

z=Cyrmod?2 (60) 2) Both the matrixA and the unknown vectar are sparse
(the bits ofz have densityf, or f,), so the decoding
problem is identical to the syndrome decoding problem
for Gallager codes.

which takes time of ordeiVt.
Because

z=Cu(t+n)mod2 =Cys+ Cynmod 2
the decoding task is then to solve fer= [’ ] the equation

B. Theoretical Results for MN Codes

The theoretical properties of optimal decoding derived in
Az = zmod 2 (61) Section Il imply that good MN codes exist. Fig. 19 shows
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Fig. 14. Demonstration of a Gallager code for a Gaussian channel. (a) A data transmission consisting of 10000 source bits and 10000 parity-check bits.
(b1) The received vector after transmission over a Gaussian channek jith= 1.185. (E5/No = 1.47 dB.) The greyscale represents the value of the
normalized likelihood. This transmission can be perfectly decoded by the sum-product decoder, that is, the decoder’'s output is identicalitalthe orig
data shown in (a). The empirical probability of decoding failure is abidlit®. (b2) The probability distribution of the output of the channel with

x/o = 1.185 for each of the two possible inputs. (c1) The received transmission over a Gaussian channelawith 1.0, which corresponds to the

Shannon limit. (c2) The probability distribution of the outputof the channel withz/o = 1.0 for each of the two possible inputs. (Dilbert image
Copyright]11997 United Feature Syndicate, Inc., used with permission.)

the communication rates proved achievable with MN codesicoding a sparse source wifh = 0.2 (R = 0.238) gave a

communicating over a binary-symmetric channel with= f;.  similar error probability af;, /Ny = 2.31 dB. MN codes seem

This figure was produced by the same method as Fig. 3. to be inferior to Gallager codes in terms Bf /Ny, but it may
be that their novel properties offer compensating benefits.

C. Experimental Results: One MN Code Can be Used for
Channels with a Range of Noise Levels VIl. DISCUSSION

1) Binary-Symmetric ChannelWe initially made experi-  This paper has given a semiconstructive proof of the noisy
ments in which a sparse source communicated over a binackannel coding theorem using low-density parity-check codes.
symmetric channel, witlf; = f,. Results for two codes with Gallager and MN codes are good not only for the binary-
symbol rates abodt and aboufl/3 are shown in Table Il and symmetric channel but also for any channel models for which
Fig. 20(a). the optimizing input distribution is symmetrical and the law of

We then explored cases witli > f,, using the same large numbers holds. It is a surprise to us that a single code can
encoderwith K = 3296 and N = 10002. Fig. 20 shows that be good for any channel. We had anticipated that to achieve
a single encoder can be used to transmit quite near to capagityy good performance on a new channel (such as a bursty
over two channels with substantially different noise levelsoise channel), a new custom-designed code would be needed.
(15.3% and 11.4%), simply by changing the density of thEhis expectation is shared by Golomb, Peile, and Scholtz,
source stream. Contrary to our expectations, the performandao state that “the optimal code for a given set of channel
appeared to get better when the symmetry between the sowgeditions may not resemble the optimal code for another”
and the noise in the decoding was broken; in the case wji, p. 369]. But theoretically, the same encoder family can
fs = 0.5 and f,, = 0.114, the performance is beyontd,. be used forany channel—all that needs to be changed is the

2) MN Codes for the Gaussian Channalfe have simu- decoding algorithm.
lated MN codes with dense sources and sparse sources. TheEhe practical performance of Gallager's 1962 codes, us-
rate 0.33 code with a dense source gave a probability of bihg Gallager's 1962 decoding algorithm, would have broken
error less thanl0— at E,/Ny = 1.81 dB. The same code,practical coding records up until 1993. The decoder works
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Fig. 15. Demonstration of a rati/4 Gallager code for a Gaussian channel. (a) A data transmission consisting of 3296 source bits and 10002 parity check
bits. (b1) The received vector after transmission over a Gaussian channel pwite: 0.84. (E /No = 1.5 dB.) This transmission can be perfectly decoded

by the sum-product decoder, that is, the decoder’s output is identical to the original data shown in (a). The empirical probability of decogliisgatadut

10~2. (b2) The probability distribution of the outpytof the channel withe/o = 0.84 for each of the two possible inputs. (c1) The received transmission
over a Gaussian channel wittyo = 0.64, which corresponds to the Shannon limit. (b2) The probability distribution of the ogytmitthe channel with

xz/o = 0.64 for each of the two possible inputs. The crocodile image is the insignia of the Cavendish Laboratory.

GT H H GT =t C;{lcs + =|r
(@

(b) @

Fig. 16. (a) A conventional code. The source vestaf length(, is dense.
The transmitted vectar is of lengthlV > K. Here N = 2K, so the symbol
rate and information rate are bafti/ N = 0.5 shannons. (b) Square code for
a sparse source, having = K. The symbol rate is 1, but if the density _
of the sourcefs is 0.1 then the information rate i&»(0.1) ~ 0.5 shannons, Cs Cn 8| —
the same as that of the conventional code.

beyond the minimum distance of the code, beyond the Gilbert
bound, and beyond the rate that was widely believed to be the mnl
“effective capacity” Ry.

As far as we know, the only traditional code that can match
the performance of Gallager codes is the code for Galileo
developed at JPL, which employs a ra&l, constraint length ()

15 convolutional code surrounded by a Reed—Solomon codé: 17- Pictorial representation of MN Code with symbol rate= 1. (a)
ncoding, transmission and reception. The veckooendn are sparse. The

giVing an effective blOCklen_gth. of abo_Ut 8000 bits (R. JnatricesC, andC,, are very sparse. (b) Decoding. The vectds given by
McEliece, personal communication). This system can only be= C.rmod 2. We attempt to solve fos andn.

decoded using expensive special-purpose hardware, and the
details of the code are unpublished outside JPL [61].

A. Comparison with Turbo Codes S

We heard about turbo codes [12], [11], which outperform Cs Cn =
Gallager's codes in terms ok, /Ny, towards the end of N
this work. There are some similarities between the codes.

