5.2 Switching Fabric Topologies

- **Benes Fabrics** – recursive construction
 - rearrangeably non-blocking (probably the lowest cost such)
 - proof under circuit switching with 2×2 switches
- **Banyan Fabrics** – one half of a Benes
 - internal blocking for non-uniform traffic patterns
- **Clos Networks** – generalization of Benes
 - rearrangeably or strictly non-blocking, depending on middle-stage width
- **Fat Trees** – like folded, bidirectional Clos
- **Others**
 - meshes, tori, hypercubes, etc.
5.2 Switching Fabric Topologies

- Circuit Connections: Start from an input, use one of the subnets

- Continue from the brother port of the output, then the brother of the input
• Keep “threading” output and input switches, till closing or no-connection

• Start a new “thread” (a) from an unconnected input, till completing all conn.
A) Thread termination on input side (1 of 2)

- Threads always start on the input side
- If a thread terminates on the input side:
 - all touched output switches are completely connected
 - concerning touched input switches:
 1) if thread closes, all are complete, ...

(A) Thread termination on input side (2 of 2)

- Threads always start on the input side
- If a thread terminates on the input side:
 - all touched output switches are completely connected
 - concerning touched input switches:
 1) if thread closes (4), all are complete,
 2) if thread terminates on half-used input (b): all touched input switches are complete, except the first one, which is half-covered by this thread
(B) Thread termination on output side

- Threads always start on the input side
- If a thread terminates on the output side:
 - all touched output switches are completely connected
 - the first touched input switch is half-covered

(C) Completing half-covered input switches

- New threads always start from a half-covered input switch, if there is one
 ⇒ all threads cover all out-sw’s they touch, in-sw’s are covered in sequence
Benes Fabric: *Rearrangeably Non-Blocking*

Recursive Construction of 16x16 Benes Network out of 2x2 Switches

- Step-1 sub-network
- Step-3
- Step-2 sub-network

5.2 Switching Fabric Topologies
5.2 Switching Fabric Topologies

Reminder of topics discussed in class, which need to be included in future-year slides

- Banyan fabric is like a set of binary trees with shared nodes.
- Dst/Src Address: in a banyan, a single field suffices for both, if each stage replaces one “consumed” destination-address bit with one corresponding source-address bit.
- Number of states of a fabric made of 2×2 switch elements, internal blocking, and cost-minimality of non-blocking fabrics:
 - Banyan has \(\frac{1}{2} \cdot N \cdot \log_2 N \) switches, and its number of states is less than \(N! \), hence it cannot route all permutations – has internal blocking
 - Benes has \(N \cdot (\log_2 N - \frac{1}{2}) \) switches, its number of states is more than \(N! \), it can route all permutations, and it is internally non-blocking
 - The minimum-cost non-blocking fabric made of 2×2 switches must have at least \(\log_2(N!) \) switches, hence it must have a cost in-between the cost of the banyan and the cost of the Benes.
- Clos Networks: \(N^2 \) parameter is like “internal speedup”…
- Fat Trees – Benes/Clos: bidirectional vs. unidirectional links:
 - Bidirectional links needed to carry flow control (backpressure) info. …
5.2 Switching Fabric Topologies
5.2 Switching Fabric Topologies

FAT TREES

Customizable amounts of internal blocking, while exploiting locality of traffic, with option for non-blocking operation in a configuration similar to a folded Benes network.

Conceptual View of Fat Trees:
- Increasing cost and decreasing amounts of internal blocking:
 - $r=2$
 - $r=4$

Fat Tree Implementation:
- a la folded Benes...