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5. Switching Fabrics
Table of Contents:

Å5.0 Introduction

ïmultistage netw., bisection b/w, non-blocking perf., routing categories

Å5.1  Inverse Multiplexing (Adaptive / Multipath Routing)

ï byte-sliced switches, recursive definition of the Benes network

ï load distribution & balancing, packet ordering & resequencing

Å5.2  Scalable Non-Blocking Switching Fabrics

ï Banyan (k-ary n-flies), Benes, Clos ïO(N·logN) cost & lower bound

ï fat trees (k-ary n-trees) ïcontrolled blocking, locality of traffic

ï fully-connected networks ï flat networks

ï Dragonfly networks ïfew global links and small diameter

Å5.3  What about Scalable Scheduling?

ïbuffers in multi-stage fabrics

ïscheduling bufferless Clos networks, load-balanced switches

ï self-routing fabrics, sorting networks: bad solution

ï fabrics with small internal buffers and flow control: good solution
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5. Switching Fabrics

ÅWhat are switching fabrics (or multi-stage interconnection networks)?

ïa network consisting of multiple smaller switches interconnected via 

channels (point-to-point links)

Áswitches are usually crossbars, each one impl. in a single chip/board

ÅWhy switching fabrics?

ïcrossbars do not scale to large port counts

ÁN2 crosspoints 

Á I/O chip bandwidth (# pins / HSS cores &  power limitations)

ÅWhere are they deployed?

ï inside large routers/switches

Á multi-chip/multi-chassis routers

Á single-chip switches (internally multi-stage)

ï inside modern datacenters and high-performance computers

ï inside chip multi-processors (Networks-On-Chip)
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5.0 Switching Fabrics: terminology

ÅNetwork = nodes + channels

ïnode= terminal or switch, channel= connection (link) between 2 nodes

ÅPath =  a set of channels {c1, c2, é, cn} : dci
= sci+1

, for iin 1é(n-1)

ÅHop count of path: the number of channels traversed in the path

ÅConnected network: path exists between any pair of terminals

ÅMinimal path from node x to node y = the path with the smallest hop count 

connecting node x to node y

ÅNetwork diameter = the largest hop count over all pairs of terminals
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5.0 Switching Fabrics: performance

ÅTypically sub-optimal performance (compared to xbars)

ïñideally, we would like to connect all processors in a datacenter using a 

single flat (crossbar-like) networkò

ÅChallenges

ïfull / high tput irrespective of traffic pattern/orientation (routing)

ïfairness (scheduling)

ïflow isolation (congestion control)

ïequidistant paths ?

Ásame latency irrespective to which ports communicate

ÅRecent trend: datacenters networks Ą flattened datacenter fabrics

ï replace previous ñslimò datacenter nets w. high-performance fabrics
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5.0 Non-Blocking Switching Fabrics

ÅNon-blocking fabrics/ networks

ïcan route any input-output permutation

Ánecessary condition: at least N! states ĄÓ log2(N!) crosspoints

ïfeasible traffic for network ports (for each port : sum load Ò 1)Ą feasible 

for internal links as well 

Ánecessary condition: full bisection bandwidth

ÅStrictly vs. rearrangeably non-blocking networks

ï if netw. currently ñswitchesò connections {1-0, 2-1, 0-3}

Á adding 3-2 does not require rerouting connections (strictly non-blocking)

Á adding 3-2 may require rerouting existing connections (rearrangeably non-blocking)

Typically, a network with path diversity (Ó 1 paths for port-pair flows) 

becomes non-blocking only if appropriate routing is applied
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5.0 Bisection Bandwidth

ÅA bisection is a set of channels that partitions:

ïnodes into two ~ equal groups: |N1| Ò |N2| +1, |N2| Ò |N1| +1

ïterminals nodes into two ~equal groups : |n1| Ò |n2| + 1, |n2| Ò |n1| + 1 

ÅBisection bandwidth = minimum bandwidth over all bisections

ïimplementation cost (global wiring) 

