Queue and Flow Control Architectures
for Interconnection Switches

1. Basic Concepts and Queueing Architectures

2. High-Throughput Multi-Queue Memories

3. Crossbars, Scheduling, & Combination Queueing
4. Flow and Congestion Control in Switching Fabrics

Manolis Katevenis

FORTH and Univ. of Crete, Greece
http://archvisi.ics.forth.gr/~kateveni/534

2. High-Throughput Multi-Queue Memories

Table of Contents:

« 2.1 Wide Memories for High Throughput

— wide, pipelined, interleaved memories, esp. for shared buffers
« 2.2 Variable Size Packet Segmentation Overhead

— mem. accesses or crossbar cell-times vs. pck-time on the line
« 2.3 Multiple Queues within a Buffer Memory

— partitioned queue space: circular-buffer queue

— shared queue space: linked-list queues

— DRAM optimizations, free-list bypass / free-block cache
« 2.4 Queueing for Multicast Traffic

— each segment allowed in single queue

— each segment allowed in multiple queues

— decoupled linked-list node from data-block addresses

M. Katevenis, FORTH and U.Crete

2.1 Shared Buffer Switch using a Wide Memory

12 N §_1 $32 £32 $32 £32 $32 $32 »332 32 -
dind £z s — —
B2 R =
=L 7Y Y32 Y32 {32 Y32 Y32 {32 432
— | —— | —— —— J—
Shared | o _1 s 432 g3 §2 §3 g% 432 52 T
Buffer | 5| 22 sz . . . é
C:N ‘5’ 3 32, ° °)
/AL\ =1 32/' {32I {32I {32I {32I {32I {32I {32I {32I<
TiAd © a)
Wide (256 bits) Memory —
AN Shared Buffer :

« Example: 4x4 switch @ 10 Gbps/link = 320 MHz x 32 bits
« Memory serves each |I/O register for one clock cycle out of every eight
* Note hidden input and output crossbars; note required cell time alignment

2.1

- M. Katevenis, FORTH and U.Crete, Greece

3

2.1 Wide Memory: Double Buffering Needed

in0
Wane W] ™; wi wl cut-through paths
| | | [| [77
e 4 > H -7
- v I v ||I__[>_ v I v W ///
in1 w))
. t ' | ! | [* | [v //
Inpu . "_'}1 . 0_[}1 /
 |Input latches latches v | v | v | v W
need double % Cut-tht;ough
. v crossbar
buffering for the [— = l y
case when output R AT A »j/ |, out0
multlple cells latches) ﬁ)) W] / W
complete at the i S +\A out
same time ¥ Y Y Y 1
« If cut-through @4W
Is desired,
separate paths Wide-Memory Buffer
and a crossbar
are needed
4

2.1 - M. Katevenis, FORTH and U.Crete, Greece

2.1 Optimized Implementation: Pipelined Memory
in0
« Monolithic W — . — }

input
latches

wide memory in1
replaced by W | | | |
multiple banks

« concurrent output {

rd/wr access to latch ‘ T::
entire width
replaced by a wy
“‘wave” of
same-address
accesses
moving from
left to right

A
wj_l | wj_' outO
b = W outl

A w
W4y W4y W

= MO | M1 | M2 M3

1

« Benefit 1: no double buffering needed at inputs, single latch at outputs
« Benefit 2: cut-through occurs automatically — no paths, no control needed

& Control

y
1

Address

2.1 - M. Katevenis, FORTH and U.Crete, Greece S

Pipelined Memory Operation lllustrated

$1 ' | | : | | ' | | : | | '] [' | | : | | >
1]]]]]] l
%:I;;II;;II;;II;;II;;II;;II;;II¢;
$IilllilIlilllilllilllilllilll¢l
tli!lli!lli!llilllilui!u;!]l‘L!]
v v v v v v v v
| ! | | ! | | v | | ! | | ! | [v | | : | | ! 1
v v v v v v v v
v v v v v v It I
v v v v v v v v
v v v i i i " e

Ref: Katevenis, Vatsolaki, Efthymiou: “Pipelined Memory Shared Buffer for VLSI
Switches”, ACM SIGCOMM Conf. 1995, http://archvlsi.ics.forth.gr/sw_arch/pipeMem.html

2.1 - M. Katevenis, FORTH and U.Crete, Greece 6

2.1 Generalization: Interleaved Memory Banks

- _ -C.?U
—>- = 2
- 3
> y y y y y y y y y y 7))
= — -+
B : —— ’5
N - —3|| o
g multi-bank packet layout .=.'=I' §
single
ﬁ bank ﬁ
2 pck [l =
2 layout ke
W llbank Of [bank 1 [bank 2] [bank 3|(|bank 4] |bank 5| |bank 6] | bank | [bk N-2||[bk N-1f| -
0y Y Y Y Y Y Y Y Y Y
58 >
279 -
- o -
@ S -