The turbo decoding algorithm may be viewed as a sum-
product algorithm ([69], [68], [46]). Turbo codes also have —
a construction in terms of sparse random trellises. Indeed, s 18. The decoding situation for an MN code with symbol ate 1/3.
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TABLE I
REsuLTS oF SuM-ProbucT DEcoODING EXPERIMENTS FORTWO MN CODES ON BINARY-SYMMETRIC CHANNELS. “trials” = NUMBER
OF BLocks DecoODED; “ers” = NUMBER OF BLocK ERRORS pyi1, = MAXIMUM -LIKELIHOOD ESTIMATE OF BLOCK ERROR
PrROBABILITY. p+ |s UPPERERROR BAR FOR BLOCK ERROR PROBABILITY (APPENDIX B). HERE, fs = fn = f. SEE ALsO FiG. 20(a)

N C

itns.

K t f R ers/trials PML jn
10000 9839 3 .07v7 .385 .609 6/20603 19.5 .000291 .000659
076 382 612 3/114711 17.6 2.62e-05 8.3e-05
10002 3296 3 .155 .205 .378 3/2685 21.8 .00112 .00354
154 204 .380 6/64543  20.7 9.3e-05  .00021
153 203 .383 7/107635 19.3 6.5e-05  .000138
152 203 .385 0/100809 18.1 O 1.98e-05
150 .201 390 0/97058 164 O 2.06e-05
" ' L ! ' 5p' ag ¥, 8. "
Capacity —— o1k chﬂgu @ BM o
08 o7 t=5 - i o Shannon —
t= o0t f F MN
U ob
06 F g ooot %
o}
T T 0000t f @ I .
041 -7 . a0 .
i 1e-05 F —:
[ o p
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Fig. 19. Lower bounds on achievable information rate in shannons versus ()

noise levelf for MN codes witht from 3 to 6. The solid line shows the

channel capacity. The lines are lower bounds on rates achievable by MN codes. =
This achievable region was obtained using the first ensemble of mattices i BcH 8
As the weight per column increases the achievable region rises towards the 01 i a B%am AM o 7
fundamental limit, the capacity. I @ O Shannon —-
MN +H—
0.01 | o O
[ o
shown schematically in Fig. 21, turbo coda® low-density 0.001 | ® g
parity-check codes. However, few “goodness” properties have o & a
been proved for turbo codes. 0.0001 F - ;
At error probabilities of about0—>, Gallager and MN codes 8 1
. o 1e-05 | . e
are not able to get quite so close to the Shannon limit as turbo ]
codes (Fig. 9). However, turbo codes as originally presented ;.06 | EE’ GV RO ]
are known to have an error “floor” at abold—° due to low- g J,. 7
weight codewords (B. J. Frey, personal communication); the  1e07 L L L L
error probability of these turbo codes no longer decreases 0 o1 02 03 04 05
rapidly with increasingE;, /N, below this floor. We have (b)

seen no evidence of such a floor in Gallager codes; amg. 20. OneMN code with fixed generator matrix can communicate at good
theoretically we do not expect Gallager codes to have the Iow\t/ilssOt;/ef(‘l:\rl]vgnbii?]afxg;]zyr;&?geicdzziﬂnellsn with_Sléblsfgngggyt r?eiﬁsegi?éengse
weight codewords that could give rise to this behavior. So it £ "0 Gen G "2 TS TP e e oo
possible that at very low-bit error probabilities, Gallager codesed( f. = 0.5). The empirical decoding results are compared with calculated
outperform turbo codes. It should also be emphasised thatRgliformance of Reed—Muller codes (diamonds) and BCH codes (squares), and
the errors made by Gallager codes that we have obserJihanon Imi (sold curve). Horizota) s formaton e ertcal

are detectederrors, whereas the turbo codes’s errors thahe MN code hasv = 10000, K = 3296, and¢ = 3 (Construction 1B).

are caused by low-weight codewords anedetectederrors.

Gallager codes may also have an advantage over turbo coseales asv>, but encoding involves only binary arithmetic, so
in terms of their decoding complexity. for the blocklengths studied here it takes considerably less
time than the simulation of the Gaussian channel. We are
currently investigating the performance of low-density parity-
check codes which can be encoded in linear time [42].

In a brute-force approach, the time to create a Gallager codebecoding involves approximatelgN¢ floating-point mul-

scales asV?, where N is the block size. The encoding timetiplies per iteration (assuming a model of computation where

B. Computational Complexity



MACKAY: GOOD ERROR-CORRECTING CODES BASED ON VERY SPARSE MATRICES 421

not found any useful improvement in performance. However,
turbo code researchers have found similar tweaks to the sum-
product algorithm are helpful [21].)

The encoding and decoding software and the parity check
matrices used in this paper are available frp://wol.ra.phy.
cam.ac.uk/mackay/codes/.

@)

C. Descriptive Complexity

The descriptive complexity of these codes is much smaller
than the descriptive complexity of arbitrary linear codes, which
is ~NK bits. A Gallager(N, K) code has a descriptive
complexity of about N log(N — K) bits, since for every one
of N columns we have to sele¢tbits from N — K.

D. Distance Properties

We have proved minimum distance properties of Gallager
codes in Section II-C2 (the Gilbert bound can be attained),
(b) but we do not view this as a primary result. We view distance

Fig. 21. Convolutional codes and turbo codes low-density parity-check Properties as a secondary attribute compared with the block
codes. Schematic pictures of the parity-check matrices of (a) a systegrror probability. The minimum distance of a code may be

atic recursive convolutional code with (binary) generator polynomials; ; “ » o :
(10001/11111) and (b) a ratel/3 turbo code formed by combining two Viewed as a convenient measure of how good” it is, but in

such convolutional codes. Notation: A band of diagonal lines represent a bdA&t it is not possible to distinguish between good and very
of diagonall’s. Horizontal and vertical lines indicate the boundaries of thgood codes by their minimum distance, and bounded distance

blocks within the matrix. In (a) the left-hand band1i8001, corresponding decoders are well known to be unable to achieve the Shannon
to the numerator polynomial, and the right-hand baid,11, corresponds to

the denominator. In (b) the firsk bits are the systematic bits, the next limit [43]. We have proved that Gallager and MN codes can
are the parity bits from the first convolutional code, and the Idsare the (when optimally decoded) achieve capacity. Moreover, we

parity bits from the second convolutional code, which receives the systemeﬁ'(ave demonstrated error correcting abilities at rates well above
bits in a permuted order. The weight per row of the turbo code’s parity-chec|

matrix is 7 for almost all rows, and the weight per columndior 5. the Gilbert rate.