ïnon-blocking performance (if no ñfull bisectionò then the network is blocking)

Áhowever, full bisection does not guarantee non-blocking performance (routing)

Full bisection bandwidth network

Å in each direction, the bisection 

has the same capacity as N/2 

ports  
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5.0 Bisection Bandwidth: examples

Bidirectional 

networks

Unidirectional

networks
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Offline

Routing Strategies: a taxonomy

Oblivious Adaptive

Single-path for 

each src-dst pair 

flow (deterministic)

Multi-path

(inv. muxôing)

Pck- Flow-level

Per-flow Indiscriminate

Flow-levelPck-

s/d-mod-k

Online

Custom routing for 

specific workload / 

application phase 

(done in HPC)

Flow starts w. a 

single route: 

change route if 

conflict. 

Pck.route = 

F(Q.backlog);  

start w. 

minimal path ?

Flow-id hashing (e.g. TCP 5-tuple). Centrally compute 

non-conflicting routes for large flows (SDN?)

?

Path = src-/dst-node 

modulo #paths
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Additional routing categories

ÅSource (or explicit) routing 

ïpath computed at source & carried in packet header

ÅSelf-routing (network)

ïpath computed gradually at network nodes using header bits

Ák-ary n-flies, k-ary n-trees, and Benes/Clos can operate as self-routing networks 

(but usually more sophisticated decisions at stages where multiple paths available)

ÅRouting tables (e.g. Ethernet, IP, Infiniband)

ïarbitrary routing, computed based on path costs or other metric  

Ádistributed (e.g. IP BGP, Ethernet flooding/learning) or central (e.g. SDN)

Áconvergence time too long for microsecond-sensitive appôs  

ÅDeflection routing: avoid link conflicts (used in some bufflerless nets)

ÅValiant routing : srcĄ random intermediate destĄ dest

ïload balances traffic on internal links Ą avoids hotspots in adversarial patterns 

Á tput independent of spatial distribution of traffic pattern; tput of minimal depends.. 

ïbut each packet traverses two times more links

Áextra latency at low loads 

Áextra load on internal links for balanced (e.g. all-to-all) patterns
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5.1 Inverse Multiplexing

ÅWhat is it?

ïa (multi-path) routing strategy that spreads the load (packets/flows) 

equally among all available paths

Áa technique for scalable, non-blocking switching fabrics

ÅGeneralization of bit/byte slicing

ïbreak packets into (ñheaderlessò) slices; forwarded slices 

synchronously via parallel wires/links or even subnets (Tiny-Tera)

Ásame idea: high-tput buffer from many lower-throughput buffers

ïperfect load balancing (equal load on all links, ignoring padding 

ovrhd) but not practical for distributed implementation (synchronous 

subnets, central control)

Åñinverse-multiplexò fragments of packets? yes, but header ovrhd

ïpractical only for large packets; done inside some (internally 

multipath) routers working on ñfixed-sizeò (e.g. 256-byte) segments 
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5.1  Parallelism for High-Thruput: Inverse Multiplexing

ÅParallel wires or network routes for scaling (virtual) ñlinkò throughput up

ÅEasy: central control, synchronized; Difficult: distributed control, asynch.
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5.1 Inverse Multiplexing: granularity of load balancing

ÅFine grain: equalize load on a small time scale

ÅCoarse grain: danger of overshooting paths (& filling up buffers Ą delay)
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5.1  Byte-Slicing: Tiny Tera & other commercial chips

Mckeown e.a.: ñTiny Tera: a Packet Switch Coreò, IEEE Micro, Jan.-Feb.ô97
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5.2.1

Benes 

Fabric: 

