Queue and Flow Control Architectures
for Interconnection Switches

1. Basic Concepts and Queueing Architectures

2. High-Throughput Multi-Queue Memories

3. Crossbars, Scheduling, & Combination Queueing
4. Flow and Congestion Control in Switching Fabrics

Manolis Katevenis

FORTH and Univ. of Crete, Greece
http://archvisi.ics.forth.gr/~kateveni/534

2. High-Throughput Multi-Queue Memories

Table of Contents:

« 2.1 Wide Memories for High Throughput

— wide, pipelined, interleaved memories, esp. for shared buffers
« 2.2 Variable Size Packet Segmentation Overhead

— mem. accesses or crossbar cell-times vs. pck-time on the line
» 2.3 Multiple Queues within a Buffer Memory

— partitioned queue space: circular-buffer queue

— shared queue space: linked-list queues

— DRAM optimizations, free-list bypass / free-block cache
* 2.4 Queueing for Multicast Traffic

— each segment allowed in single queue

— each segment allowed in multiple queues

— decoupled linked-list node from data-block addresses
M. Katevenis, FORTH and U.Crete 2

2.1 Shared Buffer Switch using a Wide Memory

[T 5 432 {32 {32 32 32 43 Yo w2

a 2 3; [| | | | | I I]

50332, ot

14 35 L

=t Y32 {32 Y32 {32 Ya2 {32 ya2 432
[I I I I I I I]

o A 3 2 {2 {3 iR @ e @ T

S ‘% 32, . . .

g_ | — T T T — X

S| 4 s 3 ¥32 P2 32 {32 32 {52 {32

Sl

142 N Shared Buffer

Wide (256 bits) Memory

1[256

» Example: 4x4 switch @ 10 Gbps/link = 320 MHz x 32 bits
* Memory serves each /O register for one clock cycle out of every eight
» Note hidden input and output crossbars; note required cell time alignment

2.1 - M. Katevenis, FORTH and U.Crete, Greece

3

2.1 wide Memory: Double Buffering Needed

in0
w Wy wy wi w{ cut-through paths
[r‘}'] [H}l] [H}l][H}l] - //
[T ' T ' T '] W /
inl w /
input [¥][I_&l][;-: :_&l][:_%] ///
* Input latches latches| f‘h T SR | T S
need double ?D\/‘ cut-thll;ough
. i crossbar
buffering for the B S s e e y .
case when output) ¥ g TE7 g 4{ AL outg
multiple cells |atches Al W [
complete at the S I T S // out!
same time ¥ Y TE - —-ﬂ =
« If cut-through %4W
is desired,
separate paths Wide-Memory Buffer
and a crossbar
are needed

2.1 - M. Katevenis, FORTH and U.Crete, Greece

2.1 Optimized Implementation: Pipelined Memory

in0,

« Monolithic woo W Wi _oow o w ot
wide memory in1_, 4‘; FJ; FJ; ﬁ Iafches
replaced by W ~ . —
multiple banks H H H H

« concurrent output | B TR out0
rd/wr access to latch ﬁ: Ly Ly g W outt
entire width + w "
replaced by a w w W v
“‘wave” of _
same-address o S MO M1 M2 M3
accesses %’é
moving from 2%
left to right — "

» Benefit 1: no double buffering needed at inputs, single latch at outputs
» Benefit 2: cut-through occurs automatically — no paths, no control needed

2.1 - M. Katevenis, FORTH and U.Crete, Greece

5

Pipelined Memory Operation lllustrated

-1 -1 |-
) I

=1 |- [-]4

“r | 4 | 49 | |44
- | [P | &P | [¢

- | | & |

|l ||

=
=
e
=

Ref: Katevenis, Vatsolaki, Efthymiou: “Pipelined Memory Shared Buffer for VLSI
Switches”, ACM SIGCOMM Conf. 1995, http://archvlsi.ics.forth.gr/sw_arch/pipeMem.html

2.1 - M. Katevenis, FORTH and U.Crete, Greece

6

2.1 Generalization: Interleaved Memory Banks

%/—/
Input
Crossbar

= (%)
s [(FH=l=l—=] ==~ =]z
T multi-bank packet layout || &
§ single <2
[0 bank)
o | =
2 layout o
W Jlbank 0f |oank 1] [bank 2| [bank 3||[bank 4| |oank 5| |bank 6] [bank | |bk N-2]||jok N-1] -
) Y Y Y Y

- ® { -

30

23 .

