6.1 Credit-Based Flow Control (Backpressure)

« Summary to be added here

CS-534 - Copyright University of Crete

Centval Scheduler 1s Impenchwod for forge N

S0 Lt iom 2 Swi*bt\;n% Tubrics with lwhecuaf @!“exgna g ggckpresum

Switel ol e
Distributed Selhuduling
i R = '
a5 J : i —
— *
——ﬁl r‘ A o | L: r_-—li_—.

\Ls ‘ ==

— L = =g

“H\Q'hq“\'t heft r%(‘:ssurg % \ N

wow hove pockets small interwad buf fers

Hat ove skod--}em-cm{ﬁch‘na :

ndhe switehing fubric, et swing do backerelluce cud
diyko buted

soNJv.lc'-J

but are Qma--l'em-non—mﬁ.'ch'w} in He fobcic

CS-534 - Copyright University of Crete

FLOW CONTROL

a feedback control problem

m /
Network -

(<))

(&)

. | or Subnetwork -

5

o | or Switching Fabric

)

e How do the sources know at which rate to transm it?

e How do the sources know when their (collective!) demands

exceed the network or the destination capacity?

—> Answer: FEEDBACK from the contention point(s), in the

network or at the destinations, to the sources

CS-534 - Copyright University of Crete

D e s tination s

RTT: the Fundamental Time-Constant of Feedback

\other traffic
traffic adjusted

(// traffic path)(\

Source
\\
e U
————————————— Event

feedback

A
J

RTT = Round-Trip Time

The trafficis "blind" during a time interval of RTT:

e the source will only learn about the effects of a transmission
RTT after this transmission has started (or RTT after

a request for such transmission has been issued)

e the (corrective) effects of a contention event will only appear

atthe contention point RTT after the event occurrence

CS-534 - Copyright University of Crete

“Blind Mode” bits in faster networks

 For faster networks

— start transmitting earlier
— start transmitting at a higher rate

For networks to get faster, an increasing number of bits must be
sent in “blind mode”

initial Amount of data transmitted in “blind mode”
(“b":‘aﬂem;de”) Distance = 8 m 80 m 8 km 8,000 km
fransmission RTT=2d=80ns 800ns 0.08ms 80 ms
1 Mb/s 1/100 Bytes 1/10 B 10 B 10KB
1 Gb/s 10 Bytes 100 B 10 KB 10 MB
10 Gb/s 100 Bytes 1 KB 100 KB 100 MB
100 Gb/s 1 KB 10 KB 1 MB 1 GB

6.1 - U.Crete - N. Chrysos- CS-534

"Blind Mode'" bits in faster Networks

e start transm itting earlier

For faster networks:
e start transmitting at a higher rate

v

For networks to get faster,

an increasing number of bits must be sentin ~"blind mode"

initial amount of data xmitted in "blind mode"
(""blind mode") _ _
distance = 8 km distance = 8,000 km
rate of
transmission RTT ~=0.08 ms RTT ~= 80 ms
1 Mbit/s 10 Bytes 10 KBytes
1 Gbit/s 10 KBytes 10 Mbytes

CS-534 - Copyright University of Crete

Lossy versus Lossless Flow Control

Lossy: flow control may fail to prevent buffer overflows: packets can be dropped
e inherited from ~‘communications engineers': same as electrical noise
e simple switches
e for data: need retransmissions => long delays, complex if in H/W
e wastes communication capacity: ‘goodput" versus throughput

e need carefully designed protocols to sustain satisfactory goodput

Lossless: flow control guarantees that buffers will never overflow

inherited from “~“hardware engineers': processors never drop data

no wasted communication capacity, minimizes delay

need multilane protocols to avoid HOL blocking & deadlocks

switches are more complex, need H/W support for high speed

CS-534 - Copyright University of Crete 7

of capacity)

goodput (%

Goodputversus Demand in Lossy and Lossless Flow Control

100 %

50%

flow control in lossy systems strives to
make the network operate in this region

lossless systems strive to bring this line up
(avoid HOL blocking)

| lossless

4+—throughput collapse:

most packets getdropped before they
reach their destination, and are then
retransmitted, thus increasing the demand

lossy

: ! : : : >

0 50% 100% 150% 200% 250%

demand (offered load) (% of capacity)

CS-534 - Copyright University of Crete

(this slide intentionally left blank)

CS-534 - Copyright University of Crete

Rate-Based Flow Control

SENDER traffic
monitoring
rate » - ——————————— - tettnatKky—————=—
W
\§
Nl %
Rate adjustment feedback
e differential (speed-up / slow-down), or
e absolute (new rate := value)
Note: oftentimes, the sender uses a variable-size window mechanism
in order to control its rate
CS-534 - Copyright University of Crete 10