the cost of elementary operations does not grow with E. Discussion Specific to MN Codes

so the total number of operations per decoded bit (assumingn @ conventional lineafV, K) code, the codewords form
20 iterations) is abou120t/R, independent of blocklength. @ complete linear subspace {, 1}, and it is conventional
For the codes presented here, this is about 800 operatid@sassume that its generator mat@k might as well be put
This is not at all excessive when compared with textbodR systematic form. In designing MN codes we made the
codes—the constraint length convolutional code used by assumption instead that the sourcepsrse so the codewords
Voyager requires 256 operations per decoded bit. The turiit have high probability are only a small subset of a complete
codes of [12] require about 3800 operations per decoded ljpear subspace. In this sense, MN codes are nonlinear codes,
(B. J. Frey, personal communication). even though the transmitted vectbiis a linear function _of
Strictly, a constant number of iterations (taken above to feSOurce vectos. The generator matrix magot be put in

20) is not sufficient to achieveegligible probability of error Systematic form. Th(_% systematic form for a code w.|tr.1 symbol
for any blocklength [26]. Assuming the truth of the conjecturtt® p = 1 would simply be an identity matrix, giving no

of Section I1l-C2 that the bit error probability decreases #&TOr Protection at all. We think the MN code’s sparse source
exp (—a(t—1)T) whereT is the number of decoding iterations'S @n interesting idea which could have a variety of spinoffs.

and« is a constant, in order for this probability to decreasg®’ €xample, MN codes offer the potentially useful property
as1/N with increasingV, we need the number of decodingthat the rate of .the code can be changed without changing the
iterations to grow ag’ ~ log log N. generator matrix.

The decoding algorithm involves no adjustable parameters,
except those associated with the handling of overflows. AftEr Application of MN Codes to Multiple-User Channels
each vertical step we prevented all the probabilities from goingConsider a multiple-user linear binary channel whose out-
greater tharl —10~!° or less thari0~'°. (One could view the put, each cycle, is =t + ¢@ 4+ ... 4+ ) 4+ nmod 2,
“update schedule,” i.e., the order in which the quantitiesxd wheret( is the bit transmitted by uset, andx is noise. The
7 are updated, as an adjustable aspect of the algorithm [24]; information-theoretic bound on the total information that the
have not explored this option. We have briefly examined tw@ users can communicate is the capacityf,,) = 1— Ho(fy).
modifications of the algorithm, making the prior probabilities We can create multiple-user codes for this channel di-
more extreme if a decoding has not emerged, and making teetly from MN codes that encoddl sparse source bits
propagated probabilities more (or less) extreme, but we haméo N transmitted bits. TheX columns of the matrixC,
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are divided up between the users, with userreceiving Constructions. By introducing Constructions 2A and 2B,
K, columns, forming a matri>C§“). All users know the we pushed the performance of Gallager codes a little closer
sparse matrixC,, and the decoder knows the entire matrito capacity. Are there further useful changes we could make
A = [€P|ICc?|...1e|C,]. In each block cycle, user to the code construction? We are currently investigating the
encodes a vecta®) of K, bits with density, into a vector possibility of systematicconstruction of matricesA whose
of length N bits, ) = C7'€™s™, and transmits this corresponding graphs have large girth [44], [8], [35].
vector. In this paper we have mainly considemedjular low-density

The properties proved for MN codes immediately carrgpatrices, that is, matrices in which the weight per column is
over to these multiple-user codes. In particular, the Shannepnstant and the weight per row is constant, or nearly constant.
limit for the multiple-user linear channel can be achievedt is obviously a disappointment that, whereas the way to ob-
given an optimal decoder. Such a system, if appropriaté§in very good codes is to increase the density, the sum-product
controlled, would allow the users dynamically to change thedgorithm performs worse for denser matrices. There is a way
rate of communication by changing their densitjgswithout out of this dilemma however: we obtained better performance
changing their encoder. by using slightly irregular matrices with weight two and weight

three columns (see Fig. 9); Luby, Mitzenmacher, Shokrollahi,

G. Conundrum: Why Were Gallager Codes Forgotten? and Spielman [36] have recently extended this idea, investigat-

, . ing highly irregular Gallager codes. Their results indicate that
. Why was Gallager.s work mostly forgotten by the Irlformaéignificant enhancements in performance can be obtained. We
tion theory community?

L , have applied this idea to Gallager codes over(&Fand have
onTIZSvr-ed:r:;t\;/e;r)grfi?;\fcﬂitliogj dgst:”sigaerrcE ([)ZnG]IéI[Sé] r\ggr%%tscovered an irregular Gallager code with blocklength 24 000
the following citations: [14], [25], [28], [63], [44], [49], [48], s whose performance equals that of the best turbo codes

; [18]. The choice of construction of Gallager code remains a
[54], 53], [55], [59], [64], [71], [72]. Of .thes:e, It seems Fhat oductive area for further research.
the only author who pur;ugd the practical implementation B¥Bursty channels and fading channels.Since Gallager
_Gallager codes (_and variations on the,m) was Tanner [63]. %ndes are, given an optimal decoder, good codes for any
mdep_endent rediscovery of Gallager's w_or_k_ has b_een maé%annel in a wide class, we are optimistic that they will
by Wiberg [69], [68]. We regret that we initially misunder- "o -oant codes for channels with bursts and fades. We

stood G?IIagers work:“ln [‘,1,0]’ we incorrectly ?‘SserFed th€Zlaltnticipate that the sum-product algorithm can be generalized
Gallager’'s codes were “bad” owing to a confusion with the%r

) . ; 1o handle simultaneous equalization and decoding. Only if we
duals, low-density generator matrix codes, which are bad; we : o ;

