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1.  Basic Concepts and Queueing Architectures

Table of Contents:
• 1.1  Problem Statement

– scalable, distributed, multi-party communication
• 1.2  Basic Concepts and Terminology

– feasible traffic, internal blocking
– output contention, buffering, flow control, admission control
– circuit versus packet switching
– time vs. space switching, multiplexor, crossbar, buffer memories

• 1.3  Queueing Architectures – Family 1:
– shared buffer, output queueing, crosspoint queueing

• 1.4  Queueing Architectures – Family 2:
– input queueing: head-of-line blocking, per-output queues
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1.1  Problem Statement
Scalable, Distributed, Multi-party Communication

Output Contention: ∑ incoming rates > outgoing link capacity
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1.1  Problem Statement
Scalable, Distributed, Multi-party Communication

Reaction Effect Delay = Round-Trip Time (RTT)

(a) event

(b) feedback

(c) reaction effect

(1) am I the only one sending to Pj ?

Pi

Pj

(3) adjust rate...

(2) no, you are not!



3

1.1  - M. Katevenis, FORTH and U.Crete 5

Example:  Interdependent Constraints

• λ1 + λ2 + λ3 ≤ 100% 
(output contention) ⇒
33%+33%+33% ? (fairness)

• λ3 + λ4 + λ5 + λ6 ≤ 100% 
(input rate limitation) ⇒
25%+25%+25%+25% ?

• λ3=25% ⇒ λ1+λ2=75%⇒
λ1=λ2=37.5%
(max-min fairness) ?

• or λ3=0, λ1=λ2=50%,
λ4=λ5=λ6=33.3%
(maximum utilization) ?
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1.1  Problem Statement
Scalable, Distributed, Multi-party Communication

• (a) all-to-all 
connectivity 
costs O(N2)

• (b) lower-cost 
scalability is 
feasible –
with or without 
compromise on 
performance?
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1.2  Basic Concepts & Terminology: Feasible Traffic

• Flow control & congestion management strive to determine and enforce 
feasible rates at the sources – not at all an easy problem…

• Rates satisfying:

• ∀i: ∑j λi,j ≤ 1, i.e. 
do not violate      
input link capacities; 
and:

• ∀j: ∑i λi,j ≤ 1, i.e. 
do not violate    
output link capacities 
– do not create 
“output contention”.
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1.2  Basic Concepts & Terminology: Internal Blocking

• Externally feasible traffic for overall network, but…
• Internally not feasible, due to internal link oversubscription.
• Int. blocking in a network is output contention in a subnetwork, but:
• Output contention is the customer’s responsibility, while…
• Internal blocking is the network provider’s responsibility.
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Internal Blocking: a quiz and a preview of a key Result

Key Result (see later):  A N×N network made of (N/2)·log2N or 
less 2×2 switch elements will always have internal blocking.  
The Benes network, using multipath routing, has ≈N·log2N
2×2 switch elements and is internally non-blocking.

• does this network have 
internal blocking?

• (a)… if each flow is always 
routed through a fixed path?

• (b)… if routing paths can 
adapt to traffic patterns?

• hint: consider the traffic 
crossing a 45° bisection 
(“bisectional throughput”)

end-station

6x6 switch
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Dealing with Contention for Link Throughput
– Option 1:  Ensure contention never appears

• preschedule everything – fixed-rate traffic – “circuit switching”
– Option 2:  Allow dynamicly varying rates – “packet switching”
– 2(a):  Dealing with Short-term contention

⇒ manageable volume of excess traffic ⇒ either:
• buffer excess packets, temporarily, in memories, or:
• drop excess packets – and possibly retransmit later

– OK in some applications, and if we ensure it rarely happens, e.g. 
if it only happens on memory overflow, or w. massive overspeed

– 2(b):  Dealing with Long-term contention
⇒ unmanageable volume if excess traffic allowed to persist
• either, beforehand, use admission control

– increased latency before traffic allowed to start or change rate
• or, after-the-fact, use flow control – congestion management

– need large (RTT) buffer space(s) and multiple queues
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1.2  Basic Concepts & Terminology: Circuit Switching

• Originates from telephonic circuits, digitized and time-multiplexed
• Fixed-rate, prescheduled at connection set-up time – like trains
• Data-only – no headers needed: time-slot position in frame implicitely 

provides circuit ID (flow ID) and routing information
+ Simplicity: static, off-line routing decisions and contention resolution
- Partitioned Capacity: throughput is statically partitioned among circuits: 

unused capacity in one circuit is wasted – cannot be used by other ckts

A

B

C

periodic frame
1 2 3 4

periodic frame
1 2 3 4

periodic frame
1 2 3 4

Circuits: unused, wasted capacity
 

time
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1.2  Basic Concepts & Terminology: Packet Switching

• Varying or unpredictable traffic – like automobiles
• Self-describing packets: header provides destination address
+ Transmission capacity of link is dynamically shared among flows
- Demanding: dynamic, on-line, run-time routing decisions and 

contention resolution

A

B

C

 

timeglobally unused capacity

Flows:
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1.2  Basic Concepts & Terminology: Time Switching

• All packets pass through a single point in space, at different times
• Similar to time-sharing – multiprogramming on a single processor
• Buses are in this category (distributed multiplexor, built w. tristate drivers)
+ Economize on datapaths, wires, memories
+ Easy to share aggregate capacity among competing flows
- Non-scalable: infeasible beyond technology limit for aggregate capacity

time time

C=1

C=1

C=1

C=1

C=1time

High-throughput link (C=3)