Recursive 

Definition

ÅGoal: reduce switch radix from NĬN to (N/2)Ĭ(N/2): combine ports in pairs

ÅPort-pairs require links of twice the throughput: use inverse multiplexing

ÝUse two switches, of half the radix each, in parallel to provide reqôd thruput

 

n o n -b lo c k in g

(N /2 )  x  (N /2 )

n o n -b lo ck in g

(N /2 ) x  (N /2 )

N xN  B e n e s  n e tw o rk : re a rra n g e a b ly  n o n -b lo ck in g
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Full Construction of 16Ĭ16 Benes out of 2Ĭ2 Switches
 

b a n y a n re v e rs e  b a n y a n

s te p -1  s u b -n e tw o rk s te p -3 s te p -2  s u b -n e tw o rk
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Hierarchical Crossbars: single-path non-blocking netw.

ÅNo path diversity é but the network is non-blocking

ÅN2 crosspoints é but smaller crossbars Ą can be implemented in 

separate chips or chip tiles

ÅYARC (crossbar) 64x64 switch by Cray Inc., uses 64, 8x8 xbar tiles

ï Scott, Steve, e.a. ñThe blackwidow High-Radix Clos Network.ò ACM SIGARCH 

Computer Architecture News. vol. 34, no. 2,  2006.
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Inverse Multiplexing for Non-Blocking Operation
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Per-Flow Inverse Muxôing for Non-Blocking Operation

ÅProve that overall NĬN network is non-blocking, i.e. any

feasible external traffic Ý feasible rates on all internal links

ÅAll traffic entering switch A is feasible, hence of aggregate 

rate Ò 1+1 = 2;  it is split into two halves  Ý each of rate Ò 1 

Ý traffic entering each (N/2)Ĭ(N/2) subnetwork is feasible

ÅIt does not suffice to balance (equalize) the aggregate load 

out of switch A ïmust equally distribute individual (end-to-

end) flows ïper-flow inverse multiplexing

Ý each of l2,i; l3,j; l6,j is individually split in two equal halves

Ý the sum of l3,j+l6,j is also split in two equal halves

ÅAll traffic exiting switch D is feasible, hence of aggregate rate 

Ò 1+1 = 2; it enters D in two equal halves Ý each of rate Ò 1 

Ý traffic exiting each (N/2)Ĭ(N/2) subnetwork is also feasible
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Methods to implement (per-flow) Inverse Multiplexing
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ÅPer-Flow Round-Robin, at packet granularity

ïfor each flow, circularly and per-packet alternate among routes

ïrequires maintaining per-flow state

ïdanger of synchronized RR pointers: pck bursts to same route

ïalternative: arbitrary route selection, provided the (per-flow) 

imbalance counter has not exceeded upper bound value
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ÅAdaptive Routing, at packet granularity ïusu. Indisciminate

ïchose the route with least-occupied buffer (max. credits)

+ does not maintain or use per-flow state

īper-flow load balancing only ñafter-the-factò, when buffers fill up

ÅRandomized Route Selection, at packet granularity

+ does not require maintaining per-flow state

īload balancing is approximate, and long-term

ÅPacket Resequencing (when needed): major cost of inv.muxông

ïChiussi, Khotimsky, Krishnan: IEEE GLOBECOM'98

ÅHashed Route Selection at entire Flow Granularity

ïroute selection based on hash function of flow ID

+ all packets of given flow through same route Ý in-order delivery

īpoor load balancing when small number of flows

Methods to implement (per-flow) inverse multiplexing (continued)
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ÅCircuit Connections: Start from an input, use one of the subnets

Benes Net under Telephony-Ckt Connection Requests
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ÅContinue from the brother port of the output, then the brother of the input
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ÅKeep ñthreadingò output and input switches, till closing or no-connection
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ÅStart a new ñthreadò (a) from an unconnected input, till completing all conn.
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(A) Thread termination on input side (1 of 2)

ÅThreads always start 

on the input side

ÅIf a thread terminates 

on the input side:

ïall touched output 

switches are 

completely 

connected

ïconcerning 

touched input 

switches:

(1) if thread closes, 

all are complete, 

é

1 1

3 3

2

2 4

4

A

B

C

D

E

F

G

H

0

1 F

2

3

4

5 B

6  

7 D

A

C

su b n e t B

su b n e t A

E  

...
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(A) Thread termination on input side (2 of 2)

ÅThreads always start 

on the input side

ÅIf a thread terminates 

on the input side:

ïall touched output 

switches are 

completely connected

ïconcerning touched 

input switches:

(1) if thread closes (4), 

all are complete,

(2) if thread terminates 

on half-used input (b): 

all touched input 

switches are complete, 

except the first one, 

which is half-covered 

by this thread
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2 4
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(a ) (a )

(b )

(b )

...
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(B) Thread termination on output side

ÅThreads always start 

on the input side

ÅIf a thread 

terminates on the 

output side:

ïall touched output 

switches are 

completely 

connected

ïthe first touched 

input switch is   

half-covered
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(C) Completing half-covered input switches

ÅNew threads always start from a half-covered input switch, if there is one

Ý all threads cover all out-swôs they touch, in-swôs are covered in sequence
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Benes Fabric: Rearrangeably Non-Blocking
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5.2.2  The Banyan (Butterfly) Network

ÅSingle route from 

given input to 

given output

ÅEach input is the 

root of a tree 

leading to all 

outputs

ÅTrees share nodes

Å(Similarly, outputs 

are roots of trees 

feeding each from 

all inputs)

Åfor NĬN network 

made of 2Ĭ2 sw.:

Ålog2N stages, of

ÅN/2 sw. per stage

5.2  - U.Crete - M. Katevenis - CS-534 32

The banyan network is internally blocking

ÅConsider circuits: each 

li,j is either 1 or 0: 

single connection per 

port ïñtelephonyò style

ÅThere are N! such circuit 

connection patterns for 

a NĬN network ïeach is 

a permutation of the 

numbers (1, 2, é, N)

b lo c k in g

in te rn a l

ÅAny network containing (N/2)·log2N or less 2Ĭ2 switches (like the banyan 

does) has to be internally blocking, because it can only be placed into 

less than N! states, hence cannot route all N!existing sets of con. reqôs

ÅEach 2Ĭ2 switch can be placed in 2 different states; a network containing 

(N/2)·log2N such switches can be placed into 2(N/2)·logN = N(N/2) 

different states; N(N/2) = N · (N/2)(N/2)-1 · 2(N/2)-1 < N · [(N-1)· 

é Ŀ(N/2+1)] Ŀ [(N/2) Ŀ é Ŀ2] = N!Ý not enough states
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Butterfly (or k-ary n-fly) Network 

Åk = switch radix = number of switch ports

Ån = number of stages 

ÅTotal number of ports = kn

ïfrequently called ñbanyan networksò

5.2  - U.Crete - N. Chrysos- CS-534 34

Butterfly Networks Are Self-Routing

Ålog2(N) stages, log2(N) bits in destination ID

ÅEach stage uses one destination bit for routing purposes

ïif 0 route up, if 1 route down

ÅNo need for routing tables: packets are self-routed

101

101

101

Variant 1
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Routing in Butterfly Networks

Ålog2(N) stages, log2(N) bits in destination ID

ÅEach stage uses one destination bit for routing purposes

ïñ0ò route up, ñ1ò route down

ÅNo need for routing tables: packets are self-routed

101

101 101

Variant 1

36

Banyan & Butterfly Are Isomorphic

5.2  - U.Crete - N. Chrysos- CS-534

ÅTopologically equivalent network (isomorphic) 