. . model and infer the channel variations will we be able to get
also confused the decoding algorithms of Gallager and Meier o . .
and Staffelbach close to the Shannon limit of such time-varying channels. In

In 1963, theN? cost in memory for explicit storage of thecontrast, many codes handle bursts ibterleaving that is,

: . reordering the bits so that the bursts look like uniform noise.
generator matrix would have been unattainable, so computa

. . Our results on MN codes serve as initial results describing
tional resources were (temporarily) a problem. R. G. Gallaggr L

N e performance of Gallager codes for decoding in the presence
(personal communication) has suggested that Gallager co

; 6F Bursts. Consider a two-state channel which flips between a
were generally forgotten because it was assumed that concate.

nated codes [23] were superior for practical purposes igh noise state withf,, = 0.5 and a low noise state with
P P burp ' fu =0.114. The ratel /4 code of blocklength 13298 bits can

communicate reliably over this channel if the burst periods

H. Future Work are identified, as long as the fraction of time spent in the high
Generalization to g-ary alphabets.Gallager and MN codes noise state is less than 25%.

can also be defined over-ary alphabets consisting of the In contrast, if we used a traditional interleaving method
elements of GKg). The generator matrix of a Gallager code¢o cope with the bursts, the effective noise level would be
over GFg) takes the form[icflcs], where the matrix f = 0.25x 0.5+0.75 x 0.114 = 0.21, for which the capacity
A = [C,|C,] is a very sparse matrix with its nonzero elements C ~ 0.26. It seems unlikely that there is a practical raet
drawn from the nonzero elements of GF. The inversion interleaved code that can communicate reliably under these
and multiplication operations are carried out in the algebranditions.
of GF(g). The decoding can be performed with a belief Cryptanalysis. This work grew out of an interest in a
propagation algorithm, as with the binary Gallager codegroblem in cryptanalysis [3], the inference of the state of a
We are investigating the application of these codes (witimear feedback shift register given its noisy output sequence,
g = 4,8,16) to the g-ary symmetric channel—and to thewhich is also equivalent to the decoding of a cyclic code.
binary-symmetric channel and binary Gaussian channel, sinidee free energy minimization algorithm was found to be an
there is no obvious reason to believe that ¢he 2 Gallager improvement over Meier and Staffelbach’s algorithm in [38].
codes are the best Gallager codes for binary channels. Qvg anticipate that the sum-product decoder might perform
results show that Gallager codes over @F and GKS8) even better on these cryptanalysis problems. We are at present
perform better than comparable Gallager codes ovef2pF investigating this possibility.
in the case of the binary-symmetric channel and the Gaussiarstatistical Physics.Consider a set of. spinsé = +1
channel [17]. among which there ar&/ couplings of ordet, = & such that
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the Hamiltonian is where v, is zero-mean Gaussian noise of variance The
I effective probability for al in bit ¢ of the noise vectom
E(¢) = Zblgl (based onr = 0) is then

=1 1

M Fath = TT—5a e (63)
1+ —2y,z/o
+ Z ']nl£i1(nz)£i2 (nl)£i3 (nl)£i4(nl)£i3 (nl)gig(nl) ©

m=1 (Note that this probability can be greater thbf2, in keeping
X &z (m)&is (m) - (62)  with the arbitrary nature of the choice of= 0.) In any given

We have assumed that spins are coupled together in groﬂ?glization of the noise we can thus deduce an effective binary
of eight in order to obtain a relationship to a matewith noise distribution”(n) for an equivalent time-varying binary-
weight 8 per row. If we identify.J,, = 2z, — 1 and set up symmetric channel. Whether the decoding problem is solvable

the functionsi,(m) to correspond to the’s in the matrix A, depends on the entropy of this di;tribution. We thus r)e_gd to
then the decoding problem maps onto the task of finding tAdd to our list of error types (Section [I-C) a third possibility:

ground state of this energy function in the limit of smill lIl. The distribution P(n) has entropy greater (by sormg
We have found that the sum-product decoder is a better than the mean entropy.et the probability of this event
algorithm than the free energy minimization algorithm (Ap- be Pir.

pendix C) for solving this problem. A difference between the = | ) . )
algorithms is that the free energy minimization algorithm (alsbiS failure mode occurs with a probability determined by the
tribution of large deviations of the channel. This probability

known as “mean field theory”) shows spontaneous symmeﬁ’. ] : o X
breaking, whereas the sum-product algorithm only breaR viously must vanish with increasing blocklength for our

symmetry if the energy function itself breaks symmetry. Pri¢iodes to be good.
work related to this concept is found in [65].

It is possible that further benefits may be obtained b Extension of Proofs to Channels with Nonbinary
applying sum-product concepts in statistical physics or to oth@dtputs and Temporal Correlations

optimization problems where mean field methods have beerGa”ager and MN codes are good for channels that are

found useful [30], [2]. stationary and ergodic, that have vanishifig and that satisfy
Decoding algorithms.We conjecture that as we get closethis symmetry property:

to the Shannon limit, the decoding problem gets harder. Butwe i i .

do not understand what aspects of the problem determine th&€finition 8: A temporal binary-input channel isymmet-
practical limits of our present decoding algorithms. It would bi¢ if the optimizing distributionP%(¢) of the channel is a
interesting to obtain a convergence proof for the sum-proddéiferm distribution P5,(¢) = 1_/2]\" o o _
algorithm and to develop ways of reducing the inaccuracies!’ this symmetry property is satisfied then it is evident

introduced by the approach of ignoring the cycles present f#gt the decoding problem is equivalent to the decoding of
the belief network. a symmetric stationary ergodic binary channel (Definition 6).

