6.2 Per-Flow Queueing and Flow Control

Indiscriminate flow control causes local congestion (output
contention) to adversely affect other, unrelated flows

— indiscriminate flow control causes phenomena analogous to HOL
blocking, independent of how many queues there are, when the
equivalent of a “queue” spreads across multiple switches in a fabric

Shared queues cause fairness problems between the flows

that share them

— service rates determined by the original sources, rather than by a
scheduler at the contention point

— even with FC feedback, shared queues delay policy enforcement

The solution: Per-Flow Queueing and Flow Control
— keep the “head” of each flow’s queue near its intended output
— keep the “bulk” of each flow’s queue in its input buffer(s)

Application: Buffered Crossbars (CICQ — Comb. Input-Crosspt. Q.)

CS-534 - Copyright University of Crete 1

Indiscriminate Lossless FC => Head-of-Line Blocking

packets destined to N
light traffic areas — heav
y
needlessly delayed :> Q -
or blocked! IIII traffic
/ / \ buffers >
Z \
ﬂ light traffic

[\
1 1 g 7
LN

gackgressurg___// \\\
\

"Remaining" Queue "Head" \\

("pushed back") of Queue \\
Solution 1: With any queueing discipline (FIFO or not)
lossy flow control... this switch has only access to and can only

. _ schedule packets in this limited buffer space

Solution 2:

=> similar to Head-of-Line (HOL) Blocking!
Per-Flow

queueing & flow control
CS-534 - Copyright University of Crete

Indiscriminate (FIFO) Queueing is Unfair

(the ""parking lot" problem)
e 50 % red

red e 25 % purple

purple = e 12 % blue
H — e 12 % green

\\
=ni / SATTTTTITI -
1= M=
";;mmu —

green

Solution: Per-Flow queueing & (weighted) round-robin scheduling

CS-534 - Copyright University of Crete 3

Shared (FIFO) Queueing with Fair (per-flow) Rate Control
IS slow in enforcing fairness

-—— _ "newRate := 50%"
IIIII B E B EEEEEENER
| rate(old) = 90% :

T

A
|

rate(old) = 10% |
" - = @& ©® ~ | |
rate(new) = 50% Single, FIFO queue

shared by both flows

Solution: Per-Flow queueing

CS-534 - Copyright University of Crete 4

Solution:

Per-Connection (per-flow) Queueing & Flow Control

o “i“ * ______ feedback)
— RO= |
— by mm)—+—
—] > I — : bl
4
T O
N A=
{ o v R
— T T@f _________________] \
- : teedback Scheduler

(rate/credit flow control)

CS-534 - Copyright University of Crete 9

(this slide intentionally left blanc)

CS-534 - Copyright University of Crete

——
B

—
—
p—

|

w| |wf || (=] |m

—
—
p—

Input Buffers
with VOQ's

-——

backpressure backpressure

Compare to Output Q’'ing or VOQs w.Unbuffered Fabric

N-1

EEEEEEEE 0
EEEEEE
= llll:t> EEEEEEEN|
— > SEEEEEEE 0 |
J Illll-|-’/
1 EEEE|
-":> EEEEENE]
> 1 |
> Illlllll|/
EEEEE_}/
Illlllllﬁ l
- '"T%
EEEN N'l
| EEEE|
Ty
N
N-1
J

/

-

matching
problem

CS-534 - Copyright University of Crete

Example Application of per-flow queueing:
Combined Input-Crosspoint Queueing — “CICQ"
or “Buffered Crossbars”

« Example application: per-flow queues, per-flow backpressure
— switching fabric = crossbar
— flow = input-output pair = crosspoint
— small buffers inside the fabric — per-crosspoint queues
— large buffers at the inputs — VOQ’s

— backpressure from the crosspoints to the VOQ's (per-flow) to keep
the (small) crosspoint buffers from overflowing

* Loosely-coupled, independent, single-resource schedulers

— per-output schedulers decide which flow (crosspoint queue) to serve
among the non-empty ones in each output’s column

— per-input schedulers decide which flow to serve among the ones with
non-empty VOQ and with credits available in each input’s row

= Approximate “matchings” yield better scheduling efficiency

CS-534 - Copyright University of Crete 9

Buffered Crossbar (Comb. Input-Crossp. Q’'ng — CICQ)

Backpressure

@: |

? Y ! ?
o g (O
\Ssi—\.:\\\ —9 —9 —9
e
a9 & 3|

o U
?

