
Exercises 9: TST & Clos Ckt Sw. Scheduling (U.Crete, CS-534) http://archvlsi.ics.forth.gr/~kateveni/534/08a/ex09_tst_sch.html

1 of 3

CS-534: Packet Switch Architecture
Spring 2008

Department of Computer Science
© copyright: University of Crete, Greece

Exercise Set 9:
TST and Clos Circuit Switch Scheduling

Assigned: (normally: wk.9) 25/4/2008 (wk.Easter) - Due: (normally: wk.10) Mon. 12 May 2008 (wk.11)

9.0 TST and Clos Switch Scheduling

In chapter 1, slide 15 (also shown here on the
right), we discussed the need for time-slot
interchanges (TSI) in front of the crossbar, in a
time-space-time (TST) circuit switch, in order to
rearrange the position of the various connections
inside the (synchronized) incoming frames, so as
to eliminate output contention in the crossbar (i.e.
no two connections in similar positions --same
time-- of two different frames have the same
outgoing link).

In §5.2, slide 11 (?) (also shown below on the right), we saw the 3-stage Clos network (and, before that, its
specialization, the Benes network). There is an analogy --or even equivalence-- between these two systems
in circuit switching (the analogy carries over to packet switching, with TST becoming an input-queued or
CIOQ crossbar, and Clos becoming a "Parallel Packet Switch" (PPS)). The analogy goes as follows. Each of
the Clos middle-stage switches
implements one time slot of the
TST crossbar inside a frame; there
are N2 middle-stage switches in
the Clos network, and there must
be N2 time slots in each frame of
the crossbar in the TST switch.
The role of each input TSI in the
TST is to "switch" in time any
connection, from the arbitrary
time slot that it arrives at, to an
arbitrary time slot when the crossbar is available to serve it; correspondingly, the role of each first-stage
switch in the Clos is to switch "in space" any connection, from the arbitrary input port that it enters on, to an
arbitrary middle-stage switch that is available to serve it. The general Clos fabric has N1 first-stage
switches, each of them of size INxN2; and there are N2 middle-stage switches, each of them of size N1xN3.
The corresponding TST system has N1 input TSI's --one for each of the N1 input ports of the crossbar; each
input TSI receives a frame consisting of IN time slots, and arbitrarily rearranges its contents placing them
into a frame consisting of N2 time slots; the crossbar is of size N1xN3 and is shared among the N2 time slots
in its frame (reconfigured N2 times per frame). Output TSI's in TST play a role corresponding to the
third-stage switches in Clos, in a way analogous to input TSI's and first-stage switches.

In this exercise set we will study the way in which the input TSI's in a TST circuit switch should rearrange
the incoming connections. To make it easier to think about the problem, we will formulate it using colors, as
in the next figure. Colors, in our case, will correspond to outgoing links; in the figure there are n=4
outgoing links, so there are n=4 colors. For simplicity we will assume that the number of incoming links is
also n, equal to the number of outgoing links, and that all liks have the same speed, hence the same number
of slots in their frames --call this number m.

Let us call "crossbar schedule" the colored rectangular array shown in the figure; in this array, the horizontal
direction corresponds to time (slots in a frame), the vertical direction corresponds to crossbar inputs, and the
color corresponds to crossbar outputs, as discussed above. Our topic is the construction of this schedule;
once the "schedule" is set, we know how to configure the crosspoint of the space switch during each time
slot of the frame. The schedule corresponds to the frames produced by the input TSI's. Once the schedule is
constructed, setting the TSI's so as to generate it is straightforward, so we will not discuss that here. Also,
assigning specific connections (circuits) to specific entries in the schedule can be done in any random way,

Exercises 9: TST & Clos Ckt Sw. Scheduling (U.Crete, CS-534) http://archvlsi.ics.forth.gr/~kateveni/534/08a/ex09_tst_sch.html

2 of 3

as long as an entry of the correct color (output) is used in the correct row (input) of the table. Thus, for our
purposes here, all entries of the same color in the same row of the schedule are completely equivalent to
each other and interchangeable. We can now formulate the inputs to our problem, and the constraints that
the solution sought must satisfy.

For a given switch size n and
frame size m, the input to our
problem is the n x n array of
numbers shown in the left of the
figure. Each entry in this array
specifies the number of
connections (circuits) on a given
incoming link to be switched
onto a given outgoing link.
Obviously, the sum of the
numbers in each row (the total
number of circuits on an
incoming link) cannot exceed m (the frame size); similarly, the sum of the numbers in each column (the total
number of circuits on an outgoing link) cannot exceed m. In one sense, the problem of schedule construction
is hardest when the schedule is full, as in the figure, i.e. when all these horizontal and vertical sums are
equal to m (in another sense, constructing a full schedule has some advantages --see exercise 9.3 below).
The problem to be solved is the construction of a schedule for the given numbers of connections. A schedule
is an n x m array of colors, as shown above, that satisfies the following constraints:

the number of entries of each color on each row are equal to the corresponding number of
connections given; and
each color appears at most once in each column of the schedule.