APPENDIX A , N
REAL-OUTPUT CHANNELS B. Gaussian Channel Definitions

In the main body of the paper our theorems and discus_We simulated the following Gaussian channel. The binary

sions have focussed on binary-input, binary-output chann%ﬂ?uj{s ar€win = ix and t.he re_al outpuy has a cpndmc;nal
of two types: the memoryless binary-symmetric channel al astnbuuon that is Gaussian with mean, and variancer
the more general symmetric stationary ergodic binary channel
(Definition 6). We proved that MN codes and Gallager codes
are good for such channels. The same codes are also goodeorr convenience we set — 1 and variedz to change
channels with other output alphabets as long as they sa;cjgél —

P(y|rin) = Normal (xiy, 02). (64)

simple symmetry and law-of-large-numbers_properties. P% signal-to-noise ratio. The capacity of the channel can be

have in mind binary-input channels with real outputs such |g flljr;e\(/jallzé’jlsc\?v?tﬂir?g V:g)rfélinvézr\:ver:mzlfgseijﬁg léisrfa?rb;:]raa/s

the additive white Gaussian noise channel and fading channerfg. _ 12 the capacity would be P y np
We start by discussing the simple case of a channel wittp = =% pacity

inputs oft, = +1 and real-valued outputs. Here, an implicit 1 2

noise vectom can be envisioned on the basis of an arbitrarily Clnconstrained = Cy = 5 log, <1 + —2>. (65)

selected received vecter with » = 0 being perhaps the most g

convenient choice, since it simplifies the computation of the, . . - .

d — A d2 = 0 and (63) below. For independent Our definition of a “symmetric” channel differs from that of Cover and
Syn romez = Armod 2 = N S p . Thomas [16]. For them, a channel is “symmetric” if the rowsp¢f | «) are
noise, the bits ok are probabilistically independent, with thepermutations of each other and the columns are permutations of each other;
probability of a bit beingl being determined by the likelihood 2 channel is “weakly symmetric” if the rows @fy | «) are permutations of

. . . : .each other and the column sums are equal. This definition of a symmetric
ratio for the received signal. For a Gaussian channel w@ﬁ

: . : . annel is too restrictive, as it cannot even encompass a Gaussian channel.
inputs ofz;, = tz, the received signal ig, = (2t,—1)z+2y, The definition given here may conversely be viewed as too broad.
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TABLE I
GLOSSARY

The symbol 1" between two matrices denotes concatenation, for example
a systematic parity check matrix might be writtéh = [P|In_k].

Symbol Meaning Type
N Transmitted blocklength of a code Integer
K Source blocklength of a code Integer
G Generator matrix of a code Binary matrix
H Parity-check matrix of a code Binary matrix
P Parity block within a systematic generator matrix or parity Binary matrix
check matrix, e.g.H = [P|In_k]
s Source string, length Binary vector
t Transmitted string, lengttV. t = G's Binary vector
n Noise vector Binary vector
r Received strindr =t +n) Binary vector
Hr Syndrome vector Binary vector
A Very sparse matrix of dimensia x L. A = [C1|C:] = Binary matrix
[C.IC.
C, Very sparse matrix of dimensiob x (L — M) Binary matrix
C, Very sparse square matrix of dimensidh x A Binary matrix
L Number of columns ind. In Gallager coded. = N. In MN  Integer
codesL = N + K.
M Number of rows ind4. In Gallager codes = N — K. In Integer
MN codesM = N.
t Number of 1's per column iA (Gallager'sy) Integer or real
t, Number of 1's per row ind (Gallager'sk) Integer or real
p Ratio (L — M)/M. Symbol rate of MN code. Real
A RatioL/M. = p+ 1. Real> 0
z possibly sparse vector of lengfh Binary vector
z vector of lengthA/ such thatAz = zmod 2 Binary vector
w weight of vectorz — z’; equivalently, the number of columns Integer
of A that might be linearly dependent
pé’(;) Probability that random walk of/-dimensional hypercube Reat [0, 1]
returns to starting corner on step
o Upper bound fop{}) Real
k,l,m,n indices running froml to K, L, M, N. Integer
J index running froml to M/2 in the eigenvalue expansion of Integer
pSo -
K /M Real € [0,1/2]
@ w/L Real € [0, 1]
f Density ofz Real
Jan Noise density Real
Is Source density Real
r Number of steps in random walk o -dimensional hyper- Integer
cube.r = wt. /M = A¢t.
q> .o, Probabilities in sum-product algorithm Real
(n,k,t) Traditional labels for blocklength, source blocklength, and Integers
maximum number of errors that can be corrected. N.B.,
above is different.
d Minimum distance of a code. Integer
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If we accept the constraint that only the defined binary inputs APPENDIX C
are allowed, then the capacity is reduced to DECODING BY FREE ENERGY MINIMIZATION

MacKay [38], [37] derived a continuous optimization algo-

CBinary = Cp = H(Y) - H(Y'| X) (66)  rithm for solving the discrete decoding problem

=— / dy P(y)log P(y) Az +y=2zmod?2 (70)

+ / dy P(y|z = xo)log P(y|z = zo) (67) where A is a given binaryM x I matrix andz is a received
vector of lengthiM . The vectorse andy are assumed to have
a prior distribution that is separable thus

M

L
1 2 2 2 2
Ply) = e~ w=a)?/(207) | —(ut=)"/(207) 68 Plz,y) = P(x;) Plym)-
W=7l ] (69 176 []

m=1

which may be evaluated numerically. If one communicatddie algorithm is only practically useful for matrice$ that
over the Gaussian channel using a code of fatthen it is are sparse. Problems of the form
conventional to describe the signal-to-noise ratio by

Az — 2mod 2 (72)
2 _ a? (69) can also be solved using the free energy minimization algo-
No  2Ro? rithm by solving a sequence of problems of the general form
(70) with the fictitious noise level of the vectgrdecreasing

and to report this number in decibels Hslog, , £y /No. to zero

The algorithm works by approximating the complicated
posterior probability ofx given z by a simpler separable
APPENDIX B distribution
REPORTING OFEMPIRICAL RESULTS

L
Q(z;0) = [ [ alei 60).
=1

A. Error Bars

The experiments result in a certain number of block dél’_h|s distribution’s parameterg = {6;} (one parameter for

. ) . each bit ofz) are then adjusted so as to minimize a measure
coding failuresr out of a number of trials:. We report the . L o