] o >

©] 5 .

» Can we scale arbitrarily wide-memory throughput by increasing its width?
* Not past individual packet width — then it becomes something else; see |

2.1 - M. Katevenis, FORTH and U.Crete, Greece 7

Interleaved Mem. Sh.Buf. — PPS, Birkhoff-vonNeumann

» Wide memory width versus packet size

— Wide (or pipelined) memory owes its simplicity to the controller
generating a single address per cycle for all “banks” (entire width)

— To have multiple packets per line (e.g. red & blue in figure): need
independent address controllers per bank (per effective xbar port)

— Note: infeasible to pack together into the same line packets that
both arrive and depart consecutively in time

— Scheduling interleaved memory accesses against bank conflicts
is equivalent to crossbar scheduling under input queueing...

» Scalable Shared-Buffer Switches through Interleaved Banks:
— Complexity: maintain distributed queues, forward cells in-order

— The Parallel Packet Switch (PPS) — Khotimsky, Krishnan: IEEE Int.
Conf. Commun. (ICC) 2001; lyer, McKeown: IEEE/ACM ToN, Apr. 2003

— Birkhoff-vonNeumann — C. Chang, W. Chen, H. Huang: Infocom 2000

2.1 - M. Katevenis, FORTH and U.Crete, Greece 8

2.2 Variable Size Packet Segmentation Overhead

« most buffer ey, cost (duration) on-the-line o next
memories, ppck: [this packet » packet
queueing | |
structures, | / | [| |<—>|// | |:
& crossbars - / ! ! .
operate on inter- o . time
fixed-size 3| packet go?ft in the
“segments”, Q| gap I uffer or in
“plocks”, or % <—» buf.ovrhd the crossbar
“cells” 3| not written _

, o| to memory buffer width or

* mostapplns ¢ (e g CRC, | segment size or

use variable preamble....) | cell size (time) ‘

size packets

» Packets segmented into blocks/cells upon entry from line to switch

» Throughput of buffer memories & crossbars, measured in terms of cells,
must be higher than line thruput, to compensate for segment’'n overhead

2.2 - M. Katevenis, FORTH and U.Crete, Greece 9

Overspeed req’d to compensate for Segmentation

* Example:
— min. pck. size =40 B
— segment (cell) = 64 B
— line overhead = 16 B
* Rules of thumb:

— For line overhead = 0 = !
overspeed = often 2.0 }
— ... but check min.pck.sz.: }
if minimum packet is too |
small (smaller than about |
half a cell), then higher |
overspeed is required :
— for line overhead > 0 = |
overspeed < 2.0, but }
check minimum packets |
— for very large line ovrhd b 1a 32 45 €4 80 %0 112155 11
= check larger pck sizes sl i |
one cell second cell
line overhead Line Cost (Bytes) 10

third cell

. second cell
1§ 32 4§ 6f1 80 96 1]2128 144 160 176 192

Buffer/Crossbar Cost (Bytes)

one cell

|
0

2.2 - M. Katevenis, FORTH and U.Crete, Greece

2.3 Multiple Queues within a Buffer Memory
Separate Destinations & Priorities = Multiple Queues

« Switch

controller must
have access to

any packet that N
is candidate to
depart next

= Packets that
are allowed to
bypass others
cannot reside

in the same

FIFO structure

—

high priority: bypass QBlo

Congested Output —»A

QBhi
|
QBlo BIE] X

QAhi & X
oA AAARRER] X
Buffer Memory
—
Other Flows
—

» Controller needs separate per-destination and per-priority
queue (FIFO) data structures to keep track of packets

2.3 - M. Katevenis, FORTH and U.Crete

11

Reminder: Circular Array Implem. of FIFO Queue

Empty
head |L————— | read —]
pointer = (consume) R N
ey ' ha [E—
) tail — " hd 3 d
it :E,',777<}¢— pointer Y
write T 1 T
(produce) inc
hd ==tI
Full Full
wrap around
PR (def. 1) (def. 2)
\ s
***** | ¥ t
,,,,, [—
,,,,, R
77777 Y k! tl
hd | hd] hd hd ng |3
! tl }
<— |
\
***** ! hd == (tI+1) hd == tl.
modulo Size + extra bit
of state