« Can we scale arbitrarily wide-memory throughput by increasing its width?
* Not past individual packet width — then it becomes something else; see |

2.1 - M. Katevenis, FORTH and U.Crete, Greece 7

Interleaved Mem. Sh.Buf. — PPS, Birkhoff-vonNeumann

* Wide memory width versus packet size

— Wide (or pipelined) memory owes its simplicity to the controller
generating a single address per cycle for all “banks” (entire width)

— To have multiple packets per line (e.g. red & blue in figure): need
independent address controllers per bank (per effective xbar port)

— Note: infeasible to pack together into the same line packets that
both arrive and depart consecutively in time

— Scheduling interleaved memory accesses against bank conflicts
IS equivalent to crossbar scheduling under input queueing...

« Scalable Shared-Buffer Switches through Interleaved Banks:
— Complexity: maintain distributed queues, forward cells in-order

— The Parallel Packet Switch (PPS) — Khotimsky, Krishnan: IEEE Int.
Conf. Commun. (ICC) 2001; lyer, McKeown: IEEE/ACM ToN, Apr. 2003

— Birkhoff-vonNeumann — C. Chang, W. Chen, H. Huang: Infocom 2000

2.1 - M. Katevenis, FORTH and U.Crete, Greece 38

2.2 Variable Size Packet Segmentation Overhead

* most buffer
memories,
gueueing
structures,
& crossbars
operate on
fixed-size
“segments”,
“blocks”, or
“cells’

* most appl'ns
use variable
size packets

cost (duration) on-the-line

prev. : next
pck. < this packet » packet
| | B
/ L —> ! e
/ | /
| | : >
o ! time
Inter- :
| packet cost in the
Q| gap | buffer or in
o <+ buf.ovrhd the crossbar
3| not written |
o| to memory buffer width or
S| (e.9. CRC, | segment size or
_ preamble,...)

cell size (time)
¢ L

» Packets segmented into blocks/cells upon entry from line to switch

« Throughput of buffer memories & crossbars, measured in terms of cells,
must be higher than line thruput, to compensate for segment’'n overhead

2.2 - M. Katevenis, FORTH and U.Crete, Greece

9

Overspeed req’d to compensate for Segmentation
A

N N
« Example: B - P72
— min. pck. size =40 B = - //'3’
— segment (cell) = 64 B N Ol g N
. Lolo NS
— line overhead = 16 B > = N
m S| 3o Q)
* Rules of thumb: et - f
Forl _ 2 8- <
For line overhead = 0 = 315 O |
overspeed = often 2.0 = 8 = N N
] N
— ... but check min.pck.sz.: 2 E| & &, % |
if minimum packetistoo & 8| o 7 |
small (smaller than about G) _- 2 |
. ~ X Y1 _ - —_—
half a cell), then higher 5 1o Mo | | |
di ired = o| |& | | |
overspeed is require S }'o | |
. ()] i
— for line overhead >0 = ® ©l ol of S |
overspeed < 2.0, but S| o O\JOQ inipru : :
check minimum packets - IPCK SIZ€ | |
— for very large line ovrhd Tobsdo
: 0 16 32 48 64 80 96 112 128 144
= check larger pck sizes] - -
i Head one cell second cell
Ine overhea '
2.2 - M. Katevenis, FORTH and U.Crete, Greece Line Cost (Bytes) 10

2.3 Multiple Queues within a Buffer Memory
Separate Destinations & Priorities = Multiple Queues

« Switch high priority: bypass QBIlo QBhi
controller must B
have access to
any packetthat __, [©E'° BIE] - X NI,
is candidateto — “ _ ’
depart next QAN A X
— Packets that oAl ARRRIRA] X
are allowed to Buffer Memory
bypass others N
cannot reside Other Flows _>
in the same -
FIFO structure Congested Output —s=A B~

« Controller needs separate per-destination and per-priority
queue (FIFO) data structures to keep track of packets

