CS-534: Packet Switch Architecture Department of Computer Science
Spring 2015 © copyright: University of Crete, Greece

Exercise Set 8: Input Queueing,
VOQ Crossbar Scheduling, and their Simulation

Assigned: Sat. 4 April 2015, Due: Wed. 22 April 2015

[Lectures: 4.2 Input Queueing, 4.4 CIOQ)] [print version, in PDF]

8.1 Saturation Throughput in a 3x3 Input Queued Switch

As we saw in class, a simplified formulation for computing the saturation throughput of a 2x2 input queued
switch (single queue per input, i.e. without VOQ's) is the following. The head-of-line cells of the two input
queues may have the following destination combinations: (i) "00", meaning that they are both destined to output
0; or (i7) "01", meaning the first is destined to output 0 and the other is destined to output 1; or (iii) "10"; or (iv)
"11". If we assume that the switch is saturated, the queues are always non-empty. If we assume that arrivals are
1.1.d. (independent identically distributed) with uniformly distributed destinations, then the probability of each of
the above combinations is 0.25, and it is independent of the combination in the previous time slot and of the
service decision made in the previous time slot. Combinations 01 and 10 yield 2 outgoing cells per time slot for
the two outputs (average throughput 1.0 per output), while combinations 00 and 11 yield only 1 outgoing cell per
time slot for both outputs (average throughput 0.5 per output). Hence, the average (saturation) throughput per
output over a long time window will be: 0.25%0.5 + 0.25*1.0 + 0.25*1.0 + 0.25*0.5 = 0.75.

Using the same technique, calculate the saturation throughput of a 3x3 input queued switch (single queue per
input). The head-of-line cells of the three input queues may form 27 combinations. List these combinations;
compute the probability of each; compute the average per-output throughput of the switch in each of these cases
(and briefly explain); and, finally, compute the average saturation throughput.

8.2 Simulation of PIM and iSLIP under Uniform Traffic

This exercise concerns the evaluation of the performance of the PIM [1] and iSLIP [2] scheduling algorithms for
VOQ crossbars, using computer simulation. The simulator which you will use is BookSim. BookSim is a modern
cycle-time based network-on-chip (NoC) simulator, written in C++. The user can configure various parameters
such as: topologies, sub-networks, routing algorithms, buffering schemes, router micro-architectures, and traffic
patterns. The BookSim can be found at http://nocs.stanford.edu/cgi-bin/trac.cgi/wiki/Resources/BookSim and the
GitHub for its latest version at https://github.com/booksim/booksim2.

You will simulate a single-stage (VOQ) crossbar under randomly-destined traffic, comprising unit-length packets
(cells). In BookSim, you can run a simulation specifying a configuration file in the following way.

> ./booksim config.txt injection rate=0.7

In addition, through the command line, you may pass parameter values, which will override the corresponding
values in the configuration file -- in the example above, we override the "injection rate", which is the load at
each input.

Here is a sample configuration file.
> cat config.txt

topology = fly; // k-ary n-fly = ~ banyan
k = 16; // 16 ports per switch


http://nocs.stanford.edu/cgi-bin/trac.cgi/wiki/Resources/BookSim
https://github.com/booksim/booksim2
file:///home/nikos/Projects/HY534/webpage/index.html
file:///home/nikos/Projects/HY534/webpage/15a/ex08_sim.pdf
file:///home/nikos/Projects/HY534/webpage/09a/s42_iq_xbSched_sl.pdf

n=1; // one stage

router = iq; // switch type input queueing
nog = 1; // use VOQs at each input

num vcs = 16; // number of queues per input; set it equal to k for noq =1

// if buffer policy
// if buffer policy

= private & buf size = -1, then vc buf size = vc buf size
= shared & buf size >= 0, then buf size = buf size
buffer policy = private; // or shared

buf size = -1; // -1 for buffer policy = private;

vc_buf size = 1024; // size of each VOQ with buffer policy = private

// crossbar internal speedup -- expects a real number

internal speedup = 1.0;
= -1; // means unlimited output buffer size; used when spee

output buffer size

sw_allocator = islip; // pim

alloc iters = 1; // iterations of scheduling PIM/iSLIP algorithms; warn
// traffic pattern

packet size = 1; // each packet consists of 1 flit

traffic = uniform; // Bernoulli iid uniformly-destined traffic.

injection rate = 0.7;

// misc
sample period = 100000;
routing function = dest tag;
use read write ;
routing delay
vc_alloc delay
sw_alloc delay
st final delay
private buf size

I nn
IhmrRRrRroOI

1
=

In this configuration, each VOQ has separate (private) buffer space for 1024 packets.

To generate a load-latency curve for one switch configuration, run multiple simulations for increasing load
values between [0.1:0.99]; for each run, collect the "Network latency average" output of the simulator, and create
a load/latency (2d) matrix, which you can plot using e.g. gnuplot.

Generate the load-latency curves for PIM and iSLIP, for 16x16, 32x32, and 64x64 crossbars. Compare and
comment on the curves you obtained.

Next, considering the 32x32 switch, obtain the load-latency curves for PIM and iSLIP for 1, 2 and 4 scheduling
iterations (parameter "alloc iters"). Are the results improving with more iterations? If not, check whether the
simulator really utilized the alloc_iters parameter value that you specified. If it didn't, try to manually change it in
the C++ files of PIM and iSLIP, which are located in directory "src/allocators".

Next, consider a 32x32 switch using one iterations of iSLIP (alloc iters = 1), under full input load
("injection_rate" = 1.0). In this test, assume that the buffer space at each input of the switch is shared by the local
(at this input) VOQs. To do so, set "buffer policy = shared" and play with the shared buffer size (parameter
"buf size"). Plot the "Accepted packet rate average" for increasing buffer size {1,2, 8, 32, 128, 1024}. Why
iSLIP cannot achieve full throughput for all buffer sizes? Repeat the experiment using PIM instead of iSLIP. Is
PIM worse than iSLIP? Finally, repeat the aforementioned experiments using an internal speedup of 2. Comment
on the results. Which one of the following do you think is more cost-effective for a 32x32 switch chip



implementation, large input buffers, multiple scheduling iterations or internal speedup?

References

[1] T. Anderson, S. Owicki, J. Saxe, C. Thacker: "High-Speed Switch Scheduling for Local-Area Networks",
ACM Trans. on Computer Systems, vol. 11, no. 4, Nov. 1993, pp. 319-352.

[2] N. McKeown: "The iSLIP Scheduling Algorithm for Input-Queued Switches", IEEE/ACM Trans. on
Networking, vol. 7, no. 2, April 1999, pp. 188-201.

Up to the Home Page of © copyright University of Crete, Greece.
CS-534 Last updated: 4 April 2015 by N. Chrysos; earlier versions by G. Passas, A.
Psathakis, and M. Katevenis.


http://www.ics.forth.gr/~kateveni/
file:///home/nikos/Projects/HY534/webpage/15a/copyright.html
file:///home/nikos/Projects/HY534/webpage/index.html