2.3 - M. Katevenis, FORTH and U.Crete, Greece

2.3 Multiple Queues — 1 of 2 H1 T
Statically Partitioned Space] o1
c
\ A
* Multiple queues within a same SRAM block T
 Each queue: circular array implementation Y
» Control overhead: two pointer words per
queue (head, tail), incrementor, comparator H2 S
* Queue space bounds (partitions) can be Q2
hardwired, or off-line configurable (when ‘ | ‘:’
queues are empty); in the latter case, l Q3
also need bounds pointers. T3 8
+ Advantage: simplicity. e [
- Disadvantage: partitioned memory space \ ‘:l
leads to underutilization — one queue may
overflow while lots of empty space exists in 3
other memory space partitions. H4
T4 |
2.3 - M. Katevenis, FORTH and U.Crete 13
Multiple Queues — 2 of 2 DataMem
. nxtPtr
Dynamically Shared Spac?z 0 (1)
A
* Linked List E Head Tall 2
implem. of QO[0[B ap0_—=— Lol 3
ueues Q1|0 4 »| 6 o ,— 4
d . . Q2|10 2 |« 2 _I 2 5
» Pointers in 7 6
separate 3 7
memories: Free Block List 4 8
accessed [O] N-1T 9] N-2 «] 9
in parallel S 5 10
» Each data block allowed to 11
belong in at most one queue 6 1%
* Next-pointer memory can be v
large, off-chip; each eng or - [[N-2¢] ...
deq operation only needs one h y 2N-4
access to it = matches wide- N-2{[N-2 2N-3
— -
mem. data rate = 1 block/gk N_?III N-1 2N-2
* Empty/Hd/TI usually on-chip

2.3 - M. Katevenis, FORTH and U.Crete

block \ 2N-1
addresses J word addresses /

14

Data vs. Pointer Access Rate — Free List Bypass

write read

: 2| Data Memory
cell arrivals cell departures

e S

Free Block 4 2¥P38S _______ Free Block

deq en

q

» Data memory throughput = 2 cells/cell-time (1 write + 1 read)
= data memory access rate = 2 addresses/cell-time
» Both Queue & Free-List operations touch the Next-Pointers, once per op
= naive implementation would require 4 addresses/cell-time to nxtPtr
Free List Bypass: put incoming cell into just freed block of departing cell
= next -pointer memory access rate = 2 addresses/cell-time
* When no arrival or no departure, other side can use full 2 acc/cl-time rate
Multicast: departure not always frees the block = use Free Block Cache

2.3 - M. Katevenis, FORTH and U.Crete, Greece 15

nxtPtr in DRAM — Free Block Preallocation

nxtPtr Data nxtPtr Data
head _| pcki_old head | pcki_old
; y ; v
tail pck2_old tal pck2_old
Y Y
write _ pck3_new = pck3 new
ptrhere L write X
write ptr here new free allocated
data here |¢——— | write

>
DRAM burst access| data here |DRAM burst access|
Conventional Enqueue Eng. w. Free-Block Preallocation

* To economize on nxtPtr memory, place these pointers inside data DRAM
= conventional eng costs twice the number of DRAM row activate’s
» Preallocate one free block per queue, at tail, to remedy this

* Reference: Nikologiannis, Katevenis: “Efficient per-flow queueing in DRAM at OC-
192 line rate using out-of-order execution...”, IEEE Int. Conf. Commun. (ICC) 2001.

2.3 - M. Katevenis, FORTH and U.Crete, Greece 16

2.4 Queueing for Multicast Traffic

» Multicast traffic is expected to become very important in the future
— but so has it been for many years in the past...
» Supporting multicast traffic usually increases complexity and cost

* Queueing for Multicast Traffic:
— Each segment (block) allowed in only one queue = HOL blocking
— Each segment allowed in multiple queues = need many nxtPtr’s
— Enqueue throughput and nxtPtr space: static vs. dynamic sharing

» References:

— F. Chiussi, Y. Xia, V. Kumar: “Performance of Shared-Memory
Switches under Multicast Bursty Traffic”, IEEE Jour. Sel. Areas in
Communications (JSAC), vol. 15, no. 3, April 1997, pp. 473-487.

