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3.  Crossbars, Scheduling, & Combination Queueing

Table of Contents:
• 3.1  Crossbar Scheduling under per-Output Input Queues

– Virtual Output Queues (VOQ) at the inputs 
– Parallel Iterative Matching (PIM), iSLIP

• 3.2  Variations & related topics
– fast circuits for linear and circular (round-robin) priority
– pipelined and packet-mode scheduling, asynchronous operat’n

• 3.3  Internal Speedup
– Combined Input-Output Queueing (CIOQ)
– Speedup required to emulate output queueing

• 3.4  Buffered Crossbars
– Combined Input-Crosspoint Queueing (CICQ)
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3.1  Input Q’ing w. VOQ 
(Virtual Output Queues)

• Input Queueing: most promising 
scalable switch architecture
– provided multiple queues
– provided efficient scheduler

• “Virtual Output Queues” (VOQ): 
per-output queues at the inputs
– N queues/input (for N×N sw.)
– N2 queues total in all inputs

• Interdependent Scheduling
– can each output decide alone? 

… no: may create input conflicts
– can each input decide by itself? 

… no: may create output confl.
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3.1  Crossbar Scheduling with VOQ’s

• Example: 64 Byte = 512 bit cells, 10 Gbit/s line rate ⇒ 51 ns cell-time
– if speedup of 2 to 3, like usually (see §3.2) ⇒ cell-time below 20 ns

• Most popular scheduler: iSLIP – McKeown, IEEE/ACM ToN, Apr. 1999
• ... based on the earlier “Parallel Iterative Matching” (PIM) scheduler –

Anderson, e.a.: ACM Tr. on Computer Systems, Nov. 1993
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Crossbar Scheduling: Parallel Iterative Matching (PIM)

Request Phase: Grant Phase: Accept Phase:
independently,Each output,

requests in parallel
All inputs send their

requests that it received
grants to one of the

that it received
one of the grants
Each input accepts
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• Original PIM proposal: outputs grant randomly among requesting inputs, 
inputs accept randomly among granting outputs

of the received requests

Unmatched inputs
accept one of the
received grants

(received no grant)

Accept Phase:Grant Phase:
Unmatched inputs

resend their requests

S e c o n d   I t e r a t i o n
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Maximal Matching – Maximum Matching

Cannot add any new connection
without breaking some

already made connection(s)
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Maximum Matching is Complex
• N×N switch
• R requests; usually R is O(N2)
• Deterministic Algorithm:  

O(N·(N+R)) ≈ O(N3)
– Tarjan: Data Structures & 

Network Algor., SIAM 1983
• Randomized Algorithm:  

O(N+R) ≈ O(N2)
– Karp e.a: ACM STOC, 1990

… and may be unfair

2

1 A

B

always
blocked?

A

BBB

B
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• PIM progresses towards maximal matchings – not necessarily maximum.
• Original PIM, with random selections: each iteration resolves, on average, 
≥3/4 of the remaining unresolved requests ⇒ O(logN) iterations.

• Hardware implementation of truly random selection, at high speed, with 
equal probability among (varying number of) choices, is unrealistic.
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iSLIP: Practical, Popular Crossbar Scheduler
• Variation of PIM:
• Request Phase: same as PIM.
• Grant Phase:

– PIM grants randomly to one of the requesting inputs.
– iSLIP grants in Round-Robin order to the first requesting input 

after the previously marked input – careful which one that is: 
see next slide (the “Slip” idiom).

• Accept Phase:
– PIM accepts randomly one of the granting outputs.
– iSLIP accepts, in Round-Robin order, the first now-granting 

output after the output that was accepted last time.
• Relatively easy to implement, good fairness properties
• Was used in CISCO GSR-12000, Tiny Tera, Abrizio/PMC-Sierra, e.a.                     

– Nick McKeown: IEEE/ACM ToN April 1999.
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Slip to Desynchronize

• Bad: grant round-robin 
to next request seen 
after last-time grant

• Good: grant rnd-robin 
to next request seen 
after last grant that 
was accepted

⇒ Under uniformly-
destined traffic, when 
all VOQ’s become 
non-empty, grant 
pointers get 
desynchronized and 
stay that way, moving 
all together, and 
yielding 100% output 
utilization
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iSlip Performance under Uniform, Non-Bursty Traffic
• Source: McKeown, 