. Lo i ... of the divergence between the approximating distribu€gm)
maximum-likelihood estimate of the block error probability Lo L
. ' . . ...~ and the true distributio®(z | 2, A), the variational free energy
p = r/n, and a confidence interv@_, p. ], defined thus: if

r > 1 then P(z|z,A)P(z)
F() = — x;0)log 211 72
(6) Ew Q(z; 6) log Q@ 0) (72)
p+ =P exp (£2010gp),  Whereog, = /(n —7)/(rn);  The evaluation of this objective function and its gradient is

possible in time linear in the weight afl. There is also

else ifr = 0, py = 1 — exp(—2/n), andp_ — 0. When an update algorithm for eac_:h_componethsuch th(_eltF is_

reporting thébit error probability V\’/e use the error barsguaranteed_to decreas_e. This lterative pr(_)cgdure IS obviously
derived from the block error probability; we do not bothe'rm.t _the optimal decoding algorlthm, b.Ut It s |_oract|cal._We
) . -, L o ... . originally developed MN codes with this decoding algorithm
including the additional uncertainty in the bit error rate within_ =" .
erroneous blocks, which is expected to be much smaller th'nnmmd’ SO we report some experimental results. However,
the uncertainty in the block error probability. this decoder has been superseded by the sum-product algo-

rithm of Section Ill. Sum-product decoding is less complicated

because there is no need to have an annealing schedule for a

B. Comparison with Other Codes temperature parameter.

Performances of RM and BCH codes were computed as- o o
suming for an RM code of minimum distane&that more A. Empirical Results: Free Energy Minimization, Ensemble 4
than |d/2| errors cannot be corrected. For BCH codes it A value of f = 0.05 was selected for experiments with
was assumed that more tharerrors cannot be corrected, asGallager codes having rat® ~ 1/2 and ¢ = 4, using
specified in the(n, k,t) description of the code. In principle, Construction 1A.
it may be possible in some cases to make a BCH decoder thaiVe found that as the block siz&/ was increased the
corrects more than errors, but according to Berlekamp [9],performance improved. The block error probabilities for rate
“little is known about. . how to go about finding the solutions”1/2 codes with block lengths of 2000, 4000, 8000, and 20 000
and “if there are more that+ 1 errors then the situation getswere 0.11, 0.046, 0.0058, and 0.00017. We also found that
very complicated very quickly.” All relevant BCH codes listedwith larger and smaller values ofthant = 4, the code did
in [56] are included (block sizes up t23). not work as well when decoded by free energy minimization.
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B. Insights into the Source of Errors Proofs of Inequalities (73) and (74)Proof of right-hand

We examined some of the errors made by the free eneffffauality: consider the multinomial distribution
minimization decoder and found that they tended to occur N! K
when the vectorr was such that another slightly different?” (K1, K2, - Kr|p1,p2, - -pr) = KK [I» @5)
typical vectore’ had a similar (but not identical) encoding i
In terms of the random walk on the hypercube (Section I1-Cgety, = K, /N. Then evaluate the probability, which we know
these errors correspond to walks that after a small numberi©fiess thani
steps return close to the starting corner. They were possible

because of rare topologies in the network corresponding to L HgKf log, (I /N) < 1, (76)
the A matrix such as the topology illustrated in Fig. 5(c). We Kyl Kyt

can eliminate the possibility of these errors by modifying the

ensemble of matricesl so that the corresponding network N

< o N2, Ke/Nlogo(Ki/N)) - (77)

does not have short cycles in it. — Kl K

The left-hand inequality in (73) is proved by considering

C. Empirical Results: Free Energy Minimization, . )
again the quantity

Construction 1B

. W_e made newAd matnces_ by taking matrlcgs from Ensemble P(k) = N! P —p)NR, (78)
with ¢ = 4 and deleting columns until there were no kYN — k)
short loops of the type shown in Fig. 5(e). These matrices, .
having fewer columns, correspond to codes with slightly Iownjer p = K/N then P(K) is greater than or equal t(k) for
rates. They also have nonuniform weight per row, which ma@u k. So
make them slightly suboptimal. We found that the topological (N +1)P(K) > Zp(k) -1 (79)
modifications gave codes which were able to communicate =
at slightly higher rates over slightly noisier channels with a
smaller probability of error. A summary of our results is that
; o ) I N 1 o o
in terms of block error probability for a given communication N < ) > (K/N)"5(1 - K/N) (N—K)
rate, Gallager and MN codesthen decoded by free energy N+1
minimization can be superior to Reed-Muller codes, and _ 1 oNHy (K/N) (80)
Gallager codes can outperform BCH codes by a small margin. N+1

Significantly better results were obtained using the sum—Similarly
product decoder described in the main body of this paper. ’

we may prove that, foK < N/2
. . i <N> < 2]\’[—[2([\’//\7) (81)
D. Contrast with Sum-Product Algorithm P L] = ’
We believe the reason the sum-product algorithm performs

much better than the variational free energy minimization Proof: Consider the sum of binomial terms

(mean field) algorithm is that the mean field algorithm exhibits K K N
spontaneous symmetry breaking. It is possible for a cluster of P(k) = Z '7"1;"‘(1 —-p¥ <1 (82)
bits, whose state has not been determined by the influence ;=g k=0 EY(N — k)!

of the data, to collapse into a locally consistent state. The . )
sum-product algorithm (at least in the ideal case of a grapifting» = K/N, we examine the facto(l — p)/p =

without cycles) does not show any such spontaneous symméty — )/ K. BecauseK' < N/2, this factor is greater thah
breaking. So, dividing each term in the sum By — p)/p an appropriate

number of times

K
N! - .
APPENDIX D K1 \N—K
p"(1-p) <1 (83)
INEQUALITIES kz=0 KN — k)!