— D. Stiliadis: “Efficient Multicast Algorithms for High-Speed Routers”,
Proc. IEEE Workshop on High Performance Switching and Routing
(HPSR 2003), Torino, Italy, June 2003, pp. 117-122.

2.4 - M. Katevenis, FORTH and U.Crete, Greece 17

Same or Different Queues with Unicast Traffic?
Case 1: Each segment is only allowed to belong to a single queue

per-output unicast queues single multicast queue

* Impractical to have

per-output multicast

D) queues: would need
A ||z | |lc_| 0O(2") queues
! !

V $ $ X B $ Head-of-line Blocking!
other A B C D

priority

Icfl]':lljes * We may have a different set of these queues (including multicast)

per priority level, but it may still happen that traffic destined to
outputs A and C currently exists at priority levels higher than

“our” cell A-C while all queues destined to 5 and D at priority levels
above “our cell” B-D are empty.

2.4 - M. Katevenis, FORTH and U.Crete, Greece 18

Case 2: Each segment is allowed to belong to multiple queues

per-output queues

Reference Data Buffer

Counts: blocks: addr:
(unicast) |
G | (=) |2 o] 2
[35 || |l 36 | {[18 |
L ¢ (multicast) |35
A C
: g g [‘) (unicast) 36
(multicast) |37
B D
L] '
Sboltves all QoS problems! T (unicast) 38
DUt.... one copy of "37"
* Increases the worst-case has departed o] 39
queue-operation rate and decremented
by a factor of N the corresponding (unicast) |40
(N=number of output ports)! reference count
2.4 - M. Katevenis, FORTH and U.Crete, Greece 19
Data Structures for @
a segment to belong to < 5
s o O o Q
up to N queues: A = = 5 O
2 L L L
Case 2A: o X X X &J Data Buffer
NIy i block
N nxtPtr's per bl T T 171 # 72
memory block L
Head | Tail I I 751 I 1 73
QA1 |12_¢ l | I I l 0
QA2 I y 74
QB1 |73 ¢ le 79k 771 k781 3 75
QB2 v
QC1 .—4 l I k771] 1 76
Qc2 |76 ¢ y
QD1 |75 [k319 821 [2 7
QD2
l]] k8ol 1 -
. 21351]] | 1 19
* Most segments are unicast
- next pointers are
grossly underutilized!
20

2.4 - M. Katevenis, FORTH and U.Crete, Greece

10

Case 2B: Decouple
Linked List Nodes

Queue Member Descriptors
/—‘/\ﬁ

Data Buffer
/—/H

QA1 nxtPtr segPtr Ref.
From Data Buffer — 1110 |1111 [72 <} Cnt. ek
Addresses 110 vy
. QB1
* twice the cost per nxtPtr _— 73
(need a segPtr as well now)
but 112
but ... 74
* Much fewer than NxS Qc2
descriptors (based on avg ratio - 75
of unicast-to-multicast segments, 4g
and avg fan-out of multicast 76
segments, e.g. f =2) QA1
— 77
Optimization: 110
Partition the address space of 78
queue member descriptors into 2 parts:
+ 0 to S-1: unicast-only segments, 79
no segPtr needed (segPtr(l] =I) 454 Py
* S to fS-1: full queue member descriptors,
with nxtPtr and segPtr, intended xS descriptors, F>1 S blocks
to use by multicast segments
2.4 - M. Katevenis, FORTH and U.Crete, Greece 21
Enqueue operation rate for multicast segments
into multiple per output queues
Speedup S | | | ‘
Arriving u eng
Segments Unicast TimeSlot J | @
Rate rate U S B -
u+m>=1 Replicate ra}Le+S §
— > Replication f(avg)times | | =
Segments Buffer _enq 2
— - _ Buffer - =
TimeSlot Mcast ‘ ‘ ‘ ‘ deq TimeSlot : S
rate m ___ 1111] rate . o}
U ... unicast 1+s—u o
m ... multicast | | | |

Dequeue Rate:

*References:

1+s-u _ (1-u)+s._
f

m+s
T

—F. Chiussi, Y. Xia, V. Kumar: IEEE JSAC, April 1997, pp. 473-487.
-D. Stiliadis: IEEE HPSR 2003, June 2003, pp. 117-122.

2.4 - M. Katevenis, FORTH and U.Crete, Greece

22

>=m = S >= m(F-1)