9.1 Schedule Rearrangement when adding new Connections

When adding new connections (circuits) to a (not fully utilized) switch, the crossbar schedule cannot always
be updated by merely adding new entries to it --there are situations where existing entries in the schedule
have to be rearranged. This corresponds to the "rearrangeably non-blocking" Clos networks.

(a) To see this, construct the following small scenario. Consider a 3x3 switch (n=3) with a frame size of
m=2. First, set-up a red connection on input a, then add a green connection on input b, and then another
green connection on input c. Now, try various scenaria of adding more red or blue connections, in ways
such that the new connections require or do not require rearrangement of the first three entries in the
schedule.

(b) Can you modify your placement of the first three entries in the schedule of question (a) so that no new
addition after that will require rearrangement?

(c) Make some scenaria similar to question (a) for a 3x3 switch (n=3) with a frame size of m=4.

This exercise 9.1 guides us to consider that algorithms for schedule construction should probably fall in one
of two categories: either (i) the algorithm considers the connections in a random order, but then it must be
prepared to rearrange schedule entries made earlier; or (ii) the algorithm must start with "global" knowledge
of all connections to be made, and must then consider them in some particular "clever" order.

Next, we want to think whether a schedule always exists and work towards an algorithm for constructing a
schedule for any given set of numbers of connections (that do not exceed line capacities), under the
assumptions in this exercise set (equal number of crossbar inputs and outputs, equal frame size on inputs
and outputs). This is a hard and beautiful problem, and it is worth thinking about it for a while.

9.2 Building a Schedule one Column at a Time

Let us try to construct a schedule one column at a time. In this exercise we will assume that the switch is
fully utilized, i.e. the total number of connections per input as well as per output is equal to the frame size m.
Under this assumption, all columns of the schedule must be full, which means that each column is "merely"
a permutation of all n colors.

Exercises 9: TST & Clos Ckt Sw. Scheduling (U.Crete, CS-534) http://archvlsi.ics.forth.gr/~kateveni/534/08a/ex09_tst_sch.html

3 of 3

After one column of the
schedule is built,
constructing the rest of
the schedule is equivalent
to constructing a schedule
for a switch with frame
size m-1 and for a
connection-number array
that results from the
original array after
subtracting 1 from each entry that corresponds to each of the colors and inputs that were included in the first
column that was built. This is shown pictorially in the figure here, and it is equivalent to decomposing the
original connection-number array into a sum of m "permutation" arrays (arrays like the one in the middle of
this figure).

(a) Try to see whether this iterative algorithm will result in the construction of a valid schedule. A crucial
point in to see whether it is always possible to find a full permutation of all colors in each and every step
where a new column is built (without backtracking to rearrange previously made columns). Does it help to
observe that the sums of the entries in the connection-number array, per row and per column, are all equal to
m-i after the i-th step of the algorithm? Write your thoughts down, without spending an excessive amount of
time to fully solve the problem.

(b) Think about, and discuss, various methods for constructing the permutations of colors that define the
columns of the schedule during each step of the algorithm. Does it make a difference if you try to
"consume" first the larger entries of the connection-number array, with the hope of ending up with few zero
entries, or, conversely, if you try to consume first the smaller entries (the 1's), with the hope of ending up
with many zero entries? Of course, a row or a column with a single non-zero entry immediately provides
you with a uniquely-defined entry for the schedule, but does it also constrain you by making it harder to
come up with the rest of the entries? Write your thoughts down, without spending an excessive amount of
time to fully solve the problem.

9.3 Building a Schedule for a Non-Fully-Utilized Switch

Revisit exercise 9.1 in view of the algorithm developed in exercise 9.2. In exercise 9.1, connections were
added to a non-fully utilized switch, and, as we saw, this necessitated, in some cases, the revision of the
previously constructed schedule. The algorithm of exercise 9.2, on the other hand, assumed a fully-utilized
switch.

Make some proposal(s) on how to adapt the algorithm of exercise 9.2 to non-fully utilized switches. Does
the new algorithm look easier or harder? Apply your new algorithm to the scenaria of exercise 9.1(a). Where
exactly in the algorithm is the point where a decision is made based on an "assumption" about future
connections, such that, if the "assumption" turns out to be false, the schedule will have to be rearranged
when the actual new connections arrive? Write your thoughts down, without spending an excessive amount
of time to fully solve the problem.

Bibliographic References:

The questions posed in exercises 9.2 and 9.3 are exciting, non-trivial problems. The following bibliographic
references are related to them (you are not required to read them for answering this exercise set):

T. Inukai: "An Efficient SS/TDMA Time Slot Assignment Algorithm", IEEE Trans.
Communications, vol. 27, Oct. 1979, pp. 1449-1455.
I. Gopal, D. Coppersmith, C. Wong: "Minimizing Packet Waiting Time in a Multibeam Satellite
System", IEEE Trans. Communications, vol. 30, 1982, pp. 305-316.
M. Bonuccelli, I. Gopal, C. Wong: "Incremental Time-Slot Assignment in SS/TDMA Satellite
Systems", IEEE Trans. Communications, vol. 39, no. 7, July 1991, pp. 1147-1156.

Up to the Home Page of CS-534

© copyright University of Crete, Greece.
Last updated: 25 Apr. 2008, by M. Katevenis.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