IEEE/ACM ToN,    
April 1999

• 16×16 switch
• i.i.d. Bernoulli arrivals 

(non-bursty traffic)
• uniformly distributed 

packet destinations
• Beware!:

real traffic is very
different from these 
assumptions –
simulations under 
these assumptions are 
only useful to give the 
designer a “first, very 
rough idea”…
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3.2 Linear Priority Circuit
• Input: an ordered set of 

request flags

• Output: the same set of flags, 
where only the topmost 
asserted request remains ON, 
while all lower are cleared

• Output i is asserted iff input i is 
ON and none of the previous 
inputs, 0 to i-1, is ON:
– Output[i] = Input[i] AND NOT

( ORk=0
i-1 Input[k] )

⇒ Delay grows logarithmicly
with the number of inputs
– big OR functions built as 

trees of fixed-fan-in gates
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Circular Priority

• Bit mask defines 
the top-priority 
position.

• First priority circuit 
finds topmost 
request in “half”
the input request 
set,   if any.

• Second priority ckt 
finds topmost 
request in other 
“half” of input set.

• Chose the first answer, if any, else chose the second

⇒ Circular priority (round-robin) delay grows w. logarithm of num. of inputs
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3.2  Pipelined Scheduling for Cell-based Crossbars
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• Cell arrivals increment Qij (Qij = “guaranteed” min. occupancy of Q. i,j)

• When Qij ≥ 1 ⇒ issue a request Rij
• Requests issued decrement Qij, pending the transfer decision
• When a pending decision is resolved:

– successful grants leave Qij as is (already decremented)
– missed grants re-increment Qij (restore rejected request)

• Prerequisite: fixed-size cells – interchangeable requests
– requests for cells and actual cell transfers are interchangeable

with each other: if the “first” request, on behalf of the “first” cell in 
the queue, is not granted, then the “second” request –that was 
issued on behalf of the “second” cell– if granted, will result in 
transfering the “first” cell. 

• Reference: Oki, Rojas-Cessa, Chao: “A pipeline-based approach 
for maximal-sized matching scheduling in input-buffered switches”, 
IEEE Communications Letters, June 2001
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3.2  Packet-Mode   
Scheduling

• Variable size packets 
segmented into fixed-size 
cells for VOQ and 
crossbar operation

• If cells of a packet are 
forwarded through the 
xbar non-consecutively:
– increased delay
– reassembly queues
– no cut-through forward

• Packet-mode scheduling: 
forward all cells of a 
packet in consecutive    
cell-times
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Packet-Mode Scheduling, Asynchronous Operation

• Packet-Mode Scheduling:
– Maintain input-output pairings until full packet is forwarded;
– Scheduler only considers candidacies for those inputs and 

outputs that are not currently busy in the “middle” of a packet;
– Reduces delay, eliminates reassembly, allows cut-through;
– Rare danger of pathological “locking”: when a packet-mode 

“connection” completes, if all other ports are still busy and that 
flow’s VOQ is non-empty, the same connection is made again.

– Reference: Ajmone Marsan e.a.: IEEE/ACM ToN, Oct. 2002
• Asynchronous Crossbar Operation:

– Schedule ports whenever freed – not necessarily in synchrony
– Similar to packet-mode, but sched’ngTime >> pck-sz granularity
– Reference: Passas, Katevenis: HPSR 2007
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3.3  Combined Input-Output Queueing (CIOQ)
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Internal Speedup – Combined Input-Output Queueing (CIOQ)

• Most widely used architecture in high-end internet switches
• Make the crossbar faster than the external lines, in order to:

– compensate for the inefficiencies of the scheduler (e.g. unbal. traffic)
– compensate for the segmentation overhead of variable-size packets
– allow for separate (output) queues per QoS class

• Typical Speedup Factor values are between 2 and 3:
– speedup of about 2 needed for variable-size packets (see § 2.2)
– theoretical results: speedup of 2 suffices to emulate output queueing 

(using complex schedulers though – hard to totally unrealistic)
• The cost of Internal Speedup:

– buffers at outputs too, increased throughput for crossbar & buffers
– nowadays, increased throughput is too expensive (power consumpt’n) 

for off-chip communication ⇒ only use speedup inside switch chips, 
placing at least portion of input and output queues on-chip, with the 
rest of these queues on the line cards
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Unbalanced Traffic: simple example of hard traffic pattern

• Each input has a “favored” output
– “favored” input-output pairs are disjoint (they form a permutation)

• Each input sends traffic @ total rate = load as follows:
– (u × load) to its favored output (u is the “unbalance factor), plus
– ((1-u) × load) to all outputs, uniformly distributed
⇒ each output receives traffic @ total rate = load

