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1.1 Problem Statement
Scalable, Distributed, Multi-party Communication
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Output Contention: . incoming rates > outgoing link capacity
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1.1 Problem Statement
Scalable, Distributed, Multi-party Communication

Reaction Effect Delay = Round-Trip Time (RTT)
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Example: Interdependent Constraints
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1.1 Problem Statement
Scalable, Distributed, Multi-party Communication
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1.2 Basic Concepts & Terminology:

Feasible Traffic
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» Flow control & congestion management strive to determine and enforce

» Rates satisfying:
do not violate
input link capacities;
and:
Vi 2 NS 1, ie.

do not violate

output link capacities

— do not create
“output contention”.

feasible rates at the sources — not at all an easy problem...
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1.2 Basic Concepts & Terminology:

Internal Blocking
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Externally feasible traffic for overall network, but...
Internally not feasible, due to internal link oversubscription.

Int. blocking in a network is output contention in a subnetwork, but:
» Output contention is the customer’s responsibility, while...

Internal blocking is the network provider’s responsibility.

\/




Internal Blocking: @ quiz and a preview of a key Result

end-station . does this network have
internal blocking?

* (a)... if each flow is always
routed through a fixed path?

* (b)... if routing paths can
adapt to traffic patterns?

* hint: consider the traffic
crossing a 45° bisection
(“bisectional throughput”)

6x6 switch

Key Result (see later): A NxN network made of (N/2):log,N or
less 2x2 switch elements will always have internal blocking.
The Benes network, using multipath routing, has =N-log,N
2x2 switch elements and is internally non-blocking.
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Dealing with Contention for Link Throughput

— Option 1: Ensure contention never appears

* preschedule everything — fixed-rate traffic — “circuit switching”
— Option 2: Allow dynamicly varying rates — “packet switching”
— 2(a): Dealing with Short-term contention

= manageable volume of excess traffic = either:

* buffer excess packets, temporarily, in memories, or:

* drop excess packets — and possibly retransmit later

— OK in some applications, and if we ensure it rarely happens, e.g.
if it only happens on memory overflow, or w. massive overspeed

— 2(b): Dealing with Long-term contention
= unmanageable volume if excess traffic allowed to persist
* either, beforehand, use admission control
— increased latency before traffic allowed to start or change rate
* or, after-the-fact, use flow control — congestion management
— need large (RTT) buffer space(s) and multiple queues
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1.2 Basic Concepts & Terminology: Circuit Switching

Circuits: unused, wasted capacity
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+ Originates from telephonic circuits, digitized and time-multiplexed

» Fixed-rate, prescheduled at connection set-up time — like trains

» Data-only — no headers needed: time-slot position in frame implicitely
provides circuit ID (flow ID) and routing information

+ Simplicity: static, off-line routing decisions and contention resolution

- Partitioned Capacity: throughput is statically partitioned among circuits:
unused capacity in one circuit is wasted — cannot be used by other ckts
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1.2 Basic Concepts & Terminology: Packet Switching
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* Varying or unpredictable traffic — like automobiles

» Self-describing packets: header provides destination address

+ Transmission capacity of link is dynamically shared among flows

- Demanding: dynamic, on-line, run-time routing decisions and
contention resolution
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1.2 Basic Concepts & Terminology: Time Switching
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time

Multiplexer (Aggregation type)

Demultiplexer

time

+ All packets pass through a single point in space, at different times
+ Similar to time-sharing — multiprogramming on a single processor
* Buses are in this category (distributed multiplexor, built w. tristate drivers)
+ Economize on datapaths, wires, memories
+ Easy to share aggregate capacity among competing flows
- Non-scalable: infeasible beyond technology limit for aggregate capacity
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1.2 Basic Concepts & Terminology: Space Switching
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» Packets at a given time pass through different paths in space

 Similar to multiprocessing on parallel processors

» Crossbars are in this category (single-stage space switches)
+ Scalable: use when aggregate throughput > upper limit of time switching
- Partitioned memories, wires = harder to route, schedule, load balance
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Combination Example: Time-Space-Time Circuit Switch
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periodic frames
Time-Slot Interchange
(one frame worth of buffer memory)

Output Conflict:
same output port, same input time
—» requires input TSI

Input Conflict:
same input port, same output time
— requires output TSI

» Time switching (TSI’s) needed to resolve output and input conflicts
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Contention Resolution: Buffer Memories
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il
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* Memories are needed to temporarily buffer packets that cannot proceed
due to (hopefully short-term) output contention

L“lc=1 lc=1
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1.3 Queueing Architectures — family 1
Output Queueing — the “reference” architecture

» Packets are buffered in per-

. . C=1
output memories, right next 1V 4
to their desired output o
. C=1
="Work Conserving” o 7 7 T
Operation: an output will
. . Multiplexor.
never remain idle while (Aggregation C=4 C=4 C=4 c=4
. t
even a single packet yPe) Bur Mem | [Bul Mem.|  [BufMem.]  [Buf. Mem.
destined to it exists in some
switch buffer memory = %

+ Minimum possible delay 1C=1 ¥lo=1 wlc=1 1C=1

+ Full (100%) utilization of outgoing link capacity

+ Adaptable to any quality-of-service (QoS) policy: organize queues and
scheduler as desired within each per-output buffer; but...

