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5.1   Pointer-Access Cost of Enqueue and Dequeue Operations

In section 3.3 slide 6, we saw the implementation of multiple queues using linked lists, so that
they can share a given buffer memory space. The pointers are kept in separate memories, so that
parallel accesses can be performed to the data and to the pointers. Oftentimes, the desired
throughput corresponds to one operation per clock cycle --either one data segment (block)
enqueue or one data segment dequeue per clock cycle. For each such operation, the required data
memory throughput is one access (one address) per clock cycle --see exercises 3.1, 3.2. The
throughput of the control (pointer) memories will often be adjusted to match the data memory
throughput. When the required throughput exceeds one access (one address) per cycle, multi-
ported memories will be needed for the corresponding pointers. The objective of this exercise is
to determine the above throughput, i.e. count the number of required accesses per operation
(enqueue or dequeue) to each pointer (control) memory. When counting, one has to be careful
about what needs to be done in the "exceptional" cases, as outline below.

(a) Count the above numbers, for each of the pointer (control) memories (Empty, Head, Tail,
NextPointer), in each of the following cases; the number of ports for each memory --in order to
sustain the one-operation-per-cycle rate, is the worst of these numbers for that memory:

enqN (Enqueue Normal): append a given new segment at the tail of a given queue qID.
You don't know a priori whether the queue was empty or not, so you have to check for
that, but assume that in this case the queue was not empty.
enqE (Enqueue Exceptional): append a given new segment at the tail of a given queue
qID. You don't know a priori whether the queue was empty or not, so you have to check
for that, and assume that in this case the queue was empty.
deqN (Dequeue Normal): remove the segment at the head of a given queue qID, and
return the address of that segment. We know that the queue was not empty (the scheduler
does not issue illegal or dummy operations), so you do not have to check for that.
However, we do not know a priori whether the queue will become empty after we
remove the head segment, so you have to check for that, but assume that in this case the
queue does not become empty.
deqE (Dequeue Exceptional): remove the segment at the head of a given queue qID, and
return the address of that segment. We know that the queue was not empty so you do not
have to check for that. However, we do not know a priori whether the queue will become
empty after we remove the head segment, so you have to check for that, and assume that
in this case the queue does become empty.
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(b) If we wish to reduce the width of the Head/Tail memory by a factor of 2, we can store head
and tail pointers "underneath" each other, in a memory that has half the original width; in that
case, more accesses will likely be needed to that memory, but perhaps less than twice the
original number? Count this new number. You now have to be careful about where the empty bit
is stored: (i) in the "head/tail" memory, within the "head" word; (ii) in the "head/tail" memory,
within the "tail" word; (iii) in the "head/tail" memory, within both the head and tail words (two
copies --always consistent or not necessarily always?); (iv) in a separate, single-bit-wide memory
(addressed e.g. by the head/tail address divided by 2?). In the first three cases, do we need a
separate write-enable signal for the empty-bit part of the memory? (note: if you want to modify
only one of the two fields in a memory word but you know the value of the other, you don't need
separate write-enalbles: you can always re-write the known value in the other field). There is a
method to economize on the head/tail memory width by 1 bit: instead of storing an extra "empty"
bit next to a k-bit pointer, reserve one of the values of this k-bit field --e.g. the 00...0 value (the
"NULL" pointer)-- to symbolize an empty queue; in which of the above cases can we apply this
method?

5.2   Queue Operation Latency

The above exercise concerned throughput; this exercise concerns latency of the enqueue and
dequeue operations for linked-list queues implemented with multiple pointer memories as above.
Independent accesses to distinct memory blocks can be performed in parallel; however,
dependent accesses, where the result (read data) of one access is used as input to the next, must
be performed in sequence. Count the number of clock cycles required to complete all accesses to
all memories involved in an enqueue operation, and similarly for a dequeue operation; count this
number separately (i) excluding the acceess to the data block, and (ii) including that data block
access (assume that the entire data block, stored in a "wide" memory, is accessed in a single
clock cycle). Assume that the enqueue and dequeue operations in the pipeline are independent
from each other, thus you do not have to consider any bypasses (or stall cycles --although, most
likely, all dependencies can be resolved with bypasses, without ever needing to stall).

Assume that the empty bit and head and tail pointers for each queue are stored in a wide, on-chip
SRAM, and are accessible in parallel (for a given queue), with a single-clock-cycle latency; this
memory has as many ports as you calculated in the previous exercise. On the other hand, for the
NextPointer memory, which is significantly larger, consider two cases: (a) the NextPointer
memory is also on-chip, on the same chip, accessible with a single-clock-cycle latency; (b) the
NextPointer memory is off-chip, in which case each chip-to-chip transfer costs an extra clock
cycle in latency: reads have a 3-cycle latency (send address, read, return data), and writes have a
2-cycle latency (send address and data, write); in all cases, accesses are pipelined, and hence can
be performed at a rate of one per clock cycle.
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