2.3 - M. Katevenis, FORTH and U.Crete 11

Reminder: Circular Array Implem. of FIFO Queue

Empty
head @}——m———— read ____________
pointer (consume) | ____ | L __|

—] 6 = < I N e I
I] Y
tail — it hdl—t 1 4
" __E_o____<T pointer | —]
write N R
(produce) ne
hd ==t
Full Full
wrap around
P around (def. 1) (def. 2)
| |
______ I L tl I I I
______] __%___]]
—————— B I L
__________________ tl N
hg. hd. hg. hg e
_____ | R —— I — I — I —
i i s Bl s Ml s s
I =
' |
] hd == (tI+1) hd == tI.
modulo Size + extra bit
of state

2.3 - M. Katevenis, FORTH and U.Crete, Greece 12

2.3 Multiple Queues — 1 of 2
Statically Partitioned Space

Multiple queues within a same SRAM block

Each queue: circular array implementation

Control overhead: two pointer words per
queue (head, tail), incrementor, comparator

Queue space bounds (partitions) can be
hardwired, or off-line configurable (when
queues are empty); in the latter case,
also need bounds pointers.

+ Advantage: simplicity.

- Disadvantage: partitioned memory space
leads to underutilization — one queue may
overflow while lots of empty space exists in
other memory space partitions.

2.3 - M. Katevenis, FORTH and U.Crete

T3

H3

H4

T4

Q1

Q2

Q3

Q4

13

Multiple Queues — 2 of 2

: nxtPtr DataMem
Dynamically Shared Space | 0
: : : — A
 Linked List E Head Talil 176 T 1
implem.of QO[0f 3 «] 0_¢
queues Q1|0 4 ~»| 6
. . Q2|0 2 |« 2 = -2 2
* Pointers in ~—a
Q3|1
separate 3L0 |3
memories: Free Block List \4‘ 3 4
accessed 0T N-1 ¢] N-2 = T
In parallel 5 - 5
« Each data block allowed to - T
belong in at most one queue 6 6
« Next-pointer memory can be v
large, off-chip; each enq or [[N-2¢
deq operation only needs one N v
access to it = matches wide- N-2 N-2
mem. data rate = 1 block/ck N-1T5 5] N-1
« Empty/Hd/TI usually on-chip block \

2.3 - M. Katevenis, FORTH and U.Crete

addresses

J word addresses

O©OCoOoO~NOOOTP~,WN-O0O

2N-4
2N-3
2N-2
2N-1

/
14

Data vs. Pointer Access Rate —

Free List Bypass

write
> Data Memory

cell arrivals

read

cell departures

\ /ﬂ> Queues J/

Free Block 2YP3sS _ _ ___

N ==
deq

—— Free Block

enq

Data memory throughput = 2 cells/cell-time (1 write + 1 read)

— data memory access rate = 2 addresses/cell-time

Both Queue & Free-List operations touch the Next-Pointers, once per op

= nalve implementation would require 4 addresses/cell-time to nxtPtr

Free List Bypass: put incoming cell into just freed block of departing cell

= next -pointer memory access rate = 2 addresses/cell-time

2.3 - M. Katevenis, FORTH and U.Crete, Greece

When no arrival or no departure, other side can use full 2 acc/cl-time rate
Multicast: departure not always frees the block = use Free Block Cache

nxtPtr in DRAM — Free Block Preallocation
nxtPtr Data nxtPtr Data
head I=——75ck1 old head I=——5ck1 old
: Y - v
tal o | pok2 old tal + | pck2 old
! k3 . k3
. pck3 new 0 pck3 new
write g8
ptrhere L write ,/V/
. ptr here new free allocated
write
data here |= > write - >
DRAM burst access data here DRAM burst access

Conventional Enqueue Eng. w. Free-Block Preallocation

* To economize on nxtPtr memory, place these pointers inside data DRAM
= conventional eng costs twice the number of DRAM row activate’s
 Preallocate one free block per queue, at tail, to remedy this

» Reference: Nikologiannis, Katevenis: “Efficient per-flow queueing in DRAM at OC-
192 line rate using out-of-order execution...”, IEEE Int. Conf. Commun. (ICC) 2001.

2.3 - M. Katevenis, FORTH and U.Crete, Greece 16

2.4 Queueing for Multicast Traffic

Multicast traffic is expected to become very important in the future
— but so has it been for many years in the past...
Supporting multicast traffic usually increases complexity and cost

Queueing for Multicast Traffic:

— Each segment (block) allowed in only one queue = HOL blocking
— Each segment allowed in multiple queues = need many nxtPtr's
— Enqueue throughput and nxtPtr space: static vs. dynamic sharing

References:

— F. Chiussi, Y. Xia, V. Kumar: “Performance of Shared-Memory
Switches under Multicast Bursty Traffic”, IEEE Jour. Sel. Areas in
Communications (JSAC), vol. 15, no. 3, April 1997, pp. 473-487.

