
Exercises 4: Packet Segmentation Overhead (U.Crete, CS-534) http://archvlsi.ics.forth.gr/~kateveni/534/ex04_segmnt.html

1 of 3

CS-534: Packet Switch Architecture
Spring 2007

Department of Computer Science
© copyright: University of Crete, Greece

Exercise Set 4:
Variable-Size-Packet Segmentation Overhead

Assigned: Mon. 16 Apr. 2007 (week 4) -- Due: Wed. 25 Apr. 2007 (week 5)

4.1 Variable-Size-Packet Bit Rate for given Segment Access Rate

Consider that the 64-Byte-wide buffer memory of exercise 3.1 is used to store incoming (fixed-size)
ATM cells, or (variable-size) IP packets that are being segmented into 64-Byte segments, as well as to
later read such cells or segments on their way out. Memory utilization is precisely 50% writes and 50%
reads; for the SRAM technologies that have a DQ-bus turn-around penalty, we perform the optimization
of arranging read/write accesses in the following fashion: precisely four (4) segments are written
consecutively (at 4 arbitrary addresses), then precisely four (4) segments are read consecutively (from 4
arbitrary addresses), then 4 other segments are written, etc.

(a) For each SRAM technology in exercise 3.1(a), what is the peak incoming segment rate that can be
supported, in Msegments/s? Hint: Each incoming segment is written into a "random" memory location
(address). Thus, for each incoming segment we need to perform an (independent) write memory access.
Hence, the peak incoming segment rate that can be supported is one half (50% writes - 50% reads) of
the peak (independent) access rate calculated in exercise 3.1(a), except for technologies that have a
DQ-bus turn-around penalty where you need to derate their peak Maccesses/s by the turn-around
overhead for our specific 4-write-4-read access pattern.

(b) Assume that the incoming traffic is ATM over SONET. For reasons of simplicity of memory
management, each ATM cell is written into a different memory segment --hence, approximately 64-53 =
11 bytes in each segment remain unused (the exact number depends on details such as whether the
header CRC is stored or just recomputed on the way out, whether any flow ID is stored together with the
cell to assist in VP/VC translation in the outgoing path, etc). Thus, the peak incoming cell rate that can
be supported is equal to the peak incoming segment rate that you calculated in question (a).

Translate this cell rate into an equivalent "SONET bit rate", for each SRAM technology considered in
(a). Of course, SONET bit rates are strictly quantized, as listed in exercise 1.1, but, for the purposes of
this exercise, assume that you can linearly scale the SONET bit rate to any number that is needed to
provide the desired ATM cell rate; Assume that the percentage of SONET bit rate that is dedicated to
SONET overhead (clock recovery, framing, etc) is as in exercise 1.2, i.e. 3.33 percent (3 bytes of
overhead in every 90 SONET bytes). Compare the "SONET bit rate" that you find here to the buffer
memory aggregate peak throughput in Gbits/s that you found in exercise 3.1(b), for each same
technology. How and why do they differ?

(c) Assume, now, that the incoming traffic consists of 40-Byte (minimum sized) IP packets, which are
carried in an "IP-over-SONET" technology (not IP-over-ATM-over-SONET). These minimum sized IP
packets fit within one buffer memory segment (64 bytes), each. For reasons of simplicity of memory
management, again, each such IP packet is written into a different memory segment --hence,
approximately 64-40 = 24 bytes in each segment remain unused. Thus, the peak incoming packet rate
that can be supported is equal to the peak incoming segment rate of question (a), or to the peak
incoming cell rate of question (b).

Translate this packet rate into an equivalent "SONET bit rate", for each SRAM technology considered in
(a). Unfortunately, I do not know the exact format of IP-over-SONET, so let us assume, for the purposes
of this exercise, that the only SONET overhead, above and beyond the 40 bytes times 8 bits/byte = 320
bits of IP packet payload, is the same as for ATM over SONET, i.e. 3 bytes of overhead for every 87
payload bytes in every 90 SONET bytes (BEWARE: do not use this number in any real design of yours,
because it is most probably not the real number!). Also, assume again, contrary to reality, that SONET
bit rates are not quantized, and can scale linearly to provide the desired packet rate. Compare the bit
rates that you find here to those of question (b) and to those of exercise 3.1(b), and explain the

Exercises 4: Packet Segmentation Overhead (U.Crete, CS-534) http://archvlsi.ics.forth.gr/~kateveni/534/ex04_segmnt.html

2 of 3

difference.

