Exercises 8: Input Q'ing, VOQ Xbar Scheduling, and Simulation (U.Crete, CS-534) 11-04-13 17:28

CS-534: Packet Switch Architecture Department of Computer Science
Spring 2011 © copyright: University of Crete, Greece

Exercise Set 8: Input Queueing,
VOQ Crossbar Scheduling, and their Simulation

Assigned: Wed. 13 April 2011 (week 9) - Due: Fri. 6 May 2011 (week 10)
8.1 Saturation Throughput in a 3x3 Input Queued Switch

As we saw in class, a simplified formulation for computing the saturation throughput of a 2x2
input queued switch (single queue per input, i.e. without VOQ's) is the following. The head-of-
line cells of the two input queues may have the following destination combinations: (i) "00",
meaning that they are both destined to output 0; or (ii) "01", meaning the first is destined to
output O and the other is destined to output 1; or (iii) "10"; or (iv) "11". If we assume that the
switch is saturated, the queues are always non-empty. If we assume that arrivals are i.i.d.
(independent identically distributed) with uniformly distributed destinations, then the probability
of each of the above combinations is 0.25, and it is independent of the combination in the
previous time slot and of the service decision made in the previous time slot. Combinations 01
and 10 yield 2 outgoing cells per time slot for the two outputs (average throughput 1.0 per
output), while combinations 00 and 11 yield only 1 outgoing cell per time slot for both outputs
(average throughput 0.5 per output). Hence, the average (saturation) throughput per output over
a long time window will be: 0.25%0.5 + 0.25*%1.0 + 0.25*%1.0 + 0.25*%0.5 = 0.75.

Using the same technique, calculate the saturation throughput of a 3x3 input queued switch
(single queue per input). The head-of-line cells of the three input queues may form 27
combinations. List these combinations; compute the probability of each; compute the average
per-output throughput of the switch in each of these cases (and briefly explain); and, finally,
compute the average saturation throughput.

8.2 Simulation of PIM and iSLIP under Uniform Traffic

This and the next exercise concern the evaluation of the performance of the PIM [1], iSLIP [2],
and DRRM [3] scheduling algorithms for VOQ crossbars, using machine simulation. You may
implement and evaluate these algorithms using any simulator that you are familiar with (e.g. the
ns simulator, or your ad hoc simulator), but we suggest that you use the SIM simulator; As
referenced below [4], you may find SIM at: http://klamath stanford.edu/tools/SIM/ . A local
copy of SIM is provided on the csd.uoc.gr machines, at ~hy534/simv2.35.tar.gz,
which includes an adaptation of the Makefiles and other files for compilation in our local
machines environment.

SIM is a slotted-time switch simulator developed in ANSI C by the High-Performance
Networking Group at Stanford University. It provides implementations for iSLIP, PIM, and for
many other scheduling algorithms, but not for DRRM. So, for PIM and iSLIP you may just run
simulations using the ready implementations of SIM, while for DRRM you have to submit your
own implementation as well.

We are concerned with (VOQ) crossbars with a single priority level, unicast traffic, and unit-
length packets (cells). Traffic may be feasible (Bernoulli iid uniform) or infeasible (some
outputs are hot spots). SIM implements Bernoulli iid uniform traffic, but not hot-spot traffic;

http://www.csd.uoc.gr/~hy534/11a/ex08_sim.html Page 1 of 3


http://www.csd.uoc.gr/~hy534/index.html
http://klamath.stanford.edu/tools/SIM/

Exercises 8: Input Q'ing, VOQ Xbar Scheduling, and Simulation (U.Crete, CS-534) 11-04-13 17:28

thus, you also have to submit your own implementation of hot-spot traffic. SIM also implements
multiple priority levels and multicast, but you will not be using this functionality in this exercise
set.

Generate the load-delay curve of PIM and iSLIP with one iteration of the matching steps in a
4x4 crossbar with a single priority level and unicast Bernoulli iid uniform traffic. To do so, run
a simulation for each load value, measure the average delay of cells in each simulation run, and
plot the resulting load-delay curve. You can run a simulation in this way:

> ./sim -f config.txt

where config.txt is a configuration file. For example, using the following configuration file, you
can measure the average cell delay in a 4x4 crossbar scheduled by iSLIP with one iteration of
the matching steps, when traffic load is 0.7 (70%). Average cell delay is reported in SIM's
output as "Total Latency over all cells".