ïinterchange 1st-stage nodes 1 and 2 Ą variant 1

Ádo not move inputs (left side) of 1st stage nodes  

Áequivalently, move inputs together with 1st stage nodes, and then shuffle them

Variant 2



5.  Switching Fabrics 19
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Shuffling The Input Ports 

5.2  - U.Crete - N. Chrysos- CS-534

ÅInterchange inputs using the perfect shuffle

ÅPerfect shuffle - bitwise operation: shift left by 1, e.g. 100 Ą 001

ïñcards of the ñlowerò deck perfectly interleaved with those of the upper oneò

ÅCan route any ñmonotonically increasingò permutation

Variant 3

38

The Omega Network

5.2  - U.Crete - N. Chrysos- CS-534

ÅThe outputs of one stage are connected to the inputs of the next using 

the perfect shuffle permutation (circular shift to the left by one)

ïinterchange 2nd-stage nodes 1 and 2 to obtain variant 3

Ámove inputs of nodes (routers) as well

Variant 4
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Which is the lowest-cost non-blocking fabric?

ÅNĬN Benes network, made of 2Ĭ2 switches:

ï2·(log2N)ī1stages (2 banyans back-to-back, 1 shared stage)

ïN/2 switches per stage Ý total switches = N·(log2N)īN/2

ïnumber of states that the Benes network can be in = 2#switches = 

2N·(logN)īN/2= (2logN)N / 2N/2 = NN / 2N/2 = [NĿéĿN] Ŀ 
[(N/2)ĿéĿ(N/2)] > NĿ(N-1)ĿéĿ2Ŀ1 =N! Ý Benes has more 

states than the minimum required for a net to be non-blocking

ïBenes was seen to be non-blocking: (i) circuits and the 
ñthreadingò algorithm, (ii) packets and inverse multiplexing

ïñrearrangeablyònon-blocking: in a partially connected network, 
making a new connection may require re-routing existing ones

ÅImpossible for any network with about half the switches of the 
Benes (e.g. banyan) to be non-blocking (# of states)

ÝBenes is probably the lowest-cost practical non-blocking fabric
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5.2.3  Clos Networks (generalization of Benes nets)

in p u ts  

p e r  

s w itc h

IN  O U T

o u tp u ts

p e r  

s w itc h
1

2

3

N 2

IN = 3

IN = 3

O U T = 3IN = 3

O U T = 3

O U T = 3

1

2

1

2

N 1 N 3

5-parameter Network: (IN, N1, N2, N3, OUT)

this example: the (3, 4, 5, 4, 3) Clos Network

usually: IN = OUT, and N1 = N3

other times, IN=IN1=N2=N3=OUT = sqrt (number of Clos ports )



5.  Switching Fabrics 21

5.2  - U.Crete - M. Katevenis - CS-534 41

A

B

O U T -1

IN -1

IN -1

c o n n e c te d  

a lre a d y

e ls e w h e re

C o n n e c t  

th is  la s t  

f re e  in p u t  o n  A  

w ith  th e  la s t  f re e

o u tp u t  o n  B

N 2  s w itc h e s  > =  IN  + O U T  -  1

O U T -1

e ls e w h e re

c o n n e c te d  

a lre a d y

Clos 

Networks

ÅStrictly non-blocking 

if and only ifN2 Ó IN+OUT-1

ÅRearrangeably non-blocking 

if N2 Ómax{IN, OUT}
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5.2.4 Fat Trees: recursive definition

ÅA fat tree of height 0 

consists of a single 

vertex

ïthe root of the tree

ÅIf we have a set of (sub) fat trees of height n-1

and we arbitrarily connect their roots to a set of 

a new (vertices) roots Ą fat-tree of height n
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5.2.4 Fat Trees: properties & routing

ÅAt least one path from each leaf node to every root

ïBidirectional

ÅNon-minimal routing: route up an arbitrary root node, then route 

down to destination

ÅMinimal routing : route up to closest common ancestor, then 

down
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5.2.4 Fat Trees: single-root trees