We prove the following inequalities:

K
N —Klog,(K/N)—(N—=K)log, (N=K)/N
1 oNHx(K/N) < <N> < oNHa(K/N) (73) - Z <k> < 2K loga (K/N)=(N=K) log, (N=F)/N)),
N+1 TA\K /)~ k=0
(84)
In general,lile 4 Ko+ Ky = N andH(py,pa,---pr) = We also note the following inequalities:

>_; pilog, - then 2! > z%e "¢ or equivalently logz! > zlogz —x + 1

w1 (85)
< 2NH(K1/N,I(g/l\",---,l\’[/l\f). (74

Kyt Kyl — ) The proof is straightforward by integration bfg x. O
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APPENDIX E B. Bound that is Tight for <« M

BOUNDS ON RANDOM WALK'S RETURN PROBABILITY We consider the logarithm of one term in the sum oyér

We derive several upper bounds on the probabﬁif(’))/ that (87). We obtain a bound on the maximum value oyehat
the random walk on thé/-dimensional hypercube returns tathis quantity can assume. We define= j /M andp = 1—2«.
its starting corner on theth step. We use the result from [31]

that log K{‘f) <1 - %)1} < MHS(k) +rlog(l — 2:) (96)
) Moy 2i\"
péo) =2 M]z::o <j ) <1 - ﬁ) . (86) < M<10g2 - %/ﬁ) + 7 log ().
(97)

See [13], [20], [32], [34], and [62] for further information

about this random walk, which is also known as the Ehrenfest (96) we use inequality (73) and at (97) we use the inequality
Urn model. Equation (86) is an eigenvalue expansion, whegg; (x) < log2 — (1 — 2x)?. We differentiate and find that
the eigenvalues of the Markov process are labeledjby the maximum of this function is gt = r /M, so that we can
0---M and have valuél—%). For every positive eigenvalue bound every term as follows for any

there is an opposite negative eigenvalue. We note that for odd ]

7, pég) is zero, and that for even pég) is a decreasing function log {2—1\4 <M> <1 _ 2_J)7} < _17, + 17, log I (98)

of ». For convenience we can obtain a monotonic upper bound J - 2 2 M

M
on pé’{)) by restricting the sum overto the positive eigenvalues

and including a leading factor ¢f. We thus conclude that for any > 0
M/2 o M/2—1 M 9i\"
r r — M 2] (r) —M _ _J
p(<JO>Sq(<JO>E2X2MZ<”><1_M>_ (87) ) <2x2 Z I, (99)
= N =0
<M LI 100
We now derive various bounds valid for afl > 0; some S S2exp|—gr+ orlog o7 (100)
bounds are tight for < M and some for > M. We also - N
evaluate a numerical bound that is useful forall = g0 < ¢t =Me7? (M) . (101)
A. Bound that is Tight for >> M This bound illustrates the important power law decrease of
qé’o) for small ». The logarithm of this bound is
M/j2-1 i\ log g™ =log M — - + 17’ log — (102)
(") 1o _ o—M M 2 88 gq; " =1og 5 T 5708 57
w0'/2 =2 Z J 1 M (88) 1 rooor 7
J=0 =logM+-M(——+ —log(—)}- 103
M/2=1, . o8 +2 ( M+M Og(M)) (103)
— 2
<27V 3y T (89)  The leading factor ofi/ in (101) is the undesirable side-effect
=0 of two of the inequalities.
<2 My L ~Grrog (90)
- — J! C. Bound That Is a Factor aif Tighter forr < M

The above bound is tight enough to prove the main theorems
At (89) we have used the inequality — a)” < ¢7*". We of the paper for > 4 but not for¢t = 3, because of the leading
note that factor of M, so we now improve on it.
= We count the number of walks of length(wherer is even)
Zf'@*aj . (91) that return to the origin. A walk that returns to the origin
=0 can be created as follows. First we select (with replacement)
r/2 directions from theM axes of the hypercube as the
and obtain directions that will be traversed twice. The number of different
) o selections is equal to the number of ways of putting
qé’o)/2 <27 Mexp |:exp<M - logMﬂ (92) indistinguishable objects A/ bins, which is the number of
distinct ways of ordering/ — 1 indistinguishable partitions

=27 Mexp [Mem2/M) (93)  andr/2 indistinguishable objects, which §*~£"/%)). Then
=g < qg”) = 2exp [M(c™2/M —log2)]. (94) having decided which are the directions we will traverse, the
number of distinct walks that can be created is less than or

The logarithm of this bound is equal to the number of distinct orderings of2 pairs of

indistinguishable object%}z, with equality in the case where
log (qé”)/2) = M(e™¥/™M _log2). (95) all directions are traversed twice or zero times. Thus the total
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number of walks of lengthr that return to the originn(()g), where x* is the solution of

is bounded by 10g<1 — H) B 2r /M —o (115)
) M-—1+r/2\ 7! K (1—2k)
gy < i 73 (104) ]
/2 2 or, equivalently,
and so, since the total number of walks of lengtls A" 1 (116)
) k= 2/M 1"
) 71(()70) 1 M—-1+ 7/2 ! 1+ exp[(l—/Qn)]
Poo — - < - X 502 (105) . . . . . .
M M /2 2 We can solve this equation numerically by iteration, starting

We loosen this bound into a slightly more convenient fornifor example) froms = 0, and settings equal to+/, the
introducing a largest value of * = vM, for which we plan yalue of. the right-hand side, repeating until convergence
to use this bound. We will set at our convenience to a valueis established. Convergence, which can be slow, may be

independent ofd. accelerated by setting equal to(x + «')/2.
/2 For largeM andr > 1, thelog M term is of small order
20 < 1 (M-1+5)72 ¢! for r < 1* = ~vM and we neglect it in our numerical computations, using
00 —= M (7/2)' 27,/2a =

(106) log g = logg”

X ) . 1‘/2 — _ . ef, .k 7_ . _ Lk .
) < (1/2+”/4)7/2(7M) 7 for 1 < * = 20, _M[ log 2+ Hj (") + 7 log(1 — 2n )} (117)
(107) E. Another Good Bound for Large
For our proof we sety = 1 so that Using the same method as in Appendix E-D, we can obtain
/2 an explicit bound
(r) < <3 " ) forr < M (108) 2i\"
P ~ —_— 5 TS . q
» 4 M 10g[<¥)<1—ﬁ‘]> } < MHS(K) + 7 log(1 — 2k)
This bound decreases monotonically 7inup to v = ~'M, (118)
wherey’ = % (found by differentiation), so, since we know
pé’(}) is bounded by a decreasing function, we obtain Now H; is a convex _function, so it is upper-bounded by its
/2 tangent. For any choice of*, and for allx
3 r\7" . Jo_ _ 4
o0 < g = JGmg) sl = M (wherey = 5 ) ) o ) (1— ")
00 = 4y (%’Y’)T /2’ P>l HS(k) < HY(6*) + (5 — )log<T>. (119)
(109) So
The logarithm ofg|"” is 1 [<M> <1 2‘7)1}
og . - =
(r) r 37 / / ¢ J M
logg,’ = 3 1Og<ZM>’ forr <+ =+'M. (110) 1 - K%
< MHS(K™) + (k — k") 10g< e ) + rlog(l — 2k).
D. Numerical Bound Useful for Alt (120)
We continue from (96) and derive a numerical bound We differentiate with respect te to find the maximum value
9i\" : : "
logKA,/.[) <1 B MJ) } < MH(%) + rlog(1 — 26). of this quantity, wh|c;1 is at ;
111 K== ——— ooy (121)
( ) 2 Mlog((l = ))

