6.2 Per-Flow Queueing and Flow Control

Indiscriminate flow control causes local congestion (output
contention) to adversely affect other, unrelated flows

— indiscriminate flow control causes phenomena analogous to HOL
blocking, independent of how many queues there are, when the
equivalent of a “queue” spreads across multiple switches in a fabric

Shared queues cause fairness problems between the flows

that share them

— service rates determined by the original sources, rather than by a
scheduler at the contention point

— even with FC feedback, shared queues delay policy enforcement

The solution: Per-Flow Queueing and Flow Control
— keep the “head” of each flow’s queue near its intended output
— keep the “bulk” of each flow’s queue in its input buffer(s)

Application: Buffered Crossbars (CICQ — Comb. Input-Crosspt. Q.)
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Indiscriminate Lossless FC => Head-of-Line Blocking
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Solution 1: With any queueing discipline (FIFO or not)
lossy flow control... this switch has only access to and can only

. _ schedule packets in this limited buffer space

Solution 2:

=> similar to Head-of-Line (HOL) Blocking!
Per-Flow

queueing & flow control
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Indiscriminate (FIFO) Queueing is Unfair

(the ""parking lot" problem)
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Solution: Per-Flow queueing & (weighted) round-robin scheduling
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Shared (FIFO) Queueing with Fair (per-flow) Rate Control
IS slow in enforcing fairness
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Solution: Per-Flow queueing
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Solution:

Per-Connection (per-flow) Queueing & Flow Control
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Compare to Output Q’'ing or VOQs w.Unbuffered Fabric
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Example Application of per-flow queueing:
Combined Input-Crosspoint Queueing — “CICQ"
or “Buffered Crossbars”

« Example application: per-flow queues, per-flow backpressure
— switching fabric = crossbar
— flow = input-output pair = crosspoint
— small buffers inside the fabric — per-crosspoint queues
— large buffers at the inputs — VOQ’s

— backpressure from the crosspoints to the VOQ's (per-flow) to keep
the (small) crosspoint buffers from overflowing

* Loosely-coupled, independent, single-resource schedulers

— per-output schedulers decide which flow (crosspoint queue) to serve
among the non-empty ones in each output’s column

— per-input schedulers decide which flow to serve among the ones with
non-empty VOQ and with credits available in each input’s row

= Approximate “matchings” yield better scheduling efficiency
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Buffered Crossbar (Comb. Input-Crossp. Q’'ng — CICQ)
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Buffered Crossbars (CICQ) — References:
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Variable Packet Size (VPS) Buffered Crossbars
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Buffered crossbar yields 2 to 3 times faster ports
—> (and cut-through), at lower cost (no output buffers,
except when output sub-ports needed)

e s =2 to 3 approximately
e assuming same core speed
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Crosspoint Buffer Sizing for Variable-Size Packets

 For full throughput under worst-case single active flow:

CrosspBufSize = MaxPacketSize + RTTwindow

VOQ
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output utilization

Crosspoint Buffer = MaxPckSize + RTTwindow
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No Speedup needed to approach Output Queuing
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« Uniform destinations
* Internet-style synthetic workload; 40-1500 byte packet sizes
« Unbuffered crossbar w. SAR: one-iteration iSLIP, 64-byte segments
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Saturation Throughput under Unbalanced Traffic
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« Poisson arrivals, Pareto sizes (40-1500)
« ForiSLIP, packet sizes are multiples of 64 B (= no SAR overhead)
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A VPS Buffered Crossbar Chip Design

32x32 ports, 300 Gbps aggregate throughput

2 KBytes / crosspoint buffer x 1024 crosspoints
Variable-size packets (multiples of 4 Bytes)

32-bit datapaths

Cut-through at the crosspoints

Fully designed, in Verilog

Core only, no pads & transceivers

Fully verified: Verilog versus C++ performance simulator
Crosspoint logic = 100 FF + 25 gates (simplicity!)
Synthesized: Synopsys

Placed & routed: Cadence Encounter, 0.18 ym UMC

— Clock frequency: 300 MHz @ 0.18 um
(operates at maximum SRAM clock frequency)
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Core Area, Power Allocation:

e 0.18-micron, 32x32 ports: crosspoint logic (32x32):
Core Area = 420 mm2 2 % area
Core Power ~ 6 W typical 5 % power
—l

crossbar wires & drivers:
32 in + 32 out x32-bit

/

crosspoint buffers: / BTt
uffer

60 % power
70 % area l = large cost of speedup
20 % power
. e For Pads & Transceivers

32 output schedulers . add an estimated extra:

& credit logic: N ~ 25 % area

1 % area @ ~ 400 % power (!)

15 % power = huge cost of speedup
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