Å(ultra) Slim trees

ïpoor bisection bandwidth

ïconstant switch radix

Å(Fully-fledged) Fat trees 

ïfull bisection bandwidth

Ácapacity to/from children = 

capacity to/from parents

ïswitch radix increases as we 

move towards the root
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5.2.4 Fat Trees: single root versus multiple roots

ÅSingle root fat trees

ïthe radix of switches 

increase

ÅSame bisection bandwidth w. 

lower radix switches

ïCan be built with constant radix 

switches
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5.2.4 Multi-root trees: k-ary n-trees

ÅSwitches have 2k ports (but root nodes may have less) 

ï2-ary 0-tree
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5.2.4 Multi-root trees: k-ary n-trees

ÅSwitches have 2k ports (but root nodes may have less) 

ï2-ary 1-tree
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5.2.4 Multi-root trees: k-ary n-trees

ÅSwitches have 2k ports (but root nodes may have less) 

ï2-ary 2-tree
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5.2.4 Multi-root trees: k-ary n-trees

ÅSwitches have 2k ports (but root nodes may have less) 

ï2-ary 3-tree
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5.2.4 Multi-root trees: k-ary n-trees

Å2k x 2k switches, tree height n

Åkn leaf nodes (processors)

Å(n-1) kn-1switches in total

ïkn-1 switches per stage

Ånkn bidirectional links in total

2-ary 3-tree

ÅRelationship with banyan 

ïk-ary n-tree = bidirectional k-ary 

n-fly

ïtransforming a fly into a tree, the 

radix of switches doubles

height 0 

height 1

height 2

height 3

roots

leafs
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5.2.4 Multi-root trees: k-ary n-trees

Å4-ary 3-tree

ï64 ports, 8 ports per switch, 64x3x2 unidirectional links

Å4-ary 3-fly 
ï64 ports, 4 ports per switch, 64x4 unidirectional links

5.2  - U.Crete ïN. Chrysos - CS-534 52

5.2.4 Spine-leaf (folded-Clos)

ÅSpine-leaf network is a 2-level fat-tree (4-ary 2-tree)

ïall leaf switches are connected to every spine switch

ÅSpine-leaf = folded three-stage Clos network 

ïbut minimal paths (shortcuts) do not exist in Clos

Spine nodes are the 

roots of the fat tree, 

and leaf nodes are 

the switches at 

height 1 ïin k-ary n-

tree terminology, leaf 

nodes are the 

processors

Level 2

Spine switches

Level 1 

Leaf switches

(top-of-rack)

Level 0          processors
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5.2.4 Fat Trees: equivalent networks

ÅAll built using 4x4 switches

ÅAll have same (full) bisection bandwidth

ïsame number of wires in total

ÅAll have same number of paths per port pair

ÅBut different number of switches

ïsavings on number of root switches
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Switch Radix, Hop Count, Network Diameter

ÅMost of our examples used 

unidirectional links ïfig. (a)

ïñindirectò nets have ports at edges.

ÅMost practical interconnects use 

bidirectional links ïfig. (b)

ïñdirectò nets provide external ports 

on all switches.

ÅIf some destinations are reachable at 

reduced hop count (P2 in (b)), that is at 

the expense of the total number of 

destinations reachable at a given hop 

count ïor larger network diameter.

ÅEnergy consumption to cross the net 

critically depends on the number of 

chip-to-chip hops, because chip power 

is dominated by I/O pin driver consum.