- Wasteful in buffer-memory throughput — see shared buffer arch, below
- Partitioned buffer space is less efficient than shared — see below...
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Shared Buffer — the “best” architecture (when feasible)

oy e —
C=1 c=1
N_C=1 N_C=1 }
C:1 Cc=1
C=N
2
° \HC/ N \HC/ N \—ﬂ_c/ N \ﬂ_/ Shared Buffer
(3]
G M) M) | | MN) C=N
5
Q — — — —
= LC—l lC—l lC—l lC—l c=1
o 1 2 N N

+ Aggregate memory throughput = 2:N, versus N-(N+1) = N2+N for Outp.Q
+ Same high performance & minimum delay as Outp.Q with proper data str.
+ Shared buffer space is more efficiently used than partitioned in Outp.Q’'ng

- Non-scalable: requires building a buffer memory with throughput = 2-N
(Outp.Q’ng is not scalable either: requires mem’s of thruput (N+1) each)
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Memory Throughput determines Feasibility & Cost

* |Is memory thruput arbitrarily scalable by increasing its width?
— Not for memory widths exceeding the packet size!
— Multi-packet-wide memories are in reality full-fledged switches
— Example: Internet traffic consists of ~ 60% min-size packets, of
size 40 Bytes (320 bits) each; assume mem. cycle time = 2 ns
= peak memory thruput = 500 Maccesses/s = 500 Mpackets/s
=500 M x 320 bits/s = 160 Gbps; for 10 Gbps links, this allows
the shared buffer arch. to scale only up to 2:N=16 = 8x8 switch
* On-chip memory: power consumption ~ throughput
—-e.g.130nm = =1.5t0 2 mW / Gbps (for small mem. blocks:
consumption dominated by sense amp’s; large blocks: by size)
« Off-chip memory: wire, pin, and chip count ~ throughput
— RAM chip address and data throughput = 500 to 800 Mbps/pin
— pin & wire count determine pckg size, board area, power cons.
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Crosspoint Queueing — scalable but very costly impl. of OQ
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module implementing C=1 C=1 C=1
one Output Queue Buffer y1 2 N

+ Same high performance & minimum delay as Output Q'ng or Shared Buf.
+ Scalable: each memory needs throughput of only 2, independent of N

- Very expensive: total memory thruput = 2:-N2, versus 2-N for shared buf.
- Highly partitioned memory: very poor buffer space utilization

1.3 - M. Katevenis, FORTH and U.Crete, Greece 20

10



1.4 Queueing Architectures — family 2
Input Queueing — the “practical” architecture

[ Scheduler | =+ — =
+ Per-input buffer 1 _J' i == |
memories —==|Mem.— : i> =1 l

+ Scalable: each J' h
2 Mem. | i '
memory needs =T : T =1 |
throughput = 2 _; | [
= feasible = IMem. < — | c=1 |
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+ Low cost: N _Ivem. <———'> c=1 |
total memory Cc=1 [
thruput = 2:N Yyvy _:

—Same as Multipexor
shared buffer (selection)

- Performance suffers a lot, unless (i) muItlpIe queues per mput, and
(i) sophisticated scheduler, and usually (iii) other modifications to
be seen later (small crosspoint Q’s, or internal speedup and OQ’s)
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Input Queueing is not the dual of Output Queueing
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+ Asymmetry between packet arrival and packet departure conflicts:

» Simultaneous arrivals may conflict with each other (packets destined to
the same output), and the switch is obliged to accept them.

» Simultaneous departures are scheduled by the switch = can be made to
not originate from the same input — albeit at potential performance cost.

1.4 - M. Katevenis, FORTH and U.Crete, Greece 22

11



Head-of-Line (HOL) Blocking
needlessly blocked (HOL blocking)
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per input

* Whenever one First-in-First-Out (FIFO queue feeds multlple destinations,
beware of the danger of head-of-line (HOL) blocking

(called HOL-blocking when bottleneck is the FIFO organization — not when
other bottleneck, e.g. memory read throughput or output port throughput)
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Multiple Lanes needed to resolve HOL blocking

» As with cars in the road network, HOL blocking spreads the negative
effects of congestion (blue cars) to other, unrelated traffic (green cars)

* Multiple “lanes” (queues, virtual circuits) (as many as the congested
destinations???) can resolve this problem when properly architected
(when packets heading to a common congestion point are prevented
from occupying more than one lane) — how should we do this?...
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Crossbar Scheduling with Multiple Queues is tricky
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» Per-output queues at the inputs
avoid HOL blocking — (a): even if
Q1A cells are older, the younger
Q1B cells can bypass them,
since they reside in a separate Q
and the scheduler can see them.

Q1A
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» Which of the two configurations
should the scheduler choose?

* (@) for higher aggregate thruput?

* ... but then, flow Q1A will starve!
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Summary of Queueing Architectures — NxN switch
Archi- |per-mem| num.of |tot.mem|mem.sp | Perfor- | Com- Con-
tecture | thruput | mem’s | thruput | utilizatn | mance | plexity [clusions
Shared multiple | best if
Buffer | 2N 1 2:N best | best queues | feasible
Output N+1 N N2+N [medium| best | simple refernc
Q’ing P only
Crosspt 2 2 : simple
Qing 2 N 2:N worst | best | simple scalable
Inp.Q . . simple,
SreEe 2 N 2:N [medium| worst | simple e
Inp.Q . . multiQ’s, | textbook
multiQ 2 N 2:N [medium|{medium schedul] only
Variants 4-N to , very |multiQ’s,| practical
(later) 2t04 | 2:N++ 8-N++ medium good |schedul’r| scalable
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