(d) Next, assume that the incoming traffic consists of 68-Byte IP packets. This is a "bad" size for our
buffer memory, because it is just above our segment size (we assume that IP packet sizes are multiples
of 4 bytes, otherwise, 65 bytes would be the worst size in this case). In this case, each IP packet needs
two (2) memory segments to be written in. For reasons of simplicity of memory management, again,
each such IP packet is written into two different memory segments --hence, approximately 128-68 = 60
bytes remain unused in every other segment (30 bytes per segment average fragmentation overhead). In
this case, the peak incoming packet rate that can be supported is half of what it was in question (c).

Translate this packet rate into an equivalent "SONET bit rate", for each SRAM technology considered in
(a), using the same IP-over-SONET assumptions used in question (c). Compare the bit rates that you
find to those found earlier, and explain the difference.

(e) --Optional Question--
Assume again, as in question (c), that the incoming traffic consists of 40-Byte (minimum sized) IP
packets. This time, however, the traffic arrives over a number of Gigabit Ethernet links (see also
exercise 1.3). To calculate the peak packet rate of a Gigabit Ethernet link when carrying minimum sized
IP packets, consider that:

Peak packet rate is achieved over point-to-point links, where no collisions ever occur, and
packets can be sent "back-to-back".
Back-to-back packets over point-to-point Gigabit Ethernet links must be separated from each
other by a 12-byte (minimum) "interframe gap".
Each packet is preceeded by an 8-byte "preamble" (for receiver clock synchronization --no other
useful information is carried in that).
The ethernet header is 14 bytes; in our case, no IP packet information is contained in this header,
so it does not need to be stored in our buffer memory.
The ethernet packet body contains the (one, single) IP packet. The ethernet packet body size must
be at least 46 bytes (so that the total ethernet packet be at least 64 bytes, for collision detection
purposes) and at most 1500 bytes. In our case, the 40-byte IP packet is padded to 46 bytes to
satisfy the minimum ethernet packet body requirement.
After its body, the ethernet packet finishes with a 4-byte CRC; this CRC contains no IP packet
information, so it does not need to be stored in our buffer memory.

Find the peak packet rate of a Gigabit Ethernet link when carrying minimum sized IP packets. Based on
this, calculate how many incoming Gigabit Ethernet links can be supported by the buffer memory of this
exercise, for each SRAM technology. The incoming traffic from all links is multiplexed and written into
our (single) buffer memory. Essentially, you are asked to divide the peak incoming packet rate of
question (c) by the peak packet rate of one Gigabit Ethernet link; give the resulting number, ever if it is
not an integer number. Is the aggregate nominal "throughput" of these links (number of links, times "1
Gbps" nominal each) higher or lower than the equivalent "SONET bit rate" in (c) (for each same
technology)? Is this good or bad for the Gigabit Ethernet technology?

(f) --Optional Question--
Answer question (e) in the case of 68-Byte IP packets, as in question (d). As in (d), two segments per
packet are needed, hence two (independent) buffer memory accesses per packet. As in question (e),
assume Gigabit Ethernet links; one difference, here, is that no padding is needed in the ethernet packet
body, since the 68-Byte IP packet size satisfies the 46 to 1500 byte ethernet packet body requirement.

4.2 Segment Size Selection

--- Optional-Answer Exercise: ---
You have to read carefully this exercise, understand it, and think about it for at least 40 minutes.
However, you are allowed not to answer it, especially if it looks like answering it will take you much
more than the above time.