4 x 4

4 x 4

4 x 4

4 x 4

4 x 4

4 x 4

4 x 4

4 x 4

P 2

P 3

P 1

(b )

P 2

P 3

P 2

P 1

P 1

(a )
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5.2.4 Fat Trees: customizable local versus global traffic

ÅCustomizable percent fat ïconfigurable amounts of internal blocking

ÅBidirectional links, like most practical interconnects

ÅSkinny trees support local traffic ïFull-fat tree is like folded Benes

2 -w id e

2 -w id e

4 -w id e
2 -w id e

2 -w id e

m e d iu m

fa t

m e d iu m  fa t fu ll

fa t

(sk in n y)

n o rm a l 3 x 3 3 x 3 3 x 3 3 x 3

4 x 4 4 x 4 4 x 44 x 4

3 x 3 3 x 3

3 x 3 3 x 3 3 x 33 x 3

4 x 4 4 x 4 4 x 4

4 x 4 4 x 4 4 x 44 x 43 x 3 3 x 3 3 x 33 x 3
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5.2.4 Cannot eliminate the roots of a 2-level fat-tree

Å4-ary 2-tree 

ïbisection bandwidth = 8 links

ÅCompletely-connected netw. 

of switches

ïa bidi link between every 

switch pair (ñ4 per 2ò links)

ïbisection b/w = 4 unidi. links 

for 8 srcôing portsénot enough

What if each port in switch 0 wants to 

talk  to a distinct port in switch 1?

not

equiv.

Capacity up < down
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5.2.5 A fully-connected network

ÅNumber of  links = ñ6 per 2ò = 6! / ( (6-2)!*2! ) = 15 (bidi.) or  30 (unidi.)

ÅBisection b/w = 9 unidi. links for 12 srcôingports (better) 

ÅSwitch 0 can ñtalkò to 1, if we use one extra hop (Valiant routing)

ïbut occupying 8 (almost 1/4 of the total) unidir. links in total 

ïif all (6) switches do the same, they need 6x8 = 48 unidi. links, and  we 

have 30 Ą tput ~ 30 /48, better than minimal routing (tput 1/4)

ÅHowever, for uniformly-destined (all-to-all) traffic, tput of Valiant 

routing ~ 30 /48 -- worse than minimal routing (tput 1)

Capacity up > down
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5.2.6 Dragonfly (bidirectional) networks

ÅGroups (supernodes) has a switches

ÅEach switch (or node) p links to ports  

ÅSwitches in same group full-

connected (+a-1 local links / switch)

ÅEach switch +h links to other groups

ïgroups fully-connected global links

ÅSwitches have k = p+h+aï1 ports

ÅN = ap(ah+1) ports, n = ah+1 groups

ÅDragonfly tries to minimize the number of expensive global links while 

maintaining a small diameter (critical for supercomputers)

ÅMinimal routing: local + global + local 

ïjust one global link Ą few (1 E/O + 1 O/E ) power-hungry signal 

conversions -- global links are long and thus optical (not electrical)

ÅDemand on local links 2x than on global or port links in all-to-all traffic 

ïselecting a Ó 2h, a Ó 2p balances the load on all links under all-to-all traffic 
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5.2.6 Dragonfly networks versus fat-tree

ÅDragonfly (common config.)  

ïa = 2h = 2p 

ïk = 4p-1, n=2p2+1, N=4p4+2p2

ïsize N = (k+1)4/ 64 + (k+1)2/8

ïbisection b/w ~p4 links for 2p4 ports

Åk-ary n-tree 

ïsize N = (k/2)n

ïN/2 links for N/2 ports

ÅHop count comparison

ï 5 vs. 4 (2-tree) vs. 6 (3-tree) vs. 8 (4-tree)

ÅHop count  (only global links)

ï 1 vs. 2 (2-tree) vs. 4 (3-tree) vs. 6 (4-tree)

ÅNumber of unidirectional global links (for network size N) comparison:

ï N (dragonfly) vs. 2N (2-tree) vs. 4N (3-tree) vs. 6N (4-tree)
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5.2.6 Server rack networks

Å72-port Dragonfly

ïp=2,a=4, h=2

ï36, 7x7 switches

ï9 x 8 servers

ï72 global links

Å64-port 2-level fat-tree 

(8-ary 2-tree or spine-leaf)

ï16, 8x8 switches

ï8x8 servers

ï128 global links

Global links implemented w. expensive optical links (electronic cables < 10 meter)
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5.2.6 System-level Valiant routing in Dragonflies