We differentiate with respect toto find the maximum value of )
this quantity; then we can bound the sgff by the number of then we can bound the sugt}, by the number of terms in the
terms in the sum times the maximum value of the summarfm times the maximum value of the summand, choosing

Thus to have any convenient value. Based on what we have learned
M/2-1 . from the previous bound, we choose
(r) _ -M M 2 )
(JOO =2x2 Z <J ) <1 M) (112) I‘E* (7) — — (122)
J=0 1+ exp(ﬁ)

< Mexp[—Mlog2+ MHS5 (k") + rlog(l — 2x%)]

(113 and obtain (after straightforward algebra)

. a6 < ¢ = M exp[—Mlog2 + MH; (" (1)) — 2rs*(r)].
or, equivalently, (123)

() . . ef % el 1 — 9t . . . . .
log goo” < 103M+M[_ log2 + H3(x") + i log(1 —2r )} The five bounds”, ¢, ¢{”, ¢, and q}’) are plotted
(114) in the large) limit in Fig. 22.
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Fig. 22. Plot of five bounds on the functloé;— log p , for large M, as
a function ofr/’\[
Bound b: M log.,q[

(=

= (e72"/M _log?2).

Bound c: - log L(—r/M + r/Mlog(r/M)).
Bound d: q( =3 ,7}) /2 for r <1/ = ~'M, wherey' = X
Bound fq; = M exp[—Mlog2 + MHS(k*(r)) — 2r&™(r)] where

Numerical bound— log q( ") computed as described in Appendix E-D. .

APPENDIX F
EVALUATION OF UPPER ANDLOWER BOUNDS ON ACHIEVABLE
INFORMATION RATE IN CASE OF NOISE OF UNIFORM DENSITY

We start from (21). In the case of uniform densityw |z)
depends only on the weight af which we will denoteu,,.

PH<ZZP

w=12CT

Yase. (124)

h(w | ug)g,

We obtain a numerical lower bound on the achievable rate
Gallager codes by computing as a functiomofa bound on
g(w) =3 . Mw|uz), the number of pairgz, z’) that give
rise to an(z — 2’) of weight w.

First consider the number of pairs such tahas weight
u, ' has weighte’, and(z — z’) has weightw. This quantity

g(u, v, w) can be written in terms oA = (v — «')/2 and
[ = (u+u)/2 as
(s 10) L!
g\, v, w) = w w 7 w
5+ 215 - -5 T-3)!
(125)

where it is understood that = 0 whenever any of the terms
v!in the denominator has < 0. We arrive at this expression
by considering the number of ways of subdividihgits into
four blocks: thel bits found inz but notz’; the 1 bits found
in 2’ but notz; the 1 bits common tar and«’; and the0 bits
common toz and z’.

The number of pairg(w) =

3w 9(u, v/, w) is bounded

by the number of terms in the sum times the maximum vaILIJ%O

g(w) < (2nL)? max g(u, ', w). (126)

We can bound the maximum by minimizing the products

(24+A)I(%—A)and(l—%)(L—I—%)!in the denominator.
The first product is minimized by setting = 0; the second
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by setting! to its largest value (assuming that the density
f+n < 1/2). Thus

g(w) < g"(w)

= (2nL)* ( L

PUUL = 5) (0~ L~

o)

(127)

where f* = f + 7.

The function ¢*(w) is an increasing function ofv for
0 <w < 2f(1-f)L, where it has a sharp maximum. It is well
approximated byog g* (w) ~ Lé(¢), where¢ = w/L and

G(¢) = —¢ log(¢/2) + (f — ¢/2)log(f — ¢/2)
+(1—f—¢/2)log(1— f— ¢/2).

The step to (128) made use of inequality (74). We find
achievable rates by finding values ﬁfand A such that the
maximum value overs and r of G(¢) + - log gt is

just less than zero (see Appendix E-D).

(128)

APPENDIX G
ARITHMETIC CODING FOR CREATION OF SPARSE SOURCES

A redundant source having density less tifakh with con-
secutive source symbols that are independent and identically
distributed, can be produced from a dense source by using a
variation on arithmetic coding [70], [57]; one simply reverses
the role of encoder and decoder in a standard arithmetic coder
based on a model corresponding to the sparse messages. The
following pseudocode gives an algorithm for this task, but
ignores issues of initialization and termination.

Loop to read a dense stream and output a sparse stream with
dénsity f.
loop

At this point,0 < R < 2*~'and 0 <V < R.

while R < 2+—2

R — 2R
V «— 2V 4 next input bit

end while

M — | fR]

if V< M then
output “1” bit
R—M

else
output ‘0" bit
V—V-M
R—R-M

end if

end loop

Loop to reconstruct the original dense stream from its
encoding as a sparse stream.

At this point,0 < R < 2*~' and0 < V + R < 2k,
while R < 2k—2
if 26=2 <V < 21 then
VeV _—2k2
d—d+1
else
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if V> 21 then [12]
V —V -9kl
output a ‘1" bit followed by d “0” bits
else [13]
output a ‘0” bit followed by d “1” bits [14]
endif
d—0
end if [15]
R — 2R
V 2V [16]
end while [17]
M — | fR]
if next input bit= 1 then (18]
R—M [19]
else
R—R-M [20]
V—V+M
end if
end loop 21]
[22]
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