• “u” is the “Unbalance Factor”:
– u = 0 %      ⇒ totally uniform traffic (usually easy)
– u = 100 %  ⇒ totally directional traffic (permutation) (often easy)
– u = intermediate ⇒ … usually hard traffic …
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Crossbar Sched. Perf. under Unbalanced Traffic
• 32×32 switch
• Saturation 

Throughput 
simulations: 
load = 100%

• Source: 
Rojas-Cessa 
e.a: “CIXOB-
k: combined 
input-
crosspoint-
output 
buffered 
packet 
switch”, IEEE 
Globecom 
2001
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Can a CIOQ Sw. Emulate an Output Queued Switch?
• Full Emulation:

consider a CIOQ switch (combined input-output queueing, with 
internal speedup), and an OQ switch, both as “black boxes”.  
Consider precisely the same cells entering into both switches at
precisely the same times.  Full emulation is when the CIOQ switch 
will always forward to its outputs precisely the same cells as the 
OQ switch does, and at precisely the same times, for any arbitrary 
traffic pattern; i.e., an external observer is unable to tell which 
switch is which, no matter what traffic sequence (s)he injects.

• Work-Conserving Operation:
no output port is ever left idle, except when there are no cells
destined to it anywhere inside the switch.  Hence, the outputs of 
the CIOQ switch will be busy (or idle) at precisely the same times 
as the corresponding OQ outputs, but not necessarily forwarding 
the exact same cell – may be forwarding another one of the cells 
destined to the same output (implies same average cell delay, due 
to “delay conservation” theorem for work-conserving switches).
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Emulation of Output Q’ng by CIOQ with Speedup ≈ 2

• Results in IEEE JSAC, June 1999 (paper 1 by Chuang, Goel, 
McKeown, Prabhakar; paper 2 by Krishna, Patel, Charny, Simcoe):

• Speedup = 2 - 1/N is necessary and sufficient for a N×N 
CIOQ switch to fully emulate an OQ with FIFO output service
– necessary: see next two slides
– sufficient: need complex xbar scheduler – theoretical value only

• Speedup = 2 is sufficient for CIOQ to fully emulate OQ with 
quite general service policies (PIFO – push-in first-out)
– need complex crossbar scheduler – of theoretical value only

• Speedup = 2 is sufficient for a CIOQ switch that uses LOOFA
scheduler to be Work-Conserving
– LOOFA: Lowest-Occupancy Output First Algorithm – maximal 

match where the shallowest output queues are connected first
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Traffic pattern to prove the lower bound of s = 2 – 1/N 
of speedup that is necessary for CIOQ to emulate OQ
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3.4  Buffered Crossbars (CICQ)
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Buffered Crossbars, or Comb. Input-Crosspoint Q’ng

• Small buffers per crosspoint, large buffers per input
• Backpressure from crosspoint buffers to VOQ’s at inputs
• Loosely-coupled, independent, single-resource schedulers

– per-output schedulers decide which flow (crosspoint queue) to serve 
among the non-empty ones in each output’s column

– per-input schedulers decide which flow to serve among the ones with 
non-empty VOQ and with credits available in each input’s row

⇒ Approximate “matchings” yield better scheduling efficiency
– in the short term, (i) multiple inputs may feed the same column (e.g. 2 

and 4); (ii) multiple outputs may be fed by the same row (e.g. A and C)
– in the long run, these cannot persist, because (i) buffers in that column 

are filled faster than they get emptied, so they will fill-up; (ii) buffers in 
that row are being emptied faster than they get filled, so they will drain.
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No Speedup needed to approach Output Queuing

• Uniform destinations
• Internet-style synthetic workload; 40-1500 byte packet sizes
• Unbuffered crossbar w. SAR: one-iteration iSLIP, 64-byte segments

OQ 

0.50 0.60 0.70 0.80 0.90 1.00

av
er

ag
e 

de
la

y 
(m

ic
ro

se
co

nd
s)

input load

0

60

80

100

20

40

bufXbar-2KB-1.0x

iSLIP-1.2x

iSLIP-1.4x
iSLIP-1.6x

iSLIP
-1.

0x

iSLIP-2.0x 

3.4  - M. Katevenis, FORTH and U.Crete, Greece 30

Saturation Throughput under Unbalanced Traffic

• Poisson arrivals, Pareto sizes (40-1500)
• For iSLIP, packet sizes are multiples of 64 B (⇒ no SAR overhead)
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