Y

Y

—— |
=‘
S~ ~- | -
— ——
\\\ \T\ { \\\~

(5 J %_
A R
@E’"@Ll@t@

CS-534 - Copyright University of Crete 10

Buffered Crossbars (CICQ) — References:

D. Stephens, H. Zhang: “Implementing Distributed Packet Fair Queueing
in a Scalable Switch Architecture”, INFOCOM 1998

T. Javidi, R. Magill, and T. Hrabik: “A High-Throughput Scheduling
Algorithm for a Buffered Crossbar Switch Fabric”, ICC 2001

R. Rojas-Cessa, E. Oki, and H. Jonathan Chao: “CIXOB-k: Combined
Input-Crosspoint-Output Buffered Switch”, GLOBECOM 2001

Abel, Minkenberg, Luijten, Gusat, lliadis: “A Four-Terabit Packet Switch
Supporting Long Round-Trip Times”, IEEE Micro, Jan. 2003

N. Chrysos, M. Katevenis: “Weighted Fairness in Buffered Crossbar
Scheduling”, IEEE Wrksh. High Perf. Switching & Routing (HPSR) 2003

= M. Katevenis, G. Passas, D. Simos, |. Papaefstathiou, N. Chrysos:

“Variable Packet Size Buffered Crossbar (CICQ) Switches”, ICC 2004

G. Passas, M. Katevenis: “Packet Mode Scheduling in Buffered
Crossbar (CICQ) Switches”, IEEE W.High Perf.Sw.Rtng (HPSR) 2006

CS-534 - Copyright University of Crete 11

Variable Packet Size (VPS) Buffered Crossbars

1 c S 1 1 VPS
1 18 88 s Unbuffered 1 16 231 1 Buffered
;1= Ee o Crossbar ;1 1= 88 4 Crossbar
.1z =31 . .12 831, efficient
S T9 scheduling o 5 O scheduling
- | o2 - inefficiencies - 10 28 - and operation
5 3 5 8o
° o g ﬁ ° @ ° o g_ 2 ° @
— e 8 [speedup — £ c I no speedup
1 Q S needed 1 1 needed
rsl R & 1J 1]--.J1
| Output Queues
I due to speedup e no speedup
|L and pck reassembly e no reassembly
1 ’Il « o o 11 —> no output queues needed
\

Buffered crossbar yields 2 to 3 times faster ports
—> (and cut-through), at lower cost (no output buffers,
except when output sub-ports needed)

e s =2 to 3 approximately
e assuming same core speed

CS-534 - Copyright University of Crete 12

Crosspoint Buffer Sizing for Variable-Size Packets

 For full throughput under worst-case single active flow:

CrosspBufSize = MaxPacketSize + RTTwindow

VOQ
301 15008 N
credit: A \v
1800 B
1499 RTT=400 crosspoint
Byte-times bufferp

301 B

——

credit: +301 A

N

301 Byte-times busy
99 Byte-times idle
1500 Byte-times busy

CS-534 - Copyright University of Crete

13

output utilization

Crosspoint Buffer = MaxPckSize + RTTwindow

300 500 ;700

1.00 |
0.95 ¢
0.90
0.85
0.80 |

0.75 |
0.70

1500 1600 1700 1800 1900 2000 2100 2200 2300 2400
crosspoint buffer size (Bytes)

CS-534 - Copyright University of Crete

14

No Speedup needed to approach Output Queuing
100 '

00)
)

o
o

- - e = = = = -

N
o

20 : L T A OX B
=" iSLIP-2.0x

0.50 . 0.90 1.00
input load

average delay (microseconds)

« Uniform destinations
* Internet-style synthetic workload; 40-1500 byte packet sizes
« Unbuffered crossbar w. SAR: one-iteration iSLIP, 64-byte segments

CS-534 - Copyright University of Crete 15

Saturation Throughput under Unbalanced Traffic
4KB, 2KB,_ 8 KB ,3KB

|
10kg - - "N "N AR o

5 0.9 =3 et e T e
Q -—o—8—8—8—
k- -i- - 2 N- - - eAconnint 1 Ffar e+ § - KWR- - - - - -
S

© 08F------"xN-""r-""r---r e T
| -

L

L - = == = = == = = Blm = = == = = e = = e = = = = = = = = = k[= =—
S

= 0/F-----r Nttt

=

(72 T U U U -, AP

l l l l L L L L 1

01 02 03 04 05 06 0.7 0.8 09 10
unbalance factor f

« Poisson arrivals, Pareto sizes (40-1500)
« ForiSLIP, packet sizes are multiples of 64 B (= no SAR overhead)

CS-534 - Copyright University of Crete 16

A VPS Buffered Crossbar Chip Design

32x32 ports, 300 Gbps aggregate throughput

2 KBytes / crosspoint buffer x 1024 crosspoints
Variable-size packets (multiples of 4 Bytes)

32-bit datapaths

Cut-through at the crosspoints

Fully designed, in Verilog

Core only, no pads & transceivers

Fully verified: Verilog versus C++ performance simulator
Crosspoint logic = 100 FF + 25 gates (simplicity!)
Synthesized: Synopsys

Placed & routed: Cadence Encounter, 0.18 ym UMC

— Clock frequency: 300 MHz @ 0.18 um
(operates at maximum SRAM clock frequency)

CS-534 - Copyright University of Crete

17

Core Area, Power Allocation:

e 0.18-micron, 32x32 ports: crosspoint logic (32x32):
Core Area = 420 mm2 2 % area
Core Power ~ 6 W typical 5 % power
—l

crossbar wires & drivers:
32 in + 32 out x32-bit

/

crosspoint buffers: / BTt
uffer

60 % power
70 % area l = large cost of speedup
20 % power
. e For Pads & Transceivers

32 output schedulers . add an estimated extra:

& credit logic: N ~ 25 % area

1 % area @ ~ 400 % power (!)

15 % power = huge cost of speedup

CS-534 - Copyright University of Crete