ON/OFF (start/stop) (XON/XOFF): simplistic Rate-based FC

Buffer
A >
XOFF .
.y b xorel Lt pigh
|
A | watermark
|
Z ———— ||
" - (l————¢————A=7low
start watermark
n (XON)
RTTxRate
Y >
e start" = (rate := peak); stop" = (rate := 0)

e rate-based flow control used for lossless transfers

e less than half the buffer efficiency of credit-based flow control

CS-534 - Copyright University of Crete 11

Credit-based (window) (backpressure) Flow Control

buffer slots

AN
AN
I+
| +
|
|
|
1/
4\
|
|
|
A

—
— N |

/ \ \ \

/ \\ \\ credit \\

\ \\ |

\\ \ \\

ecount of buffer slots \\ e traffic can only depart if and \\
known to be available \\ when it acquires (decrements) \\
at the downstream site \\ the credit(s) that correspond \
(not allowed to go negative) \\ to the buffer slot(s) needed \\
\ \

e arriving credits \\ ewhen new buffer slots are

increment the credit count made available, corresponding

credits are sent upstream
=> Lossless Flow Control

CS-534 - Copyright University of Crete 12

Buffer Space = Peak Throughput x Round-Trip Time

necessary & sufficient

=~ 3 credits
-—Q -—@Q -—Q
) -
credits suddenly
0 stops
> | | —
[—= | F— | }—
3cells —* /
/
6-cell buffer
1 delay = 3 cell-times . N
credit =—@ < ' |
. B | | |
credits o ,
0 I ' ! suddenly
> | ! starts
-+r——————— > | [f | >
delay = 3 cell-times e -
CS-534 - Copyright University of Crete 13

Theorem: Infinite Queue Push-Back

/

e - &

)

N

0 < service rate < Rpk

arbitrary schedule

Is equivalent to:

Upstream Departures Downstream
Arrivals

size =

*
flow control algorithm RTT Rpk

V

SElslslslslslsls capacity 2 Rpk < :)
---|:|Einfinite gqueue]|:||:|—> FC |:||:| Y
S I [[/

)

Feedback Information Downstream Departures

|A ;l
I I

CS-534 - Copyright University of Crete 14

RTT

T ra ff

o

|l a tiv e A m o u n t

u

u m

(bits, or bytes, or cells, or..

RTT*R pk

Q

P
éf/ Downstream
@// Arrivals
/
<£¥7 DA(t)
Q& /
/ U]
/ pstream
// Departures
/
UD(t)
// RTT*Rpk
/ |
/
/
/ ———————
A A
Y
Y
Downstream Feedback
buffer Departures Inform ation

occupancy
(downstream)

DD (t)

FI(t)

time

CS-534 - Copyright University of Crete 15

Downstream Departures DD (t) (cumulative):
arbitrary function of time, provided that its slope satisfies:
0 < servicerate ofS < Rpk

> 0 < DD(t+d)-DD(t) < d*Rpk

Upstream Departures UD(t) (cumulative):
UD(t) = DD (t-tf) + RTT*Rpk; thisis always feasible, since:

link capacity 2 Rpk 2 service rate of S
Downstream Arrivals: DA(t) = DD({t-RTT) + RTT*Rpk

Buffer Occupancy (downstream): BO(t) = DA(t) - DD(t)
(3) &> BO(t) = RTT*Rpk - [DD(t) - DD(t-RTT)]

with (2) =D 0 < BO(t) <& RTT*Rpk

! !
feasibility of arbitrary downstream buffer
departure schedule
never overflows

(provided (1) holds)

CS-534 - Copyright University of Crete

(1)
(2)

(3)

16

Feedback Format Options:

how to make the function DD (t) known to the upstream neighbor

@ QFC Credit-Based Flow Control
@ Classical (incremental) Credit-Based Flow Control

@ Rate-Based Flow Control

@ Quantum Flow Control (QFC) http://www.qfc.org

Every time DD(t) changes by more than a given threshold N
relative to the lasttime a feedback message was sent,

transmitthe current value of:

28 8
DD (t) modulo 2 (or modulo 2 for shortlinks)

e credit-based flow control: lossless

e robust: even if a feedback message is corrupted (lost),

the nextone will restore the error

CS-534 - Copyright University of Crete

17

@ Classical (incremental) Credit-Based Flow Control

every N downstream departures (DD(tl) = DD(t0) + N),
transmit a credit back (N is an implicit parameter);

the upstream node maintains a credit count CC equal to:
CC = RTT*Rpk + DD (t-tf) - UD (t);

this is incremented by N on every credit arrival, and

decremented by 1 on every departure of a unit of traffic

shorter feedback (credit) messages than QFC

e non-robust: loss of a credit leads to buffer and
transmission capacity underutilization;

accumulated losses of credits lead to deadlock!