ÅMinimal routing: 

ïlocal + global + local 

ïwhen G1 talks to G7

Á2p2 ports clash on one link

ïG1 has 2p2 global outgoing links 

(when p=h) but minimal uses 1é

ÅValiant routing w. 1 random 

intermediate group 

ïlocal+global+local+global+local

ïfull tput for G1 talking to G7

ÅBut for uniform, minimal is better 

ïtput1 (if a/2 Óp,hand h Ó p)

ïValiant uses two global unidi. 

links / packet 

ÁĄ ~ tput = ½ h/p 

ÅHow to adaptively select between 

the two?

72-port Dragonfly: p=2,a=4, h=2

(global links of G1 & G7 shown)
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5.3 Towards Scalable Switches

ÅBuffer throughput limitation Ý use input queueing or CIOQ

ÅInput queued crossbar scalability limited primarily by:

ïquadratic cost growth rate, O(N2), of crossbar

ïscheduler complexity & efficiency, i.e. solving the  output 

contention (congestion management) problem

ÅTo solve the crossbar cost Ý use switching fabrics

ÅTo solve the scheduler / contention / congestion problem:

ï(sorting / self-routing networks ïbad solution)

ïSwitching Fabrics with Small Internal Buffers, large input 

VOQôs, and Internal Backpressure (Flow Control)
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5.3.1 Buffer Organization in Switching Fabrics

ÅBufferless fabrics : buffers at ports but not internally 

ïOQ: buffers only at outputs (expensive)

ïIQ  : buffers only at inputs (not scalable scheduling, poor performance)

ïCIOQ: buffers at both inputs & outputs

ÅBuffered fabrics : internal buffers (in addition to port buffers)

ïgradual contention resolution + better performance

ïpreferred nowadays : cables dictate cost, on-chip buffers are cheap

ÅPacket switched networks & fabrics

ïbuffers to resolve contention
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5.3.1 Speedup In Switching Fabrics

ÅInternal speedup often used to improve the performance of CIOQ

ïexpensive for off-chip switching fabrics 

(fabric-internal off-chip links run faster than ports)

Ádifficult to increase chip I/O bandwidth 

Ápower consumption dictated by chip I/O bandwidth

ïless expensive for on-chip switches and networks 

(make wider datapath)

Áe.g. inside a single-chip crossbar or Clos

ÅInput speedup 

ïinput buffer read tput / input buffer write tput (= line tput) 

ÅOutput speedup 

ïoutput buffer write tput / output buffer read tput (= line tput)
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5.3.1 Modern CIOQ Switching Fabrics 

ÅSingle FIFO queue per input / output

ïsimple scheduling (one candidate per input)

ïbut first-in-first-out service and HOL block, simple 

ÅBuffers at inputs & outputs

ÅInternal speedup

ïinternal links & switches run 

s times faster than ports
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5.3.1 CIOQ Switching Fabrics + Priorities

ÅPrivate queues per priority-level (service class)

ï2-16 priority levels

ïtypically separate buffers per priority-level

ïonly recently implemented in Ethernet

ÅBuffers at inputs & outputs

ÅInternal speedup 
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5.3.1 CIOQ Switching Fabrics + Input VOQs

ÅPrivate input queues per output (VOQs)

ïtens to thousands of destinations

ïseparate input buffers per VOQ?

ïonly inside router boxes Ą neither Ethernet nor Infiniband

ÅBuffers at inputs & outputs
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5.3.1 How Do Switching Nodes Look Like?

ÅNode ăĄ network

ïrecursive definition of networks

ÅModern switching nodes are CIOQ switch chips

ï priority levels + local VOQs

ÅSwitching elements (or nodes)

(building blocks of multi-stage 

switching fabrics)

ïsingle chip switch (in a board)

ïswitch/route box in a data center or 

supercomputer 