— D. Stiliadis: “Efficient Multicast Algorithms for High-Speed Routers”,
Proc. IEEE Workshop on High Performance Switching and Routing
(HPSR 2003), Torino, ltaly, June 2003, pp. 117-122.

2.4 - M. Katevenis, FORTH and U.Crete, Greece 17

Same or Different Queues with Unicast Traffic?
Case 1: Each segment is only allowed to belong to a single queue

per-output unicast queues single multicast queue

 Impractical to have
per-output multicast
A C Bl D T queues: would need

A B C A [C O(2") queues
I e
F’ ! $ 3 ! | Head-of-line Blocking!
other A 5 C D
priority

level
queues

C

« We may have a different set of these queues (including multicast)
per priority level, but it may still happen that traffic destined to
outputs A and C currently exists at priority levels higher than
“our” cell A-C while all queues destined to & and D at priority levels
above “our cell” 5-D are empty.

2.4 - M. Katevenis, FORTH and U.Crete, Greece 18

Case 2: Each segment is allowed to belong to multiple queues

per-output queues Reference Data Buffer
Counts: blocks: addr:
35
40 33 1 (unicast) 33
38 37 27 0 34
35 36 18
¢ ¢ ¢ ¢ 2 (multicast) |35
A C
¥ ¥ ¥ $ 1 (unicast) 3
A B C D 1 1
37 (muglcgst)
» Solves all QoS problems!
but QoS p T 1 (unicast) 38
DUL... one copy of "37"
* Increases the worst-case has departed 0 39
gueue-operation rate and decremented
by a factor of N the corresponding 1 (unicast) 40
(N=number of output ports)! reference count

2.4 - M. Katevenis, FORTH and U.Crete, Greece 19

Data Structures for

a segment to belong to

up to N queues:

Case 2A:
N nxtPtr's per
memory block

QAT L2

QA2
QB1
QB2
QC1
QC2
QD1
QD2

Tail

* Most segments are unicast

—> next pointers are
grossly underutilized!

2.4 - M. Katevenis, FORTH and U.Crete, Greece

@
< 5
o @)
£ 2 2 8 O
T L Lo
v x % % o Data Buffer
c c c c Y
[block
y
Lo 1 73
0
¥V 7 74
[]
79k 77v B 781 3 -
: |I a4 1 76
#3191y 82 2
{ 77
! b ool 1 78
oo 1 79
\ \ \/ \
20

Case 2B: Decouple Queue Member Descriptors Data Buffer

. . ——
From Data Buffer — 110 [3111 [72 o.\Cnt.
block
Addresses 110 114 o112 [75 \ 1 47
B1 > >
« twice the cost per nxtPtr Q81 H2—1#116 | 73 11 73
(need a segPtr as well now) 113
but 112 0
DUl ... == 74
« Much fewer than NxS QC2 114 12127 179 &
descriptors (based on avg ratio —1| 115 3 75
of unicast-to-multicast segments, |43 -
and avg fan-out of multicast oA 116 9117175 ¢ 1 76
segments, e.qg. f =2) 117 _Jeo >
: - 142177 77 5 77
Optimization: 110 118 1119] 76 7
Partition the address space of 119 [L 78
queue member descriptors into 2 parts: - LeeR e 1
« 0 to S-1: unicast-only segments, 120 [9121 | 75 ¢ 79
no segPtr needed (segPtr(l] =I) 121 o125 [78 7

» S to fS-1: full queue member descriptors,

with nxtPtr and segPtr, intended xS descriptors, F>1 S blocks
to use by multicast segments

2.4 - M. Katevenis, FORTH and U.Crete, Greece 21

Engueue operation rate for multicast segments

Arriving
Segments

Rate
u+m>=1

>
Segments

TimeSlot

U ... unicast
M ... multicast

References:

Dequeue Rate:

Into multiple per output queues

] eng Speedup S | |
Unicast TimeSlot .\ J
rate U b
Replicate ra’:cLe+S
Replicaton | F(@avg)times | | ——» |
Buffer _eL
Mcast ‘ ‘ ‘ ‘ deq TimeSlot ¢
4’ ([J
rate M rate / o
1+s-u

f

1+s-u _(

1—1%2+s>:

Mm+S
f

—F. Chiussi, Y. Xia, V. Kumar: IEEE JSAC, April 1997, pp. 473-487.
—D. Stiliadis: IEEE HPSR 2003, June 2003, pp. 117-122.

2.4 - M. Katevenis, FORTH and U.Crete, Greece

Per-Output Queues

>=m = S >=m(F-1)

22