Multiplexer (Aggregation type) Demultiplexer
C=1

Time-Division Multiplexing
(TDM)
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1.2  Basic Concepts & Terminology: Space Switching

• Packets at a given time pass through different paths in space
• Similar to multiprocessing on parallel processors
• Crossbars are in this category (single-stage space switches)
+ Scalable: use when aggregate throughput > upper limit of time switching
- Partitioned memories, wires ⇒ harder to route, schedule, load balance

C=1

C=1

C=1

Multiplexer
Crossbar

C=1

C=1

C=1
(Selection type)
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Combination Example: Time-Space-Time Circuit Switch

• Time switching (TSI’s) needed to resolve output and input conflicts

TSI

TSI

TSI TSI

Crossbar
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Output Conflict:
same output port, same input time

requires input TSI

Input Conflict:
same input port, same output time

requires output TSI

periodic frames

Time-Slot Interchange
(one frame worth of buffer memory)
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Contention Resolution: Buffer Memories

• Memories are needed to temporarily buffer packets that cannot proceed 
due to (hopefully short-term) output contention
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1.3  Queueing Architectures – family 1
Output Queueing – the “reference” architecture

• Packets are buffered in per-
output memories, right next 
to their desired output

⇒ “Work Conserving”
Operation: an output will 
never remain idle while  
even a single packet 
destined to it exists in some 
switch buffer memory ⇒

+ Minimum possible delay
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Buf. Mem.Buf. Mem. Buf. Mem.Buf. Mem.
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type)

+ Full (100%) utilization of outgoing link capacity
+ Adaptable to any quality-of-service (QoS) policy: organize queues and 

scheduler as desired within each per-output buffer; but…
- Wasteful in buffer-memory throughput – see shared buffer arch, below
- Partitioned buffer space is less efficient than shared – see below…
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Shared Buffer – the “best” architecture (when feasible)

+ Aggregate memory throughput = 2·N, versus N·(N+1) = N2+N for Outp.Q
+ Same high performance & minimum delay as Outp.Q with proper data str.
+ Shared buffer space is more efficiently used than partitioned in Outp.Q’ng
- Non-scalable: requires building a buffer memory with throughput = 2·N

(Outp.Q’ng is not scalable either: requires mem’s of thruput (N+1) each)
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Memory Throughput determines Feasibility & Cost
• Is memory thruput arbitrarily scalable by increasing its width?

– Not for memory widths exceeding the packet size!
– Multi-packet-wide memories are in reality full-fledged switches
– Example: Internet traffic consists of ~ 60% min-size packets, of 

size 40 Bytes (320 bits) each; assume mem. cycle time = 2 ns 
⇒ peak memory thruput = 500 Maccesses/s = 500 Mpackets/s 
= 500 M × 320 bits/s = 160 Gbps; for 10 Gbps links, this allows 
the shared buffer arch. to scale only up to 2·N=16 ⇒ 8×8 switch

• On-chip memory: power consumption ~ throughput
– e.g. 130 nm ⇒ ≈ 1.5 to 2 mW / Gbps  (for small mem. blocks: 

consumption dominated by sense amp’s; large blocks: by size)
• Off-chip memory: wire, pin, and chip count ~ throughput

– RAM chip address and data throughput ≈ 500 to 800 Mbps/pin
– pin & wire count determine pckg size, board area, power cons.
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Crosspoint Queueing – scalable but very costly impl. of OQ

+ Same high performance & minimum delay as Output Q’ng or Shared Buf.
+ Scalable: each memory needs throughput of only 2, independent of N
- Very expensive: total memory thruput = 2·N2, versus 2·N for shared buf.
- Highly partitioned memory: very poor buffer space utilization
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1.4  Queueing Architectures – family 2
Input Queueing – the “practical” architecture

• Per-input buffer 
memories

+ Scalable: each 
memory needs 
throughput = 2 
⇒ feasible
independ. of N

+ Low cost:   
total memory 
thruput = 2·N  
– same as 
shared buffer

- Performance suffers a lot, unless (i) multiple queues per input, and 
(ii) sophisticated scheduler, and usually (iii) other modifications to 
be seen later (small crosspoint Q’s, or internal speedup and OQ’s)
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Input Queueing is not the dual of Output Queueing

• Asymmetry between packet arrival and packet departure conflicts:
• Simultaneous arrivals may conflict with each other (packets destined to 

the same output), and the switch is obliged to accept them.
• Simultaneous departures are scheduled by the switch ⇒ can be made to 

not originate from the same input – albeit at potential performance cost.
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Head-of-Line (HOL) Blocking

• Whenever one First-in-First-Out (FIFO) queue feeds multiple destinations, 
beware of the danger of head-of-line (HOL) blocking
(called HOL-blocking when bottleneck is the FIFO organization – not when 
other bottleneck, e.g. memory read throughput or output port throughput)
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Multiple Lanes needed  to resolve HOL blocking

• As with cars in the road network, HOL blocking spreads the negative 
effects of congestion (blue cars) to other, unrelated traffic (green cars)

• Multiple “lanes” (queues, virtual circuits) (as many as the congested 
destinations???) can resolve this problem when properly architected 
(when packets heading to a common congestion point are prevented
from occupying more than one lane) – how should we do this?...
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Crossbar Scheduling with Multiple Queues is tricky

• Per-output queues at the inputs 
avoid HOL blocking – (a): even if 
Q1A cells are older, the younger 
Q1B cells can bypass them, 
since they reside in a separate Q 
and the scheduler can see them.
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• Which of the two configurations 
should the scheduler choose?

• (a) for higher aggregate thruput?

• … but then, flow Q1A will starve!
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Summary of Queueing Architectures – N×N switch
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