CS-534 - Copyright University of Crete

18

Equivalence of Rate and Credit Based Flow Control

@ Rate-Based Flow Control

On every change of the slope of DD (t) (rate of downstream
departures), send back the new value of the rate (slope);
upon reception of such feedback, the upstream node
adjusts its rate of transmission (slope of UD(t)) to the
value received; thus, UD(t) is (almost!) a delayed and

shifted-up copy of DD (t).
e Rate-based flow control

e Could be made lossless, but this would not be robust:
slight mismatches between real & measured rate
accumulate to large differences between the values
of DD (t-tf), UD(t); similarly, variations in tf (delay
of feedback messages) lead to UD(t) value errors.

CS-534 - Copyright University of Crete 19

Automatic repeat request & e2e flow control

host | network | host End-to-end flow control
sender receiver « App may delay draining
app — 1 P +— 1 app receiver buffer; also out-of-
cak packet ™ order (OOO) need wait
T « Netw. may or may not have
link-level flow
Different roles served — but cannot prevent rcv buffer
. . overflow with link-level flow control:
* Network is unreliable what if we stop the next-awaited
— Automatic repeat request (ARQ): packet?
recover damaged/dropped packets « > sender flow controls rcv buf:

every injected pkt fits in rcv buf

* Network may reorder packets :
. . _ TCP uses these mechanisms
— app waits packets in-order : re-

sequence pkts at rcv buf — TCP connections / sockets are

: bidirectional
» Receive buffer should not overflow .
» Acks may be piggybacked on
- e2e flow control reverse payload packets

CS-534 - Copyright University of Crete 20

Stop-and-Wait flow control

sender receiver sender receiver sender receiver sender receiver

let [[———_plt B let let
_p\‘ "'P{) _p\‘ \.P\‘
o
a/-a,;:/-’ ac

ack

_Km‘ —Kkt B phkt
n//au-:’k,/ /{ /{
l‘E

timeout
timeout
timeout
timeout

|E

bme

time

Sender makes sure at most one packet is pending at a time
— To all destinations or to each destination?

Transmit packet, set timer (timeout)
If ack does not arrive before time - retransmit packet

Packets are retransmitted when:
— Packet is lost / damaged
— Ackis lost/ damaged - duplicates at receiver
— Retransmission timer expires prematurely = duplicates at receiver

* settimer too soon = false retransmissions;

» set it too late - retransmissions delay a lot (problem with TCP is scale-out datacenter
applications)
CS-534 - Copyright University of Crete

21

Stop-and-Wait flow control

sender receiver '
sender receiver cender receiver

\\pkt_ pu \\\‘
ﬂ’/;(a0

al

timeout

Y.

pl

¥

: i =

Seqguence numbers: to discover duplicate packets at destination
— 1-bit sequence numbers suffice : packets & acks numbered either as O or 1

Buffer sizes:
— Destination buffer for one packet:
— Sender : retransmission / replay buffer stores one packet waiting ack

Performance: Stop-and-wait underutilizes the network when
— Network-delay-product is larger than the packet size

— “The bandwidth x delay product (BDP, or C x rtt) represents the amount of data that
could be in transit. We would like to be able to send this much data without waiting for
the first acknowledgment. The principle at work here is often referred to as keeping the
pipe full.” [Computer networks: a system’s approach, L. Peterson, B. Davie]

A\

CS-534 - Copyright University of Crete 22

Sliding window algorithms

sender receiver

RTT

I'_E.

RTT RTT
Ewindow & window Lwindow

e

e Sender: sequence number on
each packet & 3 variables

send window size (SWS): upper
bound of unacknowledged packets

LAR sequence number of the last
acknowledgment received

LPS denotes the sequence number of
the last packet sent

Sliding window invariant @ sender
LPS - LAR £ SWS

sender receiver

Allow multiple

pending/outstanding/unackn

owledged packets

Pipe full if window =2 RTT x
capacity (BDP)

Destination variables

receive window size (RWS), upper
bound of out-of-order pkts the
destination is willing to accept

LPR sequence number of last packe
received

LAP sequence number of largest
acceptable packet

Sliding window invariant @ receiver
LAP - LPR = RWS

CS-534 - Copyright University of Crete 23

Sliding window algorithms

<= 5Ws

sender}llllillIIIIIIIiIIIIIIII|§
[

LAR LP=

<=RW=
receivery [[[[[[I[ITLITIITTITTIITS
T T

LPR LAP

Sender: sequence number on
every packet + three variables:

— send window size (SWS): upper
bound of unacknowledged packets

— LAR sequence number of the last
acknowledgment received

— LPS denotes the sequence number of
the last packet sent

— Sliding window invariant @ sender
LPS - LAR £ SWS

CS-534 - Copyright University of Crete

Allow multiple
pending/outstanding/un
acknowledged packets

 Destination variables

receive window size (RWS), upper
bound of out-of-order pkts the
destination is willing to accept

LPR sequence number of last packe
received

LAP sequence number of largest
acceptable packet

Sliding window invariant @ receiver
LAP - LPR = RWS

24

Sliding window algorithms

<=5SWS
sender [[[[II[TTTTTITITITTTI(% Dest variable: SeqToAck =
I I largest sequence number
LAR Lhs such that all packets with
c RS sequence numbers less than
' ' or equal to SeqToAck have
receiver [[[[[[T[TTTITITITTITII]S A beenregeived
T :
LPR LLP

Packet at destination : Accept if LPR < seq < LAP; drop otherwise

— The receiver acknowledges the receipt of SeqToAck, even if higher-numbered
packets have been received. It then sets LPR = SeqToAck, LAP = LPR+RWS

Go-back-N: a variation of sliding window w. RWS =1

— the destination discards all packets except the awaited one - on timeout,
need sender has to retransmit all packets in send window [LAR+1, LPS]

If RWS = SWS - dest can buffer all packets the sender sends
Selective acknowledgments : receiver acknowledges OOO pkts

helps sender to avoid retransmitting packets received OOO on timeout

CS-534 - Copyright University of Crete 25

Finite sequence numbers

<= 5SWs

sender}llllillIIHIHiIIIIIIHI§
[

LAR LFS

<=RW=
receivery [[[[[[I[ITIITIITTQITII]S
T T

LPR Lap

Sequence numbers are encoded using finite number of bits

— How many bits are needed? Answer depends on window size, e.g. stop-and-
wait (sws = 1) needed 1 bit

Suppose num-of-seq-numbers = SWS + 1
— With RWS = SWS this number of sequence numbers is not sufficient

* suppose SWS =7 and 8 seq. numbers [0,7]: sender transmits [0,6] =2
receiver gets them, waits [7,5]; all acks lost; sender retransmits [0,6];
receiver cannot tell if packets 0-5 are new or old...

— For Go-back-N (RWS=1) its OK

 the destination would refuse to accept the second packet with sequence
0 -2 it waited for seq 7

CS-534 - Copyright University of Crete

26

Finite sequence numbers & wrap-around

<=5W=
sender Z[[IT{IITTTTITTITITT00TTS
l I
LAR LP=
{:RL‘L‘S 110,:
receiver2 [[[[[[[[TLILIIIIETLTITTS
| T
LPR LAP

* In principle, when RWS = SWS we need
— SWS < (max-sequence-numbers + 1) /2
+ e.gfor SWS = 8, max sequence numbers > 16 -1 = 15
— For simplicity max-sequence-numbers = 2 * SWS
* having (slightly) more sequence number does not do any harm

* Suppose SWS =4 & max-sequence-numbers = 8 encoded in three bits

— We can use 3-bit unsigned integer arithmetic for comparisons
— E.g. when receiving a pkt w. sequence seq at dest, we want to know if LPR < seq < LAP.
* Tmp = seq - LPR: if most-significant-bit of tmp = 0 & tmp != 0, then, seq > LPR
* Tmp = LAP - seq; if most-significant-bit of tmp = 0, then LAP = seq
« Same with cumulative credits: sender makes sure not to send > X packets
ahead of DownstreamDepartures (DD), where X is the downstream buffer size: if

X needs 4 bits, encode UD & DD using 5 bits
CS-534 - Copyright University of Crete

27

Absolute credits combined with Go-back-N

host network host
sender receiver
app —__1— P — 11— app
. 3k packet ™)

Sender puts sequence numbers to packets (last_sent seg+1)
— keeps # outstanding packets (OP), incremented with every packet sent

Destination acks highest in-order packet it received
— Acks also carry # packets that the dest can accept (last advertised buffer space, LABS)

Upon ack, sender computes # acked packets (AP) = ack_seq - seq_last_ack
— OP=0P-AP
Sender can send when LABS — OP > 0; receiver drops all OOO packets

Upon timeout, sender retransmits all packets from seq_last_ack to
last_sent_seq.

Note that ACK sent upon receiving packet — not when it is put out of buffer

CS-534 - Copyright University of Crete

28