This exercise is a continuation and generalization of exercise exercise 4.1 above. In this exercise you
have to deduce a mathematical formulation for the smallest possible segment size that will not increase
the segment access rate beyond the value imposed by minimum packet size. Let us first define the
necessary terminology and link technology parameters:

Exercises 4: Packet Segmentation Overhead (U.Crete, CS-534) http://archvlsi.ics.forth.gr/~kateveni/534/ex04_segmnt.html

3 of 3

rl: gross line rate. This is the link bit rate including overhead. For example, for gigabit ethernet,
this is 1.25 Gbits/s, given the 8B/10B encoding on the line (see exercise 1.3).
rnet: net line rate. This is the net (useful) bit rate, excluding the (proportional) overhead of line
encoding (the "proportional" overhead is the overhead whose size increases in proportion to the
packet size). For example, for gigabit ethernet, rnet is 1.0 Gbits/s. For ATM over SONET, rnet =
(87/90) x rl (see exercise 1.2) (this is assuming that all 53 bytes of each ATM cell are stored in
memory).
smin: minimum packet size. This is the size of the smallest packet as stored in memory; For
example, for IP, this is taken to be 40 bytes.
spd_min: minimum padded packet size. For ethernet, packets that are smaller than spd_min are
first padded to spd_min and then transmitted on the line; packets equal to or larger than spd_min
are not paddded. The padding is not written to memory. As we discussed in exercise 4.1, spd_min
is 46 bytes in gigabit ethernet.
sovrh: size of the fixed per-packet overhead. This is the fixed-size overhead that is added to each
packet when transmitted on the line; its size does not grow in proportion to the packet size, as is
the case for the rl-rnet overhead. This overhead is not written to memory. In the case of gigabit
ethernet, this is 38 bytes (12-byte interframe gap, plus 8-byte preamble, plus 14-byte ethernet
header, plus 4-byte ethernet CRC).
sp: packet size, for an arbitrary packet. On the line, this is always spd_min or greater; in memory,
this is always smin or greater.
tl(sp): time on the line of a packet of size sp (the time it takes to transmit or receive this packet on
the line, measured from a "starting point" of this packet to the same starting point of the next
packet, when packets appear back-to-back on the line). For packets of size up to spd_min, this is:
tl(sp) = (spd_min + sovrh) / rnet; for larger packets, the packet line time is: tl(sp) = (sp + sovrh) /
rnet.
sseg: the segment size of the buffer memory; each packet is written to memory after being
segmented into an integer number of segments of this size. This segment size is the design
parameter that we want to determine.
nseg(sp): the number of segments into which a packet of size sp is segmented. This is the ceiling
of sp/sseg (the smallest integer not below this ratio) (sp here is the size of the packet as written in
memory, hence it can be as small as smin).
tseg(sp): time available for each segment access in the buffer memory, when the packet size is sp.
This is: tseg(sp) = tl(sp) / nseg(sp).

We want to find the smallest segment size sseg
that will maximize the worst-case available
segment time tseg(sp) for all packet sizes sp.
Start by plotting the available segment time,
tseg, as a function of packet size, sp, for a
given, fixed segment size, sseg, as in the figure
on the right. Observe the properties of the plot:
which (discrete) values of packet size are the
"most critical" ones? Clearly, this smallest
segment size must be at least as large as
spd_min, because all packets of size spd_min or less take (spd_min + sovrh) / rnet line time; if the segment
size were less than spd_min, some packets (e.g. packets of size spd_min) would require a segment time
less than this line time (i.e. a sub-multiple of this minimum packet line time). Hence, the worst-case
segment time cannot be higher than: (spd_min + sovrh) / rnet. Your task is to find the smallest segment
size sseg for which the available segment time never falls below the above value, for all packet sizes sp
> spd_min. Given the above "most critical" discrete values of packet size, conversely, which (discrete)
values of segment size sseg are the "most critical" ones? Give some kind of a mathematical formulation
or an algorithm for determining the segment size sought. Finally, apply your solution to the cases of (a)
IP-over-SONET, as it was (ill- ?) defined in exercise 4.1(c-d); (b) Gigabit Ethernet, as in exercise
4.1(e-f).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