> cat config.txt

Numswitches 1 Switch 0
Numinputs 4

Numoutputs 4

InputAction defaultInputAction
OutputAction defaultOutputAction
Fabric crossbar

Algorithm islip -n 1

0 bernoulli iid uniform -u 0
1 bernoulli iid_uniform -u 0.
2 bernoulli_iid_uniform -u 0
3 bernoulli iid uniform -u 0
Stats

Arrivals

Departures

Latency

Occupancy

Histograms

Arrivals

Departures

Latency

Occupancy

Also generate PIM and iSLIP curves for 16x16, 64x64, and 256x256 crossbars and repeat for
iSLIP and PIM with 2,4, 6, and 8 iterations of the matching steps.

When running your simulations, consider and answer the following questions: (i) We are
interested in average cell delay when the switch is stable. Practically, stability can be decided by
checking the delay of cells: If during a simulation run delay keeps increasing linearly with
simulated time, the switch is unstable --a direct consequence of Little's law. How much time do
you need to simulate to decide stability? Is this related to traffic load or switch size? How? How
is stability related to the RAM utilization of your computer? In SIM, the simulated time when
simulation stops is determined by the constant DEFAULT_SIMULATION_LENGTH in file
sim.c. (ii) Which is the running time complexity of your simulations with respect to simulated
time, switch size, and number of iterations?

http://www.csd.uoc.gr/~hy534/11a/ex08_sim.html Page 2 of 3



Exercises 8: Input Q'ing, VOQ Xbar Scheduling, and Simulation (U.Crete, CS-534) 11-04-13 17:28

8.3 Implementation of DRRM and Hot-Spot Traffic

Implement DRRM on your simulator, and repeat exercise 8.2 for DRRM [3]. To implement
DRRM you have to add to SIM a modification of iSLIP. iSLIP is implemented in file
ALGORITHMS/islip.c. The main loop of the algorithm is in lines 172-218. You have to modify
mainly this part, reversing the order of arbitration (selection) --in DRRM, first arbitrate the
inputs and then the outputs. DRRM operates in the following two steps:

1. Request: If an input has cells for any output, it chooses the output that appears next in a
fixed, round robin schedule starting from the highest priority element and sends a request
to this output. The pointer to the highest priority element of the round-robin schedule is
incremented (modulo N) to one location beyond the requested output if and only if the
request is granted in the next step 2.

2. Grant: If an output receives any request, it grants the one that appears next in a fixed,
round-robin schedule starting from the highest priority element and the pointer to the
highest priority element of the round-robin schedule is incremented (module N) to one
location beyond the granted input.

How does DRRM compare to iSLIP? Compare DRRM to iSLIP under infeasible traffic. An
example is the following. Inputs 1,2, 3,4 have a load of 0.25 for output O; input O has a load of
0.25 and L for outputs O and 1 respectively. This pattern overloads output O, but not output 1.
Plot the delay of cells from input O to output 1, as L varies from 0.05 to 0.75. Observe and
explain.

To implement the above traffic patttern, add to SIM a modification of file
TRAFFIC/bernoulli_iid_uniform.c. The main part for traffic generation is in lines 397-436:
Variable "psend" determines the probability of generating a cell and variable "output" the
destination output of the generated cell. Notice that you have to measure the delay of cells from
input 0 to output 1 only (not all cels). So, you have to selectively stamp cells. This can be done
by conditioning the update of the total latency variable in file latencyStats.c

References

[1] T. Anderson, S. Owicki, J. Saxe, C. Thacker: "High-Speed Switch Scheduling for Local-
Area Networks", ACM Trans. on Computer Systems, vol. 11, no. 4, Nov. 1993, pp. 319-352.

[2] N. McKeown: "The iSLIP Scheduling Algorithm for Input-Queued Switches", [IEEE/ACM
Trans. on Networking, vol. 7, no. 2, April 1999, pp. 188-201.

[3] J. Chao, "Saturn: A Terabit Packet Switch using Dual Round-Robin", IEEE Commun. Mag.,
vol. 38, Dec. 2000, pp. 78-84.

[4] High Performance Networking Group, Stanford University: "SIM : A Fixed Length Packet
Simulator", http://klamath.stanford.edu/tools/SIM/

Up to the Home Page of CS-534 © copyright University of Crete, Greece.
Last updated: 13 April 2011, by G. Passas and M. Katevenis.

http://www.csd.uoc.gr/~hy534/11a/ex08_sim.html Page 3 of 3


http://klamath.stanford.edu/tools/SIM/
http://www.csd.uoc.gr/~hy534/index.html
http://www.csd.uoc.gr/~hy534/11a/copyright.html
http://www.ics.forth.gr/~kateveni/

